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This paper describes a simple three-dimensional time-reversible system of ODEs with quadratic
nonlinearities and the unusual property that it is exhibits conservative behavior for some initial
conditions and dissipative behavior for others. The conservative regime has quasi-periodic orbits whose
amplitude depend on the initial conditions, while the dissipative regime is chaotic. Thus a strange
attractor coexists with an infinite set of nested invariant tori in the state space.
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1. Introduction

Continuous-time dynamical systems governed by a set of first-
order ordinary differential equations are usually categorized as be-
ing either conservative or dissipative. Conservative systems main-
tain the state space volume when time-averaged along the tra-
jectory and are usually characterized by some conserved quantity
such as a Hamiltonian function. Depending on the initial condi-
tions, they typically have orbits that are quasi-periodic and lie on
surfaces of nested tori surrounded by a chaotic sea whose dimen-
sion is equal to the dimension of the state space.

Dissipative systems have a state space volume that decreases
on average along the trajectory so that the orbit approaches an at-
tractor of measure zero in the state space. If the dissipative system
is chaotic, the attractor is strange with a non-integer dimension
and fractal structure. Furthermore, it is possible for the same dissi-
pative system to have coexisting stable equilibria, limit cycles, and
strange attractors each with its own dimension and basin of at-
traction [1,2].

However, if the dissipation is nonlinear and thus dependent on
the position in state space, systems can be dissipative for some ini-
tial conditions, while other initial conditions lead to solutions for
which the dissipation averages exactly to zero along the orbit [3].
The next section describes a simple example of such a system in
which a strange attractor with chaotic orbits coexists with an infi-
nite set of nested invariant tori containing quasi-periodic orbits.
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2. Example

In a numerical search for chaotic systems that have no equilib-
rium points and only bounded orbits for all initial conditions, the
following unusual system was discovered:

X=Yy+2xy +xz
y=1-2x+yz
z=x—x*—y? (1)

The numerical evidence of boundedness is that the flow vec-
tor is everywhere inward on a sphere of radius R centered on the
point (1,0, —1) except for small holes at (0,0, £R) that occupy a
vanishingly small fraction of the sphere as R — oo. Furthermore,
orbits with initial conditions within these holes loop back to the
interior of the sphere for R sufficiently large. Since the system is
bounded with no equilibrium points (stable or unstable), the only
possible solutions are (quasi)-periodic or chaotic.

Because the system is invariant under the transformation
x,y,z,t) > (x,—y, —z, —t), two types of solutions can occur. The
first type is symmetric under a 180° rotation about the x-axis
and is time-reversal invariant. Thus it exhibits conservative behav-
ior. The second type has an attractor in forward time and another
attractor in reversed time that are symmetric with one another
through a 180° rotation about the x-axis. This reversed time at-
tractor is a repellor in forward time. Since the same points in state
space cannot be both an attractor and a repellor, any symmet-
ric solutions necessarily conserve state space volume on average
(non-attracting). In fact, it turns out that the system displays both
behaviors depending on the initial conditions.
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Fig. 1. A strange attractor (red) interlinked with a coexisting invariant torus (green)
for System (1). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

The dissipation is given by the trace of the Jacobian matrix,
Tr(J) = 2(y + z) whose value depends on y and z and thus should
be time-averaged along the orbit, and whose average value is the
sum of the Lyapunov exponents. The surprise was that the time
average of (y + z) is negative for some initial conditions such as
(X0, Y0, 20) = (2,0,0) and zero for others such as (1,0,0). The
boundedness of the system ensures that (y +z) cannot be positive,
and the absence of equilibrium points ensures that all orbits are
time-dependent. The first initial condition gives a strange attrac-
tor with Lyapunov exponents (0.0540,0, —0.1575) and a Kaplan-
Yorke dimension of 2.3429, and the second initial condition gives
a torus with Lyapunov exponents (0, 0,0) and a dimension of 2.0.

The strange attractor is strongly multifractal with a capacity di-
mension of about 2.92 and a correlation dimension of about 1.49.
Since there are no equilibrium points, the strange attractor is “hid-
den” in the sense described by Leonov and Kuznetsov [4,5], mean-
ing that its basin does not intersect with small neighborhoods of
any equilibrium points, and thus it cannot be found by standard
computational methods. However, because the system is bounded,
any initial condition sufficiently far from the origin will go to the
attractor (R =5 is sufficient).

