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Abstract This paper focuses on the adaptive modified
hybrid function projective synchronization with com-
plex function transformation matrix (CMHFPS) for dif-
ferent dimensional chaotic (hyperchaotic) systems with
complex variables and unknown complex parameters.
The chaotic systems are considerably different from
those in the existing closely related literature. More-
over, the transformation matrix in this type of chaos
synchronization is not a square matrix, and its elements
are complex functions. In particular, by constructing
appropriate Lyapunov functions dependent on com-
plex variables, the adaptive controllers are designed
to synchronize different dimensional complex chaos
(hyperchaos) with complex parameters in the sense of
CMHFPS, and the complex update laws for estimat-
ing unknown complex parameters of complex chaotic
systems are also given. Finally, two examples are pre-
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sented to illustrate the effectiveness and feasibility of
the theoretical results.
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1 Introduction

In 1982, Fowler et al. [1] derived originally the Lorenz
equations with complex variables and complex para-
meters to describe a two-layer model of the baroclinic
instability as follows:

X =o0(y—x),
y=rx —xz—ay, (D)
z= %()Ey +xy) — bz,

where the Rayleigh number r and parameter a are com-
plex numbers defined by r = ry + jra,a = 1 — j§,
and o, b, ry, rp, § are real and positive. The complex
variables x, y and real variable z of Eq. (1) are related,
respectively, to electric field and the atomic polarization
amplitudes and the population inversion in a ring laser
system of two-level atoms [2,3], an overbar denotes
complex conjugate variable and a dot represents deriv-
ative with respect to time, chaotic motion of Eq. (1) is
shown in Fig. 1.

Afterward, some research works in complex fields
have been achieved on dynamics and control of
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chaos [4]. In 2007, Mahmoud et al. [5] studied basic
properties and chaotic synchronization of the complex
Lorenz model as follows:

x=o0(y—x),
y=rx—xz—y, 2)
i= 3y +xy) — bz,

where ¢ > 0, r > 0, b > 0 are real parameters.
The Lorenz model (2) is embedded in (1) and can be
recovered when rp = § = 0. In recent years, several
other such examples have been proposed, notably the
so-called complex Chen, Lii systems [6] and complex
hyperchaotic Lorenz, Lii system [7,8] and so on. Actu-
ally, many systems which involve complex variables
have played an important role in many areas, including
loading of beams and plates [9], optical systems [10],
plasma physics [11], rotor dynamics [12] and high-
energy accelerators [13] and secure communications
[14].

Due to its importance and broad applications,
the synchronization of complex chaotic systems has
attracted great attention in the last few decades as well,
such as global synchronization (GS) [6,15], complete
synchronization (CS) [16,17], anti-synchronization
(AS) [18], lag synchronization (LS) [19,20], projec-
tive synchronization (PS) and modified projective syn-
chronization (MPS) [21], modified function projective
synchronization (MFPS) [22].

It is clear that the scaling matrix is always chosen as
real matrix or real-valued function matrix in the above
synchronization. In order to ensure that the transmit-
ted signals have stronger anti-attack ability and anti-
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translated capability than that transmitted by the usual
transmission model, scaling matrix has been extended
to the complex domain to take into account of project
synchronization very recently. Zhang et al. [23] dis-
cussed MPS with complex scaling factors (CMPS) of
uncertain real chaos and complex chaos. Mahmoud et
al. [24] achieved CMPS of two certain chaotic com-
plex systems. Sun et al. [25] introduced combina-
tion synchronization with complex scaling matrix. Liu
and Zhang [26] discussed FPS with complex function
matrix (CFPS) of coupled chaotic complex system with
known real parameters and its applications in secure
communication.

It should be noted that the aforementioned papers
only consider chaotic synchronization of the same
dimensional complex-variable systems, and the states
of the drive and response systems synchronize by a
diagonal matrix, so each state variable of response sys-
tem synchronizes one of drive system by a special
scaling factor. As a matter of fact, the synchroniza-
tion can be carried out through different dimensional
oscillators, especially the systems in communication
[27], biological science and social science [28], where
the drive and response systems could synchronize by a
desired transformation matrix, not a square matrix. By
means of state transformation, multiple state variables
in drive system will be involved for a corresponding
state variable of response system by respective scal-
ing factors (or functions). It is obvious that transfor-
mation matrix is arbitrary and more unpredictable than
diagonal scaling matrix. Therefore, Luo and Wang [29]
introduced hybrid modified function projective syn-
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chronization (MHFPS) of two different dimensional
complex chaotic systems. Moreover, as the complex
function transformation matrix is more unpredictable
than real function transformation matrix in [29], it will
greatly increase the complexity and diversity of the syn-
chronization. As a generalization of synchronization,
depending on the form of the transformation matrix,
MHFPS with complex function transformation matrix
(CMHFPS) contains MHFPS, MFPS, CFPS. There-
fore, it is meaningful and valuable to study CMHFPS
for complex chaos. To the best of our knowledge, the
CMHEFPS of different dimensional complex systems
has rarely been explored.

