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In this paper, the dynamical behavior of the Lorenz system is examined in a previously unex-
plored region of parameter space, in particular, where r is zero and b is negative. For certain
values of the parameters, the classic butterfly attractor is broken into a symmetric pair of strange
attractors, or it shrinks into a small attractor basin intermingled with the basins of a symmetric
pair of limit cycles, which means that the system is bistable or tristable under certain conditions.
Although the resulting system is no longer a plausible model of fluid convection, it may have
application to other physical systems.
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1. Introduction

The Lorenz system [Lorenz, 1963]


ẋ = σ(y − x),

ẏ = rx − xz − y,

ż = xy − bz,

(1)

is one of the most widely studied of the many
chaotic systems now known [Sprott, 2010], and it is
the prototypical example of sensitive dependence on
initial conditions (the butterfly effect). For the stan-
dard parameters used by Lorenz, σ = 10, r = 28,
b = 8/3, there is a single symmetric double-wing
chaotic attractor that resembles a butterfly. It is
globally attracting, and the attractor is robust to
relatively large variations of the parameters. The
parameters were originally chosen to model atmo-
spheric convection, but with a change in the values,

the Lorenz equations have been used to model lasers
[Roso-Franco & Corbalán, 1991], dynamos [Jones
et al., 1985], thermosyphons [Wu, 2011], water-
wheels [Kolár & Gumbs, 1992], and chemical reac-
tions [Poland, 1993]. Thus it is of interest to consider
the entire region of parameter space, including neg-
ative and zero values of the parameters.

2. Lorenz System and the
Dynamical Analysis of Its Subsets

2.1. Basic properties of the Lorenz
system

The standard Lorenz system has seven terms, five
of which are linear and two are quadratic. Since
x, y, z, and t can be linearly rescaled, four of the
seven coefficients can be set to ±1, leaving exactly
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three parameters to completely characterize the
system. Virtually all studies have assumed that
these parameters are positive. One reason for this is
that the system has attractors only if σ + b+1 > 0,
and it is globally attracting only if σ > 0 and
b > 0 so that all three of the dynamic variables
are damped. The energy required to maintain oscil-
lations is provided by positive feedback. However,
there are regimes for negative values of the parame-
ters where periodic and chaotic solutions can occur,
but they are not globally attracting. Table 1 lists
the allowed dynamics in each of the eight octants of
parameter space.

There is some connection between the Lorenz
system and the Chen system [Lü et al., 2002]. More-
over, there is a region in parameter space with σ +
r = −1 where the Lorenz system is the time-
reversed equivalent of the chaotic Chen system
[Chen & Ueta, 1999], and thus there exists a strange
repellor in that region [Algaba et al., 2013a]. How-
ever, according to the conventional definitions of
topological equivalence and conjugacy, they are
nonequivalent because of the time reversal, which
generally leads to a different flow orientation [Sprott
et al., 2014].

Normally a positive r is required to provide the
energy through positive feedback necessary to keep
oscillations from damping. However, with b < 0,
that energy can be provided through the anti-
damping in the ż equation. Since chaos can occur
for both positive and negative r with b < 0, we
focus on the case with r = 0 because it has fea-
tures common to the two regimes and it reduces
the parameter space to two dimensions, allowing it
to be completely explored. In this case, the time-
reversed Chen system corresponds to σ = −1.

Table 1. Allowed dynamics in the octants
of σrb space.

(σ, r, b) Dynamics

(+, +, +) S P C
(+, +, −) P C U
(+, −, +) S
(+, −, −) S P C U
(−, +, +) S P C U
(−, +, −) U
(−, −, +) U
(−, −, −) U

Note: S = stable equilibrium, P = periodic,
C = chaotic, U = unbounded.

We now give the basic features of the Lorenz
system for r = 0. Firstly, the system has rotational
symmetry about the z-axis. All equilibrium points
are also symmetric with respect to the z-axis. Sec-
ondly, the system is dissipative when b + σ > −1.
Finally, the system retains its three real equilib-
ria at P1 = (0, 0, 0), P2 = (

√−b,
√−b,−1), and

P3 = (−√−b,−√−b,−1).
The eigenvalues of the Jacobian matrix at P1

are λ1 = −σ, λ2 = −1, and λ3 = −b. For b < 0, λ3

is always positive, and thus the origin is an unstable
saddle-node. The other two equilibrium points, P2

and P3, are saddle-foci, whose eigenvalues contain
one negative real number, and a pair of complex
conjugate eigenvalues with positive real parts. Thus
system (1) with r = 0 and b < 0 is unstable at all
three equilibrium points.

When time is reversed, all orbits are unbounded
for all initial conditions, which means that the only
repellor for r = 0 and b < 0 is the one at infinity.

When b = 0, the system (1) has an infinite line
of equilibrium points (0, 0, z) whose eigenvalues are
(0,−0.5(σ + 1) ± 0.5

√
(σ − 1)2 − 4zσ + 4rσ). The

line is neutrally stable for z > r − 1 and unstable
for z < r − 1 at all positive values of σ.

2.2. Dynamical regions for r = 0
and negative b

There is equivalent of a strange attractor in Lorenz
system to the time-reversed Lü system when r = 0
[Algaba et al., 2013b]. The dynamical regions for
system (1) with r = 0 in σb space are shown in
Fig. 1.

(1) The region in the rectangle b ∈ (0,−1) and
σ ∈ (0, 0.3) satisfies σ + b > −1, and thus the
system is dissipative.

(2) The majority of solutions are unbounded, with
many separate regions of periodic and chaotic
solutions.

(3) The main region of bounded solutions is in the
vicinity of the line b = 2.17σ − 0.866.

