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1 1. INTRODUCTION

Equilibrium points are some of the most funda�
mental properties of dynamical systems, and they play
an important role in the bifurcations that occur. Fre�
quently, systems have more than one equilibrium point
[1–5], and if these equilibria are stable, they have
basins of attraction whose boundaries can be very
complicated. Under certain conditions, there can be a
continuum of equilibrium points, for example, spread
along a finite or even infinite line with different points
on the line having different stability properties [6, 7].
Such line equilibria can occur in chaotic systems
where the line is surrounded by a strange attractor and
influences its dynamics. However, the case where a
line equilibrium occurs in a hyperchaotic system in
largely unexplored. Furthermore, the phenomenon of
multistability is an important feature in nature and is
found to occur, for example, in low levels of quanta [8]
and in the Taylor�Green dynamo [9].

Hyperchaos was first described by Rössler [10] in a
four�dimensional system with two unstable equilib�
rium points. Other hyperchaotic systems have no
equilibria [11, 12], one equilibrium [13], or five equi�
librium points [14]. It is thus natural to ask whether
there are hyperchaotic systems with infinitely many
equilibrium points. In [15], hyperchaos was recently
found in a four�dimensional memristive system with a

1 The article is published in the original.

line of equilibria, which contains one cubic and three
quadratic nonlinearities. In this paper, we provide a
new example of such a system that exhibits hyperchaos
over a large region of parameter space in the presence
of an infinite line of equilibrium points. Significantly,
this system has only quadratic nonlinearities and a rel�
atively large region of bistability, where a coexisting
symmetric pair of limit cycles turns into strange attrac�
tors that then merge into one symmetric strange
attractor before it becomes hyperchaotic or a symmet�
ric pair of strange attractors merge or remerge between
two hyperchaotic regions.

2. HYPERCHAOTIC FLOW
WITH A LINE EQUILIBRIUM

2.1. Dynamical Analysis and Basic Properties

Systems with several quadratic terms are most
likely to have an infinite line of equilibrium points.
A similar three�dimensional flow with six terms and a
single linearity as reported in [7],

(1)

which has chaos for some parameters, such as a = 4
and b = 0.3. System (1) has two equilibrium points at

(0, ± , 1) and an infinite line of equilibrium points
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at (x, 0, 0). Correspondingly, by introducing an addi�
tional dimension with linear feedback in the above sys�
tem, a four�dimensional system with a line of equilib�
ria is obtained,

(2)

The corresponding Jacobian matrix is

(3)

When a, b, c, z ≠ 0, system (2) has the full rank because
the determinant of the Jacobian matrix is 2abcz2,
which means that system (2) is a truly four�dimen�
sional system. If any of a, b, c, z are zero, then the sys�
tem reduces to one whose dimension is less than four.

The rate of hypervolume contraction is given by the
Lie derivative,

(4)

Hence, system (2) is dissipative with solutions that
contract as time goes to infinity onto an attractor of
zero measure in the four�dimensional state space
whenever the time average of z is positive and b > –0.5.
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The system has only the real line equilibrium (x, 0,
0, 0) if the parameters a, b, c are not zero, and the cor�
responding eigenvalues are (0, 0, 0, 0), which shows
that the equilibrium is nonhyperbolic and the system
lies on a bifurcation point and is nonlinearly unstable.
For the initial conditions (y0, z0) = (0, 0), the dynam�

ics become one�dimensional, given by  = u0, and
therefore the orbit is unbounded for u0 ≠ 0.

Like the three�dimensional system (1), system (2)
has rotational symmetry with respect to the z axis, as
evidenced by its invariance under the coordinate
transformation

which means this four�dimensional system could also
have symmetric pairs of coexisting attractors, such as
limit cycles or strange attractors.

2.2. Hyperchaotic Attractor

The degree of hyperchaos can be quantified by the
value of the second largest Lyapunov exponent nor�
malized to the most negative exponent. By this crite�
rion, the maximum hyperchaos is found to occur for
a = 5, b = 0.28, and c = 0.05, where the Lyapunov
exponents are (0.0750, 0.0366, 0, –1.6617) and the
Kaplan–Yorke dimension is DKY = 3.0672. The hyper�
chaotic attractor in different projections is shown in
Fig. 1. System (2) is clearly four�dimensional because

x·
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Fig. 1. Hyperchaotic attractor observed from system (2) with a = 5, b = 0.28, and c = 0.05 for the initial conditions (0, 0, 0.8,
0.02) (a) xy plane, (b) zu plane.
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it has four distinct Lyapunov exponents and a cross
section in the hyperchaotic region whose dimension is
at least 2.0, as shown in Fig. 2.

2.3. Dynamical Regions

System (2) has eight terms and thus three parame�
ters. For c = 0.05, regions of different dynamical
behaviors in the a, b parameter space are shown in
Fig. 3. In this calculation, each pixel uses a different
random initial condition chosen from a Gaussian dis�
tribution of mean zero and variance 1.0. Thus the dot�
ted regions, which suggest the coexistence of attractors
of different types, are actually long transients. In par�
ticular, the dense region of light�light grey dots corre�
sponds to a torus (quasiperiodic) attractor. There are
large regions where the system is hyperchaotic with
those regions surrounded by chaos (black), such that
there is no way for the system to transition directly to
hyperchaos from periodicity or quasiperiodicity.

A counter�intuitive feature is that the Kaplan–
Yorke dimension is relatively small when the hyper�
chaos is large, whereas the maximum Kaplan–Yorke
dimension occurs for a ~ 300, b ~ 0.07, and c = 0,
where the system becomes three�dimensional with an
extraneous equation and a constant u given by the ini�
tial condition u0, for which the greatest Kaplan–Yorke
dimension occurs at u0 = 0. For these conditions, the
Lyapunov exponents are (0.05632, 0, –1.7901), and
the corresponding Kaplan–Yorke dimension is DKY =

2.3146 in the three�dimensional space or DKY =
3.3146 in the four�dimensional space, where the
extraneous dimension gives an additional zero
Lyapunov exponent.

