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In this paper, we introduce a new chaotic system and its corresponding circuit. This system
has a special property of having a hidden attractor. Systems with hidden attractors are newly
introduced and barely investigated. Conventional methods for parameter estimation in models
of these systems have some limitations caused by sensitivity to initial conditions. We use a
geometry-based cost function to overcome those limitations by building a statistical model on
the distribution of the real system attractor in state space. This cost function is defined by the
use of a likelihood score in a Gaussian Mixture Model (GMM) which is fitted to the observed
attractor generated by the real system in state space. Using that learned GMM, a similarity
score can be defined by the computed likelihood score of the model time series. The results show
the adequacy of the proposed cost function.
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1. Introduction

Recently there has been increasing attention on
some unusual chaotic systems as those having no
equilibrium, stable equilibria, or coexisting attrac-
tors [Jafari et al., 2013b; Molaie et al., 2013;
Uyaroglu & Pehlivan, 2010; Wang & Chen, 2012,
2013; Wang et al., 2012a; Wang et al., 2012b;
Wei, 2011a, 2011b; Wei & Yang, 2010, 2011, 2012].
Recent research has involved categorizing periodic
and chaotic attractors as either self-excited or hid-
den [Bragin et al., 2011; Kiseleva et al., 2012;
Kuznetsov et al., 2010; Kuznetsov et al., 2011a;
Kuznetsov et al., 2011b; Kuznetsov et al., 2013;
Leonov et al., 2010; Leonov et al., 2011a; Leonov
et al., 2011b; Leonov et al., 2012; Leonov et al.,
2013; Leonov & Kuznetsov, 2011a, 2011b; Leonov &
Kuznetsov, 2012, 2013a, 2013b, 2013c|. A self-
excited attractor has a basin of attraction that is
associated with an unstable equilibrium, whereas a
hidden attractor has a basin of attraction that does
not intersect with small neighborhoods of any equi-
librium points. Thus any dissipative chaotic flow
with no equilibrium or with only stable equilibria
must have a hidden strange attractor. Only a few
such examples have been reported in the literature
[Jafari et al., 2013b; Molaie et al., 2013; Uyaroglu &
Pehlivan, 2010; Wang & Chen, 2012, 2013; Wang
et al., 2012a; Wang et al., 2012b; Wei, 2011a, 2011b;
Wei & Yang, 2010, 2011, 2012]. Hidden attractors
are important in engineering applications because
they allow unexpected and potentially disastrous
responses to perturbations in a structure like a
bridge or an aeroplane wing. In this paper, we intro-
duce a new chaotic system with a hidden attractor
and its corresponding electronic circuit. Then we
apply a new parameter estimation technique to this
System.

A widely used method for parameter estimation
of chaotic systems is optimization-based parameter
estimation [Chang et al., 2008; Gao et al., 2009; Li
et al., 2012; Li & Yin, 2012; Modares et al., 2010;
Mukhopadhyay & Banerjee, 2012; Tang & Guan,
2009; Tang et al., 2012; Tao et al., 2007; Tien &
Li, 2012; Yuan & Yang, 2012]. In this method, the
problem of parameter estimation is formulated as a
cost function which should be minimized. Although
there are many optimization approaches available
for this problem (e.g. genetic algorithm [Tao et al.,
2007], particle swarm optimization [Gao et al.,
2009; Modares et al., 2010], evolutionary program-
ming [Chang et al., 2008]), they have one common

feature: they define a cost function based on simi-
larity between the time series obtained from the real
system and ones obtained from the model. They use
time correlation between two chaotic time series as
the similarity indicator. However, this indicator has
limitations. It is well known that chaotic systems
are sensitive to initial conditions [Hilborn, 2001].
Thus there can be two completely identical (both in
structure and parameters) chaotic systems that pro-
duce time series with no correlation due to a small
difference in initial conditions [Jafari et al., 2012;
Jafari et al., 2013a]. One way to overcome this prob-
lem is using near term correlation and to reinitializ-
ing the system frequently (i.e. not letting significant
divergence of the trajectories occur). However, this
approach also has limitations. In many systems, we
do not have access to a time series for all of the sys-
tem variables, and thus the model cannot be reini-
tialized. Hence, we prefer a new kind of similarity
indicator and corresponding cost function.

