
November 12, 2015 14:25 WSPC/S0218-1274 1530036

International Journal of Bifurcation and Chaos, Vol. 25, No. 12 (2015) 1530036 (12 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218127415300360

A Simple Chaotic Flow with a Continuously
Adjustable Attractor Dimension

Buncha Munmuangsaen
Fabrinet Co., Ltd, Klongluang, Patumthani, 12120, Thailand

nopnop99@hotmail.com

Julien Clinton Sprott
Department of Physics, University of Wisconsin – Madison,

Madison, WI 53706, USA
sprott@physics.wisc.edu

Wesley Joo-Chen Thio
Department of Electrical and Computer Engineering,

The Ohio State University, Columbus OH, 43210, USA
wesley.thio@gmail.com

thio.7@osu.edu

Arturo Buscarino∗ and Luigi Fortuna†
Dipartimento di Ingegneria Elettrica Elettronica ed Informatica,

Universit degli Studi di Catania, viale A. Doria 6,
95125 Catania, Italy

∗arturo.buscarino@dieei.unict.it
†luigi.fortuna@dieei.unict.it

Received June 12, 2015

This paper describes two simple three-dimensional autonomous chaotic flows whose attractor
dimensions can be adjusted continuously from 2.0 to 3.0 by a single control parameter. Such a
parameter provides a means to explore the route through limit cycles, period-doubling, dissipa-
tive chaos, and eventually conservative chaos. With an absolute-value nonlinearity and certain
choices of parameters, the systems have a vast and smooth continual transition path from dis-
sipative chaos to conservative chaos. One system is analyzed in detail by means of the largest
Lyapunov exponent, Kaplan–Yorke dimension, bifurcations, coexisting attractors and eigenval-
ues of the Jacobian matrix. An electronic version of the system has been constructed and shown
to perform in accordance with expectations.

Keywords : Chaos; dynamical system; differential equation; conservative system; low-dimensional
chaos.

1. Introduction

The modern chaos era began when the mete-
orologist Edward Lorenz accidentally discovered
sensitive dependence on initial conditions while
modeling atmospheric convection on his primitive
digital computer, leading to the development of
the celebrated Lorenz equations [Lorenz, 1963]. His

discovery motivated a search for other simple
chaotic systems (e.g. Rössler system [Rössler, 1976],
jerk systems [Sprott, 1997], chaotic snap flows
[Munmuangsaen & Srisuchinwong, 2011; Sprott,
2010]), chaotic circuits (e.g. Chua’s circuit [Fortuna
et al., 2009], Lorenz-based chaotic circuit [Blakely
et al., 2007]) and applications [Carroll & Pecora,
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1991; Cuomo & Oppenheim, 1993; Kilias et al.,
1995; Kocarev et al., 1992; Srisuchinwong & Mun-
muangsaen, 2011].

Maximally complex Lorenz and Rössler sys-
tems have been studied by Sprott [2007] where
complexity is assumed to be given by the Kaplan–
Yorke dimension [Kaplan & Yorke, 1979]. He also
showed that the Lorenz system can be simplified by
using a linear transformation, and its complexity
can be optimized by adjusting the control parame-
ters. However, the dimension of the system is still
relatively low, i.e. DKY is close to 2.0.

One characteristic of most algebraically simple
autonomous chaotic systems is that they produce
low-dimensional attractors [Sprott, 1994, 2010]. By
contrast, most of the dissipative chaotic equations
that can produce high DKY are relatively com-
plicated [Chlouverakis & Sprott, 2004] or require
external forcing.

In this paper, we describe two simple three-
dimensional autonomous systems whose attractor
dimensions (DKY) can be adjusted continuously
from 2.0 to 3.0 by a single control parameter. They
provide unusual examples of a continuous transition
from dissipative chaos to conservative chaos. One of
the systems has been studied in detail and imple-
mented electronically. Since it is three-dimensional
with a large Kaplan–Yorke dimension, it provides
an attractive alternative to the use of hyperchaotic
circuits for secure communications [Qi et al., 2008].

2. Dissipative Case with −bx

Damping

One simple and elegant example of a conservative
system that has been long known and intensively
studied is the Nosé–Hoover oscillator [Posh et al.,
1986; Hoover, 1995] given by:

ẋ = y, ẏ = yz − x, ż = a − y2 (1)

where the overdot denotes a time derivative. This
system represents a harmonic oscillator in contact
with a thermal bath where the nonlinear damping
(yz) acts as a thermostat that steers the instanta-
neous normalized temperature (y2) to a value given
by the single parameter a.