3. BISTABILITY AND ATTRACTOR MERGING

Generally, chaotic flows with involutional symme�
tries have either a single symmetric attractor or a sym�
metric pair of coexisting attractors. To explore the
bifurcations of system (2), we take slices through Fig. 3
for fixed b and fixed a. The corresponding Lyapunov
exponents and their respective Kaplan–Yorke dimen�
sions are shown in Fig. 4.

When b = 0.28 and c = 0.05, as a increases, a sym�
metric limit cycle splits at a ≈ 1.08 into a symmetric
pair of limit cycles that evolve into a symmetric pair of
strange attractors that merge into a single symmetric
strange attractor, which then unmerges before remerg�
ing and becoming hyperchaotic with a similar
Kaplan–Yorke dimension, as shown in Fig. 5.

When a = 5 and c = 0.05, as b decreases from 1.0,
system (2) becomes hyperchaotic through the limit
cycle, torus, and chaos, which are shown in Fig. 4 as
distinct steps in the Kaplan–Yorke dimension.

In Fig. 3, there is a nearly vertical band of chaos
(black) with an embedded region of hyperchaos (dark

3
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0

Fig. 2. Projection onto the yz plane of a cross section of the
attractor at x = 0 for system (2) with a = 5, b = 0.28, and
c = 0.05 and initial conditions (0, 0, 0.7, 0.01).
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Fig. 3. Regions of various dynamical behaviors as a func�
tion of the bifurcation parameters a and b. The hypercha�
otic regions are in dark grey, the chaotic regions are in
black, the quasiperiodic regions are in light�light grey, and
the periodic regions are in light grey.
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grey), which can be approximately described by the
function

This band apparently stretches to infinity and sepa�
rates the periodic regions (light grey) into two different
areas. The left area consists of a symmetric limit cycle
that becomes hyperchaotic after a narrow region of
chaos as the parameter a increases. A complicated
variety of limit cycles is on the right side of the band.
When a decreases from a relatively large value, the
symmetry of the attractor is broken, and a symmetric
limit cycle turns into a symmetric pair of limit cycles,
and then forms a symmetric pair of strange attractors
as shown in Fig. 6. Eventually, the strange attractors
merge to form a symmetric attractor that then
becomes hyperchaotic.

This four�dimensional system shows a typical
behavior for rotationally symmetric flows, where
chaotic and hyperchaotic regions are surrounded by
periodic regions, and hence the chaotic attractors
usually arise from a symmetric pair of limit cycles,
and then the attractors merge until the system even�
tually becomes hyperchaotic. No special bifurcation
appears to accompany the transition of chaos to
hyperchaos.

b 2.5a 5.25.–=

4. CIRCUIT IMPLEMENTATION

A circuit that models this hyperchaotic system was
constructed to confirm the numerical predictions. The
circuit equations are given by

(5)

Resistors R5, R7, and R8 are made variable to change
the parameters a, b, and c such that the dynamic
regions in Fig. 3 could be tested. The circuit schematic
is given in Fig. 7, and the resulting oscilloscope traces
are shown in Fig. 8.
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Fig. 4. Largest three Lyapunov exponents of system (2) with c = 0.05 and their respective Kaplan–Yorke dimensions, (a) b = 0.28,
versus a, (b) a = 5, versus b.
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The system gives the maximum hyperchaos at a = 5,
b = 0.28, and c = 0.05, which corresponds to the cir�
cuit values C1 = C2 = C3 = C4 = 1 nF,

R1 R3 R6 40 kΩ, R2 R4 400 kΩ,= = = = =

R5 8 kΩ, R7 150 kΩ, R8 8 MΩ,= = =

R9 R10 R11 R12 R13 R14 100 kΩ.= = = = = =

The multipliers are AD633JN, and the operational
amplifiers are TL084. The circuit is powered by
±9 volts.

The predictions in Fig. 3 were confirmed in this prac�
tical implementation when a varies between 1 to 10, and
b between 0 to 1, with c = 0.05. In circuit values, this cor�
responds to R5 varying from 40 kΩ to 4 kΩ and R7 from
400 kΩ to 40 kΩ, with R8 = 8 MΩ. As R7 increases, the
parameter b decreases, and the system goes through a
limit cycle, torus, and chaos before reaching hyperchaos
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Fig. 5. Attractor merging and remerging at b = 0.28 and c = 0.05.
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as predicted. As a varies from 2.2 to 2.89 (R5 = 18181 Ω
to 13840 Ω), coexisting strange attractors occur as
expected. In the practical implementation, these varying
values were implemented by replacing the correspond�
ing resistor with a potentiometer.

5. CONCLUSION

A four�dimensional system with an infinite line of
equilibrium points is found to have hyperchaotic solu�
tions and a relatively large region of bistability in the
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Fig. 6. Symmetric pair of coexisting limit cycles and strange attractors projected onto the yz plane for b = 0.8, c = 0.05 with the
initial conditions (±1, ±1, 1, ±1) (a) a = 4 with LEs (0, –0.0156, –0.1132, –2.3630), (b) a = 2.5 with LEs (0.0208, 0, –0.0486,
⎯2.1035).
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Fig. 7. Circuit realization of hyperchaotic system (2).
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parameter space where a symmetric pair of strange
attractors coexists, then eventually merge and evolve
into a symmetric hyperchaotic attractor at some par�
ticular parameter combinations. The results of a phys�
ical circuit agree with the numerical analysis.
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