Although chaotic systems have random-like
behavior in the time domain, they are ordered in
state space and usually have a specific topology
called a strange attractor. In this work, we propose
a similarity indicator between these attractors as an
objective function for parameter estimation. To do
this, we model the attractor of the real system by a
statistical and parametric model. In [Povinelli et al.,
2004; Johnson et al., 2005; Shekofteh & Almasgani,
2013b] a Gaussian Mixture Model (GMM) was pro-
posed as a parametric model of a phoneme attractor
in the state space. Their results of isolated phoneme
classification have shown that the GMM is a use-
ful model to capture structure and topology of the
phoneme attractors in the state space. Thus we
propose to use the GMM as a parametric model
of the strange attractor obtained from a real sys-
tem. Based on the learned GMM, a similarity indi-
cator can be achieved by matching the time series
obtained from the model of a real system with dif-
ferent sets of parameters to evaluate the properness
of each set. Therefore our proposed cost function
will consist of two steps; first, a training stage which
includes fitting a GMM to the attractor of the real
system in the state space, and second, an evaluation
step to compute the similarity between the learned
GMM and the attractors of the model with esti-
mated parameters.

The rest of the paper is organized as follows.
Section 2 introduces the new chaotic model and its
corresponding electronic circuit. Section 3 details
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the proposed GMM-based cost function. In Sec. 4,
our experimental results are introduced and dis-
cussed. In Sec. 5 we show that using Takens’ theo-
rem, this new method can be applied when we do
not have access to all the time series from all the
state space variables. This is in fact the main benefit
of the proposed method. Finally, we draw conclu-
sions in the last section.

2. New Chaotic System and
Its Corresponding Circuit

Consider the following chaotic system:
T=—z
y=-x—2 (1)
3=2r— 13y — 2z + 22+ 2% — z2.

The parameters in this system have been set in
such a way that their values be deemed “elegant”
[Sprott, 2010]. Typical initial conditions which are
in the basin of attraction of strange attractor are
(—0.1,3.4,—1.7). There is only one equilibrium
at the origin E(0,0,0), and it is stable. Thus a
point attractor coexists with the strange attractor.
Figure 1 shows a cross-section in the zy-plane
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Fig. 1. Cross-section of the basins of attraction of the two

attractors in the zy-plane at z = 0. Initial conditions in the
white region lead to unbounded orbits, those in the red region
lead to the point attractor shown as a black dot, and those
in the light blue region lead to the strange attractor shown
in cross-section as a pair of black lines.

at z =0 of the basin of attraction for the two
attractors. Note that the cross-section of the strange
attractor nearly touches its basin boundary as is
typical of low-dimensional chaotic flows. It is inter-
esting that besides the area around the origin, there
is another separate area that converges to the stable
equilibrium.

The eigenvalues that correspond to FE(0,0,0)
are

Ay = —1.9783,
Ao = —0.0108 + 0.81064, (2)
A3 = —0.0108 — 0.81064.

Since the characteristic equation has a negative real
root and two imaginary roots with negative real
parts, F(0,0,0) is a stable focus. On the other hand,
the Lyapunov spectrum for the strange attractor
was estimated as LE; = 0.018,LEy = 0,LE3 =
—2.018. Thus system (1) is believed to be chaotic
and has only a single stable equilibrium, though
positive Lyapunov exponent is not always an indica-
tion of chaos [Kuznetsov & Leonov, 2005; Leonov &
Kuznetsov, 2007].