Most initial conditions produce trajectories
that lie on invariant tori, but some give chaos, e.g.
(x0, y0, z0) = (0, 5, 0). Conservative systems have
the rate of volume expansion

V −1

(
dV

dt

)
= Tr J =

∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z

= λ1 + λ2 + λ3 = 0

when averaged along the trajectory, where J is
the Jacobian matrix and λi are the Lyapunov
exponents. Although the Nosé–Hoover system has
Tr J = z, which is not obviously conservative,
numerical calculations indicate that it is [Sprott,
2003], and this result is consistent with the time-
reversal invariance of Eq. (1) and symmetry of the
solutions. A generalization in which the nonlinear
term (y2) in the ż equation is replaced with |y|γ
has also been studied [Sprott, 2010].

Two simple ways to make the system dissipa-
tive are to add a damping term −bx to the ẋ equa-
tion or to add a damping term −bz to ż equation.
Introducing a damping term −by to the ẏ equation
merely shifts the trajectory in the z-direction such
that 〈z − b〉 remains zero.

By adding the −bx term, Eq. (1) becomes:

ẋ = y − bx, ẏ = yz − x, ż = a − y2 (2)

which corresponds physically to a damped harmonic
oscillator in contact with a thermal bath. Figure 1
shows the chaotic region in the a–b plane with
a continuum red-scale plot indicating the system
dimension (DKY) in the range of 2 to 3. Each pixel
in the plot uses different initial conditions chosen

Fig. 1. Dynamic regions in the a–b plane for Eq. (2).
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Fig. 2. Dynamic regions in the a–b plane for Eq. (3).

from a Gaussian distribution with zero mean and
unit variance. The trajectory was calculated using
a fourth-order Runge–Kutta method with adaptive
step size and a maximum absolute error of 10−6

at each iteration. The criterion used for chaos is
that the largest Lyapunov exponent (LLE) must
exceed 0.001, and each orbit was followed for a time
of t = 105. Although there are strange attractors
for many choices of a and b, there is no continuous
path in the plane corresponding to a continuously
increasing attractor dimension from 2.0 to 3.0 as
the damping parameter b approaches zero.

One way to extend the chaos to lower values of
the damping is to replace the y2 in the ż equation
with a weaker nonlinearity |y|,

ẋ = y − bx, ẏ = yz − x, ż = a − |y|. (3)

This modification has the advantage that |y|
can be implemented electronically using diodes
without the need for an analog multiplier. The
chaotic region in the a–b plane of this new system
has a vast and smooth continuous path as b gradu-
ally decreases to zero as shown in Fig. 2. It happens
that a = 5 is a particularly good choice because
other smaller values have a narrow periodic window
(too small to see in the figure) at very low values of
b that interrupts the continuous transition from a
dissipative chaotic system to a conservative chaotic
system. Surprisingly, there are also bounded orbits

Fig. 3. (From top to bottom) Regions of coexisting attractors (〈x〉), the largest Lyapunov exponent (LLE), Kaplan–Yorke
dimension (DKY), and local maxima of z (M(z)) as a function of b with a = 5 for Eq. (3).
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and chaos for b < 0, but these chaotic regions con-
tain numerous periodic and unbounded windows.

Figure 3 shows (from top to bottom) regions
of coexisting attractors (where 〈x〉 is multivalued),
the largest Lyapunov exponent (LLE), the Kaplan–
Yorke dimension (DKY), and the local maxima of
z (M(z)) as a function of b for a = 5. In the
plot of 〈x〉, many different random initial condi-
tions were used for each value of b, and the mean
value of x is plotted for each case. In the other plots
the parameter b is swept upward without changing
the initial condition and plotted in green, and then
swept downward and plotted in red to illustrate
better regions where hysteresis and multistability
occur.

The system has coexisting limit cycles for b >
1.5 that period-double until chaos onsets when b

falls to about 1.5, after which a symmetric pair of
strange attractors is formed that merge into one
large symmetric strange attractor at about b =
1.42. The system remains chaotic all the way to
b = 0 except for some small periodic windows. In
the largest of these windows around b = 1.32, there
is a region of hysteresis where a strange attractor
(red) coexists with a limit cycle (green). The max-
imum LLE = 0.2086 occurs at b ≈ 0.64 where the
Kaplan–Yorke dimension is DKY = 2.4691. Figure 4
shows trajectories projected onto the x–z plane with
coexisting limit cycles for b = 50 and b = 1.8, two
coexisting strange attractors for b = 1.42, and a sin-
gle strange attractor with maximum chaoticity for
b = 0.64. Interestingly, when the attractors merge,
they do so along an entire edge rather than at a
single point.

