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Using a systematic computer search, nine simple chaotic flows with quadratic nonlineari-
ties were found that have the unusual feature of having a line equilibrium. Such systems
belong to a newly introduced category of chaotic systems with hidden attractors that are
important and potentially problematic in engineering applications.
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1. Introduction

It is widely recognized that mathematically simple sys-
tems of nonlinear differential equations can exhibit chaos.
With the advent of fast computers, it is now possible to ex-
plore the entire parameter space of these systems with the
goal of finding parameters that result in some desired
characteristics of the system.

Recent research has involved categorizing periodic and
chaotic attractors as either self-excited or hidden [1–10]. A
self-excited attractor has a basin of attraction that is asso-
ciated with an unstable equilibrium, whereas a hidden
attractor has a basin of attraction that does not intersect
with small neighborhoods of any equilibrium points. The
classical attractors of Lorenz, Rössler, Chua, Chen, Sprott
systems (cases B–S) and other widely-known attractors
are those excited from unstable equilibria. From a compu-
tational point of view this allows one to use a numerical
method in which a trajectory started from a point on the
unstable manifold in the neighborhood of an unstable
equilibrium, reaches an attractor and identifies it [7]. Hid-
den attractors cannot be found by this method and are
important in engineering applications because they allow
unexpected and potentially disastrous responses to pertur-
bations in a structure like a bridge or an airplane wing.

The chaotic attractors in dynamical systems without
any equilibrium points or with only stable equilibria are
hidden attractors. That is the reason such systems are
rarely found, and only a few such examples have been re-
ported in the literature [11–20].

In this paper, we introduce a new category of chaotic
systems with hidden attractors: systems with a line equi-
librium. Although in such systems the basin of attraction
may intersect the line equilibrium in some sections, there
are usually uncountably many points on the line that lie
outside the basin of attraction of the chaotic attractor,
and thus it is impossible to identify the chaotic attractor
for sure by choosing an arbitrary initial condition in the
vicinity of the unstable equilibria. In other words, from a
computational point of view these attractors are hidden,
and knowledge about equilibria does not help in their
localization. On the other hand, to the best of our knowl-
edge, although there are dynamical systems with a line
equilibrium in the literature [21–24], only one chaotic
example has been reported [25], and it is artificial because
it is a four-dimensional system that can be reduced to a
three-dimensional system in which the line equilibrium
vanishes. The goal of this paper is to describe a new cate-
gory of hidden attractor and expand the list of known
mathematically simple hidden chaotic attractors. Thus
we perform a systematic computer search for chaos in
three-dimensional autonomous systems with quadratic
nonlinearities which have been designed so that there will
be a line equilibrium, and we ensure that the line equilib-
rium cannot be made to vanish by reduction to a system of
lower dimension.
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Table 1
Six simple chaotic flows with line equilibrium.

Case Equations (a,b) Equilibrium Eigenvalues LEs DKY (x0, y0, z0)

LE1 _x ¼ y a = 15 0 z�
ffiffiffiffiffiffiffiffi

z2�4
p

2
0.0717 2.1371 0

_y ¼ �xþ yz b = 1 0 0 0 0.5
_z ¼ �x� axy� bxz z �0.5232 0.5

LE2 _x ¼ y a = 17 0 z�
ffiffiffiffiffiffiffiffi

z2�4
p

2
0.0564 2.1927 0

_y ¼ �xþ yz b = 1 0 0 0 0.4
_z ¼ �y� axy� bxz z �0.2927 0

LE3 _x ¼ y a = 18 0 z�
ffiffiffiffiffiffiffiffi

z2�4
p

2
0.0556 2.1714 0

_y ¼ �xþ yz b = 1 0 0 0 �0.4
_z ¼ x2 � axy� bxz z �0.3245 0.5

LE4 _x ¼ y a = 4 0 z�
ffiffiffiffiffiffiffiffi

z2�4
p

2
0.0539 2.1712 0.2

_y ¼ �xþ yz b = 0.6 0 0 0 0.7
_z ¼ �axy� bxy� yz z �0.3147 0

LE5 _x ¼ y a = 1.5 0 z�
ffiffiffiffiffiffiffiffiffiffi

z2�4a
p

2
0.1386 2.1007 0.7

_y ¼ �axþ yz b = 5 0 0 0 1
_z ¼ �x2 � y2 � bxz z -1.3764 0

LE6 _x ¼ y a = 0.04 0 z�
ffiffiffiffiffiffiffiffi

z2�4
p

2
0.0543 12

b = 0.1 0 0 0 2
_y ¼ �xþ yz z �0.6314 2.0860 0
_z ¼ �ay2 � xy� bxz

LE7 _x ¼ z a = 1.85 0 �0:3y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:09y2�4y
p

2
0.1144 2.0140 5.1

_y ¼ xþ yz y 0 0 7
_z ¼ �ax2 � xy� byz b = 0.3 0 �1.0270 0

LE8 _x ¼ z a = 3 0 � ffiffiffi

y
p

0.0521 2.0647 0
_y ¼ �x� yz b = 1 y 0 0 �0.3
_z ¼ ax2 � xy� bxz 0 �0.8053 �1

LE9 _x ¼ z a = 1.62 x �0:62�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:8644�4x2
p

2
0.0642 2.0939 0

_y ¼ �ayþ xz 0 0 0 1
_z ¼ z� bz2 þ xy b = 0.2 0 �0.6842 0.8

Fig. 1. State space plots of the cases in Table 1 projected onto the xy-plane.
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2. Simple chaotic flows with a line equilibrium

In the search for chaotic flows with a line equilibrium,
we were inspired by the structure of the conservative
Sprott case A system [26],

_x ¼ y
_y ¼ �xþ yz

_z ¼ 1� y2

ð1Þ

This system is the oldest and best-known example of a
chaotic system with no equilibria, but it does not have a
strange attractor since it is conservative. It is an important
system since it is a special case of the Nose–Hoover oscil-
lator [27] which describes many natural phenomena [28],
and thus it suggests that such systems may have practical
as well as theoretical importance.