It is possible to produce electronic signals for
the above system. An electronic circuit, as shown
in Fig. 2, was designed using operational amplifiers
such as summing amplifiers, inverting amplifiers,
multipliers, and integrators. System (1) is rewrit-
ten in the form of:

_ 1
R1C1~
S 1
Y= "Roc2” T R3C2”
. 1 1 1
z= T — — z
RrRaC3” ~ R5C3Y T R6C3
PR S S N 1
X VAR Tz.
10R7C3 10R8C3° ~ 10R9C3

3)

The values of the resistors and capacitors are chosen
to be Rl = R2 = R3 =1MSQ, R4 =500k, R5 =
769.2 kQ), R6 = 500k$2, R7 = R8 = R9 = 100 k€2,
RI0=RI1=RI12=R13=1MQ,and C1 =(C2 =
C3 = 1uF. The circuit was implemented in the elec-
tronic simulation package Multisim®. The initial
condition was selected as zg = —0.1, yp = 3.4, and
zg = —1.7. The phase diagram of system is plotted
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Electronic circuit of system (3).

Fig. 2.
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Phase diagrams of system (3) with (a) R5 = 769.2 k2 and (b) R5 = 768.6 kS2.

Fig. 3.
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Fig. 4. Bifurcation diagram of output y,—o with varying R5

in the electronic circuit.

in Fig. 3(a). In addition, a bifurcation diagram is
plotted in Fig. 4 which is produced by varying R5.
If we change R5 to 768.6 k€2, a wider spread of the
trajectories of the system can be observed in the
phase diagram depicted in Fig. 3(b). So it is very
important to estimate the parameters in an accu-
rate way when modeling a chaotic system.

3. Proposed Cost Function
Based on GMM

As mentioned before, the state space is a suitable
domain to represent chaotic and nonlinear behav-
iors of a complex dynamical system. One of the
advantages of considering a signal in state space
is its time-independent distribution. Based on
this characteristic, a statistical distribution of the
observed vectors in the state space can capture the
attractor geometry and nonlinear system character-
istics [Povinelli et al., 2004; Povinelli et al., 2006].
The distribution of points on the attractor is invari-
ant and independent of initial conditions provided
the initial conditions are in the basin of attraction
and the time series is of infinite length [Kantz &
Schreiber, 1997]. Thus we propose a similarity indi-
cator using a conditional likelihood score between
a learned statistical model of a real system attrac-
tor and a new distribution of an attractor obtained
by a specific model of the system. Here, we use a
GMM as the statistical model. The GMM is a para-
metric probability density function represented by
a weighted sum of Gaussian component densities
[Bishop, 2006]. GMMs were used as a parametric
model of the probability distribution of state space

vectors in many different systems such as vocal-
tract related features in speech recognition system
[Shekofteh & Almasgani, 2013b; Jafari & Almas-
ganj, 2012] or EGC signal classification methods
[Nejadgholi et al., 2011; Roberts et al., 2001]. One of
the powerful characteristics of the GMM is its abil-
ity to form smooth approximations of attractors in
state space [Nakagawa et al., 2012].

To find the similarity score between the attrac-
tor of a real system and the state space points of the
model, we calculate likelihood scores which come
from GMM computations. Our algorithm consists
of two steps; a training stage which includes fitting
the GMM to the attractor of the real system, and
an evaluation stage to select the best set of param-
eters in the model to optimize the similarity score
in the learned GMM. The following are the steps in
detail.

Step 1. The first step of the proposed approach is
the learning phase. A GMM learns the probability
distribution of the attractor of the real system. This
model is a weighted sum of M individual Gaussian
densities. It can be represented by a set of system
parameters, A, as follows,

A= {w”“'u’m?Z}, m=1,.... M

m

M 1 1
p(v|A) = Z Wm (2m)D/2 172
m=1

where M is the number of mixtures (Gaussian com-
ponents), [, is the D-dimensional mean vector of
the mth mixture, >~ is the D x D covariance
matrix, and | - | denotes the determinant operator.
Based on the observation vector v, in this work,
D = 3 is selected. Also, p(v|A) is the likelihood-
based similarity score for the observed vector v.
This score is obtained by giving v to the learned
GMM with its parameters of \.