(4) In the upper-left corner of Fig. 1, unbounded
bands separate a fractal series of limit cycles
and chaos.

(5) The green region at small σ and the red region
at small b are numerical artifacts that come
about because the orbit remains for long times
near the equilibrium point P1 at the origin.

To better illustrate the dynamics in the large
bounded region of Fig. 1, a plot of the Lyapunov
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Fig. 1. Regions of various dynamical behaviors as a func-
tion of the bifurcation parameters σ and b with r = 0. The
chaotic regions are shown in red, the periodic regions are
shown in light blue, and the unbounded regions are shown
in white.

exponents and the values of x when z = 0 for
b = −0.6 and σ in the range [0.12, 0.2] are shown in
Fig. 2. As σ decreases, a pair of limit cycles under-
goes period doubling, forming a pair of strange
attractors that approach the equilibrium at the
origin and are destroyed in a boundary crisis at
σ ≈ 0.12.

2.3. Broken butterfly

Figure 2 shows that when b = −0.6, there is a
range of σ where two strange attractors coexist. For
σ = 0.12, the attractors form a broken butterfly as
shown in Fig. 3. The calculated Lyapunov expo-
nents are L1 = 0.0413, L2 = 0, and L3 = −0.5614,
and the Kaplan–Yorke dimension is DKY = 2−L1/
L3 = 2.0736. Note that the variable z is both pos-
itive and negative in contrast to the classic Lorenz
system where it is always positive.

The equilibrium points are P1 = (0, 0, 0), P2 =
(
√

0.6,
√

0.6,−1), and P3 = (−√
0.6,−√

0.6,−1).
The eigenvalues of P1 are −0.12,−1, 0.6, and the
eigenvalues for P2 and P3 are λ1 = −0.8212, λ2 =
0.1506 + 0.3907i, and λ3 = 0.1506 − 0.3907i. Thus
the origin is a saddle-node, and the other equilibria
are saddle-foci.

(a)

(b)

Fig. 2. Lyapunov exponent spectrum and bifurcation dia-
gram for symmetric initial conditions (red for (−0.8, 3, 0),
and blue for (0.8,−3, 0)) showing a period-doubling route to
chaos.

3. Multistablity with Coexisting
Attractors

Hidden in the region of negative b and positive
σ are other examples of multistablity. Besides the
bistablity with a broken butterfly attractor, there
are other bistablities including symmetric pairs of
limit cycles. Furthermore, for a small range of
parameters, there are three coexisting attractors,
two of which are a symmetric pair of limit cycles,
and the third is a symmetric limit cycle or strange
attractor.
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(a) (b)

(c)

Fig. 3. Broken butterfly (blue and red attractors correspond to two symmetric initial conditions (∓0.8,±3, 0)). (a) x–y plane,
(b) x–z plane and (c) y–z plane.
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(a) (b)

Fig. 4. Coexisting strange attractors and their fractal basins of attraction. (a) Strange attractors with initial conditions
(±0.8,∓3, 0) and (b) cross-section for z = 0 of the basins of attraction.

(a) (b)

Fig. 5. Attractors for r = 0, b = −0.3 (blue and red attractors correspond to two symmetric initial conditions, and
the third coexisting attractor is in black). (a) σ = 0.052 with initial conditions (∓1, 0, 1), (b) σ = 0.256 with initial
conditions (∓0.1,±0.1,−2), (c) σ = 0.265 with initial conditions (∓0.1,±0.1,−2), (d) σ = 0.272 with initial conditions
(∓0.1,±0.1,−2), (e) σ = 0.277 with initial conditions (−0.1, 0.1,−2) and (∓0.1,±0.1,−13) and (f) σ = 0.279 with initial
conditions (−0.1, 0.1,−2) and (∓0.1,±0.1,−14).
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(c) (d)

(e) (f)

Fig. 5. (Continued)

For example, when r = 0, σ = 0.192, b = −0.45,
a symmetric pair of strange attractors coexist, as
shown in Fig. 4(a) with basins of attraction as
shown in Fig. 4(b). The basins of attraction for
the two chaotic attractors are indicated by pink
and light blue, respectively. The basins have the
expected symmetry about the z-axis and an intri-
cate fractal structure. Most initial conditions lead
to unbounded orbits as indicated by white.

When r = 0, b = −0.3, and σ varying, many
coexisting attractors exist. Figure 5(a) shows a
typical symmetric pair of strange attractors in the
region where σ is relatively small. As σ increases,

these attractors are destroyed, and there is a large
region of unbounded solutions until a new pair
of almost touching strange attractors appears as
in Fig. 5(b). These attractors undergo an inverse
period doubling as shown in Figs. 5(c) and 5(d),
forming a pair of nearly touching limit cycles. Then
a third symmetric limit cycle is born as shown in
Fig. 5(e). With a further increase of σ, the sym-
metric limit cycle changes into a strange attractor
that coexists with the symmetric pair of limit
cycles as shown in Fig. 5(f). The basins of attrac-
tion of the three coexisting attractors are shown
in Fig. 6.
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Fig. 6. Cross-section for z = 0 of the basins of attraction for
the symmetric pair of limit cycles (light blue and green) and
the strange attractor (red) of system (1) at r = 0, b = −0.3,
σ = 0.279.

4. Conclusions and Discussion

In this unexplored and somewhat unphysical regime
of the Lorenz system, new regions of chaos and mul-
tistability have been found. The chaotic solutions
occur in a very small region of parameter space and
with small basins of attraction. The region where a
strange attractor coexists with limit cycles is a small
subset of these regions, which probably accounts for
it not having been previously reported. It remains
to be shown to what extent the Lorenz system with
r = 0 and negative b is of physical relevance, but it
also indicates that there is more to learn even with
this old and extensively studied system.
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