The two solutions are shown in Fig. 1 projected onto the
xy-plane. The strange attractor and torus are interlinked, with the
attractor resembling the “cord” attractor described by Letellier and
Aguirre [6]. A different projection edge-on to the torus and also
showing the intertwined repellor is in Fig. 2. The attractor and re-
pellor are tightly twisted like the strands of a rope where they pass
through the hole in the torus. The repellor is identified by simply
reversing the sign of time in the equations and showing a portion
of the resulting orbit after discarding the initial transient. Addi-
tional confirmation that the torus is non-attracting comes from a
very long calculation (to a time of t =1 x 10'%) using a fourth-
order Runge-Kutta integrator with adaptive step size, which gives
an upper bound of |(y +z)| <1 x 10710,

Like all strange attractors, this one is dense in unstable periodic
orbits. The orbit with the shortest period lies close to the surface
of the outermost torus and makes five loops projected onto the
xy-plane while linking the torus once. It has a period of approxi-
mately 12.58, a net dissipation of 2(y + z) ~ —0.0121, and can be
observed by using the initial conditions (0.5002, 0.0023, —0.0791).

Fig. 3 shows a cross section of the flow in the z =0 plane for 80
initial conditions uniformly distributed over the range —2 < xg <3

2 |
3—3 Y 3

Fig. 2. A different view of the strange attractor (red) intertwined with a symmetric
repellor (black) and both interlinked with a coexisting invariant torus (green) for
System (1). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Cross section in the z =0 plane showing nested invariant tori surrounded by
a multifractal strange attractor for System (1). Initial conditions in the conservative
region are shown in blue, and initial conditions in the basin of attraction of the
strange attractor are shown in yellow.(For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

with yo = zg = 0. This plot is called a “cross section” rather than
a “Poincaré section” because the crossings of the z =0 plane are
plotted in both directions rather than a single direction. The nested
invariant tori are surrounded by a strange attractor. The basin
boundary of the strange attractor appears to be coincident with
the outermost toroidal surface, and its basin extends to infinity in
all directions. The background colors in the figure show the regions
of conservative and dissipative behavior, respectively.

The boundary between the conservative and dissipative region
in the z =0 plane is near a circle given by (x — 1/+/2)% + y2 =1,
a result that begs for an explanation. Initial conditions near that
boundary such as (0,0.707,0) or near one of the separatrices
within the toroidal region such as (0.4999, 0.01, 0) can appear to
be conservative and chaotic, but either the largest Lyapunov expo-
nent eventually converges to zero or the orbit eventually reaches
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the strongly dissipative strange attractor. There is no convincing
evidence for a conservative chaotic sea.

3. Conclusions

This paper describes an unusual example of a chaotic dynamical
system that exhibits conservative behavior for some initial condi-
tions and dissipative behavior for others so that an infinite set of
nested invariant tori coexist with and are linked by a strange at-
tractor. For initial conditions sufficiently close to the origin, the
quasi-periodic orbits are such that the time average of (y + z) is
identically zero to within numerical precision, while orbits start-
ing farther from the origin have a strongly negative value of that
quantity with a sharp, nearly circular toroidal boundary separating
the two regions. It would be good to have a better understanding
of this phenomenon, a theory for when it will occur, a prediction
for the location of the boundary, and details of the bifurcations
that occur in the five-dimensional parameter space, but those chal-
lenges will be left for the future.

Shortly after discovering this system, another similar example
was found in a nonlinearly dissipative Nosé-Hoover oscillator with
a hyperbolic tangent nonlinearity and four equilibrium points [7].
In that case, an attracting limit cycle coexists with two sets of in-

variant tori for some values of the parameters, while a space-filling
multifractal strange attractor with a Kaplan-Yorke dimension of
2.945 coexists with the tori for other values of the parameters.
This result suggests that the behavior described here may be com-
mon in time-reversible dynamical systems with nonlinear damping
but apparently not widely known or appreciated.
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