Using the prepared training data from the
attractor of the real system, the parameters of the
GMM are specialized to model the geometry of
the attractor. As a popular and well-established
method, maximum likelihood (ML) estimation is
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GMM of Real DATA and M = 240

Fig. 5.
space.

applied to identify the GMM parameters [Bishop,
2006; Dempster et al., 1977]. However, there is no
analytical solution to determine the optimum num-
ber of GMM mixtures needed for a specific problem,
which depends on the complexity of the involved
data set [Jafari et al., 2010]. Figure 5 shows the
strange attractor of the new chaotic circuit in the
three-dimensional state space with its GMM mod-
eling using 240 Gaussian component (M = 240),
where every three-dimensional ellipsoid corresponds
to one of the GMM’s Gaussian components.

Step 2. The second step of the proposed approach
is finding the best model parameters using the
learned GMM in Step 1. Here, the search space will
be formed from a set of acceptable values of the
model parameters. Then, for each set of parame-
ters (here a set of parameters k = {a and b} which
is described in Sec. 4), the model will be simu-
lated, and a new attractor in the state space will
be obtained. Finally, the similarity score is com-
puted using an average point-by-point likelihood
score obtained from the learned GMM, A, as follows:

N
pVEI) = Y loslp(hN} (5)

where V¥ is a matrix whose rows are composed from
the state space vector of the model trajectory with
the model’s set of parameters k, and N is the num-
ber of state space point in the V* matrix. The model
selection is accomplished by computing the condi-
tional likelihoods of the signal under learned GMM

GMM modeling (with M = 240 components) of the strange attractor for the introduced chaotic circuit in a 3-D state

and selecting the parameters of a model that gives
the best similarity score.

Selection of the best set of parameters, k*, uses
the following criteria. If we use the negative of
the similarity score, then the parameter estimation
becomes a cost function minimization. Equation (6)
shows the final cost function, J(k), based on the
negative of its mean log-likelihood score,

k* = argmin{J(k)} and J(k)=—p(V*¥|)X) (6)

where k is the set of model parameters and \ is
the learned GMM of the real system attractor. Our
objective is to determine the parameters of the
model, k, in such a way that J(k) is minimized.

4. Simulation Results

In this section, we do some simulations to investi-
gate the acceptability of the proposed cost function
in estimating parameters of the chaotic circuit. We
have used a fourth-order Runge-Kutta method with
a step size of 10ms and a total of 30000 samples
corresponding to a time of 300s.

Here, we consider a parametric model of

Eq. (1):
= —z
j=—z—2 (7)
3=2r— 13y +az+ x> +b2® — 22

where a and b are the parameters of the model
which should be estimated by minimization of the
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proposed cost function. We used M = 240 mixtures
to model the system attractor in state space.

If we plot the value of J(k), a cost “surface”
can be obtained that shows dissimilarity between
the real system attractor and each model attrac-
tor. In Fig. 6, such a surface is shown for the pro-
posed cost function. The minimum on that surface
gives the parameters of the best model. In addition,
Fig. 7 shows one-dimensional sections of the surface.
The global minimum of the cost function is in the
expected place (a = —2.00 and b = 1.00). Moreover,
the surface is almost convex, which makes it a sim-
ple case for any optimization approach that moves
downhill.
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5. Reconstruction of True Dynamics
Using Takens’ Embedding
Theorem

One of the interesting topics in dynamical systems
theory is the embedding theorem introduced and
used by Takens and Sauer [Kantz & Schreiber,
1997]. It is also called the time-delay embedding
theorem, and it gives the conditions under which
a chaotic system can be reconstructed from a
sequence of observations in a reconstructed phase
space (RPS). The RPS is a multidimensional space
whose coordinates are produced by shift-delay sam-
ples of a one-dimensional time series. The chaotic
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Y(t) -5 -4 X(t)

Fig. 8.
of X (t) in the three-dimensional RPS (d = 3 and 7 = 45).