We consider a general parametric form of Eq. (1) with
quadratic nonlinearities of the form

_x ¼ y
_y ¼ a1xþ a2yz

_z ¼ a3xþ a4yþ a5x2 þ a6y2 þ a7xyþ a8xzþ a9yz

ð2Þ
Fig. 2. The largest Lyapunov exponent and bifurcation diagram
As can be seen, this system has a line equilibrium in (0, 0, z)
with no other equilibria (in other words the z-axis is the
line equilibrium of this system).

An exhaustive computer search was done considering
millions of combinations of the coefficients a1 through a9

and initial conditions, seeking dissipative cases for which
the largest Lyapunov exponent is greater than 0.001. For
each case that was found, the space of coefficients was
searched for values that are deemed ‘‘elegant’’ [29], by
which we mean that as many coefficients as possible are
set to zero with the others set to ±1 if possible or otherwise
to a small integer or decimal fraction with the fewest pos-
sible digits. Cases LE1–LE6 in Table 1 are six simple cases
found in this way with only six terms. With some similar
procedure, three other similar cases LE7–LE9 are included
in the table.

In addition to the cases in the table, dozens of additional
cases were found, but they were either equivalent to one of
the cases listed by some linear transformation of variables,
or they were extensions of these cases with more than six
terms.

All these cases are dissipative with attractors projected
onto the xy-plane as shown in Fig. 1. The equilibria, eigen-
of case LE1 showing a period-doubling route to chaos
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values, Lyapunov exponent spectra, and Kaplan–Yorke
dimensions are shown in Table 1 along with initial condi-
tions that are close to the attractor. As is usual for strange
attractors from three-dimensional autonomous systems,
the attractor dimension is only slightly greater than 2.0,
the largest of which is LE2 with DKY = 2.1927, although no
effort was made to tune the parameters for maximum
chaos. All the cases appear to approach chaos through a
succession of period-doubling limit cycles, a typical exam-
ple of which (LE1) is shown in Fig. 2 with decreasing a for
b = 1. As a decreases further, the strange attractor is de-
stroyed in a boundary crisis.

Fig. 3 shows a cross section in the xz-plane at y = 0 of
the basin of attraction for the two attractors for the typical
case LE1. Note that the cross section of the strange attractor
nearly touches its basin boundary as is typical of low-
dimensional chaotic flows.

For LE1 we can obtain the eigenvalues from
kðk2 � zkþ 1Þ ¼ 0. One of the eigenvalues is zero. The other
two depend on z. Using the Routh–Hurwitz stability crite-
rion for the other two, we can say for z > 0 the eigenvalues
have a positive real part, and thus the positive z-axis is
unstable. As shown in Fig. 3, the basin of attraction of the
Fig. 3. Cross section of the basins of attraction of the two attractors in the xz-
unbounded orbits, those in the red region lead to the strange attractor, and those
the references to color in this figure legend, the reader is referred to the web ve
chaotic attractor intersects the line equilibrium in some
portions. However there are other parts of the z-axis (for
z > 0) which lie in the basin of the stable equilibrium or
that attract to infinity. So the strange attractor is hidden
in the sense that there are uncountable unstable points
on the line equilibrium of which only a tiny portion inter-
sects the basin of the chaotic attractor. In other words, for
computational purposes, the attractor is hidden and
knowledge about the line equilibrium does not help in its
localization.

The reason the stable equilibrium for z < �2 does not
appear in the basin plot is because it is a node rather than
a focus in the xy-plane for z < �2. Hence the trajectory
never crosses the y = 0 plane for z < �2. Orbits that start
to the left of the equilibrium (x < �2) are pulled in the +z
direction for z > �2 and in the �z direction for z < �2. How-
ever, they do not go to infinity unless they start far from
the equilibrium. Rather, they asymptotically approach it
from the �x side and converge to a point on the line that
depends on the initial condition. Thus the entire negative
z-axis is an attractor, but it is nonlinearly contracting along
its length for �2 < z < 0 and nonlinearly expanding for
z < �2.
plane at y = 0 for case LE1. Initial conditions in the white region lead to
in the light blue region lead to the line equilibrium.(For interpretation of

rsion of this article.)



Fig. 4. Regions of different dynamic behavior in parameter space for case LE1. Light blue represents a static equilibrium, and the black dots correspond to
regions of chaos. Each pixel uses a different random condition thereby indicating the coexistence of static and chaotic attractors. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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To show that the behavior described about is not
dependent on the particular choice of parameters, Fig. 4
shows the regions of different dynamical behavior in the
ab-parameter space. In this plot each pixel represents a dif-
ferent initial condition chosen from a Gaussian distribution
with zero mean and unit variance. Thus the region in
which the strange attractor (black dots) coexists with the
stable line equilibrium (light blue background) extends
throughout much of the parameter space. The other eight
cases in Table 1 shows similar behavior.

Also of interest is the fact that in cases LE1–LE8, the
strange attractor surrounds the line equilibrium, while in
case LE9, the line equilibrium lies just outside the strange
attractor. In none of the cases does the line equilibrium
intersect the attractor, and thus we would not expect
homoclinic orbits.
3. Conclusion

In conclusion, it is apparent that simple chaotic systems
with a line equilibrium that seemed to be rare, may in fact
be rather common. These systems belong to the newly
introduced class of chaotic systems with hidden attractors.
In fact they are a new category of them which have not
been previously described.
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