(a) (b)

(c) (d)

Fig. 4. (a) Trajectories projected onto the x–z plane of limit cycles for b = 50, (b) b = 1.8, (c) two coexisting strange
attractors for b = 1.42, and (d) a single strange attractor where the maximum chaos occurs at b = 0.64 for a = 5.
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3. Dissipative Case with −bz

Damping

Another way to make the system in Eq. (1) dissi-
pative is to add a −bz term to the ż equation,

ẋ = y,

ẏ = yz − x, (4)

ż = a − y2 − bz.

However, the chaotic region in the a–b plane of
Eq. (4) is very narrow and mainly occurs for nega-
tive b (not shown). A broader and smoother region
of chaos occurs if the y2 nonlinearity in Eq. (4) is
replaced with |y|,

ẋ = y,

ẏ = yz − x, (5)

ż = a − |y| − bz

as shown in Fig. 5. The chaotic region in the a–b
plane of this system has no obvious periodic win-
dows as b gradually decreases to zero. The contin-
uum red-scale plot indicates the continuous change
of dimension (DKY) in the range of 2 to 3, and a
smooth transition occurs for a wide range of a. For
b > 0, it appears that the attractors are globally
attracting except for a set of measure zero corre-
sponding to the infinitely many unstable periodic
orbits embedded in the strange attractor.

Fig. 5. Dynamic regions in the a–b plane for Eq. (5).

Equation (5) has a single equilibrium point at
(0, 0, a/b) for b �= 0. The linear stability of this
equilibrium is determined from the eigenvalues of
the Jacobian matrix

J =




0 1 0
−1 z y

0 −sgn(y) −b


. (6)

When the system is weakly dissipative, the
equilibrium has three real eigenvalues of the form
m, n, −p (m and p are small but n is large) corre-
sponding to a saddle node of index-2. In the limit
b → 0, one real eigenvalue goes to plus infinity while
the remaining ones approach zero, and the equi-
librium moves far from the origin. In this range,
chaos fully dominates, and the attractor dimension
smoothly increases to 3.0 (where the system has no
attractors) without any obvious embedded periodic
windows, as can be seen from Fig. 6 with a = 5.
Such a well-behaved trend is rare and is good for
studies in which a continuously variable attractor
dimension is desired.

When b is very large, there is a single symmet-
ric circular limit cycle near the z = 0 plane. As b
decreases, a symmetry breaking bifurcation occurs
around b = 0.620, and a symmetric pair of limit
cycles is born. The three attractors as shown in
Fig. 7 for b = 0.6 coexist until b ≈ 0.596 where
the symmetric one abruptly vanishes. The remain-
ing two limit cycles merge at b ≈ 0.578, which also
marks the onset of chaos with a single symmetric
strange attractor. As b decreases from 0.57 to 0, the
attractor gradually increases in size and eventually
becomes conservative at b = 0 where the largest
Lyapunov exponent reaches a value of 0.1610.

Figure 8 shows cross-sections of the trajecto-
ries for Eq. (5) that puncture the z = 0 plane for
six different values of b with a = 5. The multi-
fractal structure becomes more dense as the system
dimension increases, and these cross-sections con-
firm the continuously increasing attractor dimen-
sion approaching 3.0 as b approaches zero. It is
interesting that no quasiperiodic orbits occur for
this large value of a, but they do appear when
a � 2.5 as illustrated in Fig. 9 where four differ-
ent values of a are shown. The chaotic sea con-
tains quasiperiodic island chains as is typical for
Hamiltonian chaos [Zaslavsky, 2007]. The region of
quasiperiodicy grows larger with increasing a until
about a = 2 where it begins to shrink, appar-
ently vanishing around a = 2.6. Thus the system
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Fig. 6. (From top to bottom) Regions of coexisting attractors (〈x〉), the largest Lyapunov exponent (LLE), Kaplan–Yorke
dimension (DKY), and local maxima of z (M(z)) as a function of b with a = 5 for Eq. (5).

Fig. 7. Three coexisting limit cycles for a = 5, b = 0.6 from Eq. (5).
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Fig. 8. Cross-sections of the trajectories in the z = 0 plane for Eq. (5) with a = 5.
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Fig. 9. Cross-sections of the trajectories in the z = 0 plane for Eq. (5) with b = 0.

with a = 5 and b = 0 is apparently ergodic in
the sense that a single orbit comes arbitrarily close
to every point in the three-dimensional state space
[Hoover et al., 2016], and the probability distribu-
tion function for the variable x is nearly Gaussian.
The ergodicity seems to persist for nonzero values
of b, but more exploration of that is needed. For
all cases, each orbit was followed for a maximum
time of t = 104. Forty initial conditions were used,
spaced uniformly along the vertical midplane. There
are two visible horizontal stripes which represent
the z-nullclines at y = ±a in the z = 0 plane.