and nonlinear behavior of such a signal is exhibited
in the RPS [Kantz & Schreiber, 1997; Shekofteh &
Almasganj, 2013a; Kokkinos & Maragos, 2005]. The
sequence of embedded points of a signal in the RPS
is commonly referred to as a signal trajectory. To
construct a signal trajectory, the samples must be
embedded in the RPS. A single point of the embed-
ded signal in the RPS is given by

Sy = [s1, 81475 S142r5 - - -5 S(d—1)7] Where

§ = 851,52,83,..-3,SN (8)

where s; is the [th sample of an N-point segment
of the original one-dimensional signal s, d is the
embedding dimension, and 7 is the time lag. The
concept of embedding dimension and time lag plays
an important role in both practical and theoretical
aspects of the RPS [Povinelli et al., 2004; John-
son et al., 2005; Shekofteh & Almasgani, 2013b;
Kantz & Schreiber, 1997]. The minimum possible
embedding dimension can be identified by some
heuristic procedures such as false nearest neigh-
bor (FNN). Here, we use d = as a constant of
the embedding dimension. Common techniques,
including the first minimum of the auto-mutual
information function or the first zero crossing of the
auto-correlation function, have been used to iden-
tify the preferred time lag of the RPS [Hilborn,
2001; Kantz & Schreiber, 1997]. Here we select
7 = 45 which is calculated from the first minimum
of the auto-mutual information function.

X(t+ 1) -4 4 X(t)

(a) A segment of the simulated time series in state space and (b) phase space reconstruction using only one variable

Figure 8 shows a segment of the simulated time
series from Eq. (7) and its embedded trajectory in
the three-dimensional RPS (d = 3) only using one
variable of X (t). As can be seen in the figure, the
reconstructed trajectory in the RPS has the same
geometric structure as the original simulated time
series in state space.

Now, we do the same simulation as in Sec. 4
to investigate the acceptability of the proposed cost
function in estimating parameters of the chaotic cir-
cuit only using one variable. Here, we assume that

Cost Function

0.985

0.990

0.995

b
1.000 -150
1.005 200
1.010
-250
1.015
-300
1.020 n
-2.005 -2.000 -1.995 -1.990 -1.985 -1.980
a
Fig. 9. GMM-based cost function obtained from the recon-

struction of X (¢) in the RPS with a variation in the model
parameters of (7), a and b.
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Fig. 10. Cross-sections of the cost function shown in Fig. 9 for (a) a = —2.00 and (b) b = 1.00.

the original chaotic system of (7) has the follow-
ing real value of the parameters {a = —2.00 and
b = 1.00} which should be estimated by minimiza-
tion of the proposed cost function. Similar to the
method proposed in Sec. 4, we use M = 240 mix-
tures to model the attractor of the reconstructed
dynamics of the variable X in the RPS. In Fig. 9,
the calculated cost function J(k) is shown where the
minimum point gives the parameters for the best
model. Moreover, Fig. 10 shows its one-dimensional
sections. As can be seen in these figures, the pro-
posed cost function can give the true value of the
global minimum (a = —2.00 and b = 1.00).

6. Conclusion

In this paper an appropriate and new cost function
has been introduced to be used in parameter estima-
tion of chaotic systems, based on a statistical model
of the real system attractor in state space. Since
Gaussian Mixture Models (GMMs) are strong tools
to be used as parametric models of the probability
distribution of state space vectors in many differ-
ent systems, we have used them in this work as the
statistical model. The proposed cost function is the
negative of a similarity metric which is formed by
averaging some log-likelihood scores. Overall results
indicate that the global minimum of the proposed
cost function is the true value of the model’s param-
eters. Since this method is based on the topology
of strange attractors, one virtue is that the sample
time is not critical, and even with short and piece-
wise time series, the GMM can be trained, although
the data do have to adequately cover the attractor.

This method has been applied to parameter esti-
mation of chaotic circuits with hidden attractors.
To do so, a new chaotic system has been proposed
which has only one stable equilibrium and thus a
hidden attractor. These kinds of systems are barely
investigated and are good cases for further studies.
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