4. Experimental Comparisons

In this section, experimental cross-sections corre-
sponding to Fig. 8 are presented using an electrical
circuit which obeys Eqs. (5). The circuit schematic,
realized following standard guidelines [Buscarino
et al., 2014], is given in Fig. 10 where each equation
in the system is realized by an operational amplifier
RC block. Voltages across capacitors are associated

with the three state variables. The circuit element
values are C1 = C2 = C3 = 1nF, R1 = R3 = R4 =
R5 = R9 = 100 kΩ, R2 = R6 = R7 = 1kΩ and
R8 = 200 kΩ. R10 is a potentiometer that is used
to adjust the value of parameter b. Vb is a fixed
bias voltage equal to 1V in order to set the value of
parameter a. The diode in the absolute value circuit
is 1N4148, and the analog multiplier used to imple-
ment the yz nonlinearity is AD633. The operational
amplifiers are TL084 integrated circuits powered by
9V supplies. Based on these parameters, the central
frequency of operation is 10 kHz. The amplitude of
the system was rescaled by a factor of 1/10 to avoid
saturating the operational amplifiers. The rescaled
circuit equations are

Ẋ =
Y

R1C1

Ẏ =
10YZ
C2R2

− X

C2R3

Ż =
Vb

10C3R8
− |Y |

C3R9
− Z

C3R10

(7)
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Fig. 10. Electrical circuit schematic.

where X = x
10 , Y = y

10 , and Z = z
10 . The

corresponding X–Y , X–Z and Y –Z projections
from the oscilloscope are shown in Fig. 11. To
obtain the experimental cross-sections in these
phase planes, the voltages across the three capac-
itors were acquired using a NI-USB 6255 Data
Acquisition Board with a sampling frequency fs =
500 kHz for a total time T = 8 s. Acquired data was
then evaluated to obtain cross-sections at Z = 0.

Cross-sections for different values of the param-
eter b were obtained by adjusting R10, which imple-
ments b = 100 kΩ

R10
. For the range b = 0.5 to b = 0,

R10 was adjusted from 200 kΩ to 1MΩ and was
removed for the case of b = 0. Parameter a, which
is fixed at a = 5, is regulated by setting R8 =
200 kΩ. The experimental cross-sections are given
in Fig. 12. Comparing this experimental figure to
the numerical results in Fig. 8 shows the excellent
agreement.

Further confirmation of the circuit behavior
comes from a comparison between the Kaplan–
Yorke dimension DKY and the correlation dimen-
sion D2 calculated from data acquired from the
circuit and the same quantities calculated from
numerical integration of Eq. (5). The Kaplan–York

(a)

(b)

(c)

Fig. 11. Oscilloscope traces from the circuit: (a) X–Y plane,
(b) X–Z plane and (c) Y –Z plane.
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Fig. 12. Experimental cross-sections of the trajectories in the Z = 0 plane with a = 5 (R8 = 200 kΩ).
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Fig. 13. Kaplan–Yorke and correlation dimensions evalu-
ated for the model (blue lines) and from experimental data
acquired from the circuit (red markers: DKY circles, D2

squares).

dimension of the circuit was calculated from DKY =
2 − λ1/(〈10Z〉 − b − λ1) with the largest Lyapunov
exponent λ1 determined by the method discussed in
[Rosenstein et al., 1993]. Figure 13 shows the good
agreement and the smooth variation of the dimen-
sion over the range 2 to 3 and also suggests that the
attractor is multifractal since D2 < DKY.

5. Conclusions

The search for nonlinear models producing chaotic
flows with a high degree of complexity often col-
lides with the aim of keeping the model simple. In
this paper, two new autonomous chaotic flows have
been presented. Despite their mathematical simplic-
ity and the reduced number of parameters, a con-
tinuous transition of the attractor dimension from
2.0 to 3.0 has been observed by adjusting a single
parameter. When the damping is reduced to zero,
the resulting system is ergodic with a nearly Gaus-
sian probability distribution function for x, and a
large multifractal dimension. To further illustrate
the behavior, one of the models has been imple-
mented electronically and fully characterized. In
view of possible applications to secure communi-
cations, the proposed circuit has the advantages of
using standard off-the-shelf electrical components
arranged in a relatively simple manner and of dis-
playing a high level of complexity which can be
adjusted by a single resistor.
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