Furthermore, the above discussed chaotic systems
have mostly been limited to complex chaotic systems
with real parameters such as system (2). There are
small number of papers discussed chaos synchroniza-
tion with complex parameters. For instance, Mahmoud
et al. [15] discussed GS of complex nonlinear equa-
tions for detuned lasers with certain complex parame-
ters by separating real and imaginary parts of com-
plex variables. Recently, Liu et al. [30] discussed modi-
fied hybrid project synchronization with complex trans-
formation matrix (CMHPS) for different dimensional
hyperchaotic and chaotic complex systems with com-
plex parameters without separating real and imagi-
nary parts of complex parameters. However, as far as
the authors know, CMHFPS of different dimensional
chaotic complex systems with complex parameters is
seldom reported in the literatures.

In addition, in real physical systems, parameters of
systems are probably unknown or may change from
time to time. In this case, it is well known that the adap-
tive control is an effective method to realize the syn-
chronization of chaotic systems with unknown parame-
ters. It is worth noting that adaptive synchronization
for real systems or complex ones with real parame-
ters have been developed [18]. However, adaptive syn-
chronization of complex chaotic systems with uncer-
tain complex parameters is more less. Only in [31],
Liu et al. introduced adaptive complex modified projec-
tive synchronization (CMPS) of two same dimensional
complex chaotic (hyperchaotic) systems with uncer-
tain complex parameters. How to achieve CMHFPS,
which covers CMPS and CMHPS, between two differ-
ent dimensional complex chaotic systems with uncer-
tain parameters via the adaptive control?

Inspired by the above discussion, in this paper, we
focus on adaptive CMHFPS of different dimensional

chaotic systems with complex variables and unknown
complex parameters.

In more detail, the distinguishing feature of this
paper are refined as follows.

First, the systems under investigation are remarkably
more general than those in the closely related litera-
ture [5-8,14,16,18,19,21-29]. This can be seen from
a comparison between systems (1) and (2). A chaotic
system with complex variables and unknown complex
parameters produces more complex and unpredictable
signals. It is well known that the adoption of chaotic
systems with complex variables has been introduced for
secure communication, where doubling the number of
variables by introducing complex system to enhance
the contents and security of the transmitted informa-
tion. What is more, the system parameters are unknown
complex numbers, and have more choice than real para-
meters, which make the systems produce more unpre-
dictable signals.

Second, different from the real-valued function
matrix in previous synchronization [22,29], the trans-
formation matrix is composed of complex-valued func-
tions in CMHFPS of different dimensional complex
chaos. As a generalization of synchronization, depend-
ing on the form of the transformation matrix, CMHFPS
contains CFPS, CMHPS, CMPS, MHFPS, MFPS, and
extend recently previous works [16,18,21-24,26,29—
31].

Third, unlike the schemes proposed in the literature
[5-8,14-26,29], we construct appropriate Lyapunov
functions dependent on complex variables and do not
separate real and imaginary parts of the uncertain com-
plex parameters or complex variables. The adaptive
controller is designed to synchronize different dimen-
sional complex chaos with complex parameters in the
sense of CMHFPS, and the complex update laws for
estimating unknown complex parameters are also given
without separating real and imaginary parts of the com-
plex parameters.

The remainder of this paper is structured as follows.
The definition of CMHFPS is introduced for differ-
ent dimensional complex chaotic systems with uncer-
tain complex parameters in Sect. 2, followed by, the
general schemes of adaptive CMHFPS are designed in
Sect. 3. Section 4 is devoted to simulation. The adap-
tive CMHFPS between complex chaotic Lorenz drive
system with uncertain complex parameters and com-
plex hyperchaotic Lorenz response system with uncer-
tain real parameters as well as complex hyperchaotic
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Table 1 Types of function

LT Settings the matrix D(¢)
synchronization

Type of synchronization

D(t)=D"(t) + jDi (1) € C"™*", non-square CMHFPS
D(t) € R™*", non-square MHFPS
D(t) = D’ (t) + jD!(t) € C"*", non-diagonal CMGFPS
D(t) € R"*", non-diagonal MGFPS
D(t) = diag{d, (¢), d2(t), ..., d,(t)} € R"*" MFPS
D(t) = diag{d(r),d (1), ...,d(t)} € C"" CFPS
D(t) = diag{d(r),d (1), ...,d(t)} € R"*" FPS

Lii drive system with uncertain real parameters and
complex Lorenz response system with uncertain com-
plex parameters are taken as two examples to demon-
strate the effectiveness and feasibility of the proposed
scheme. Finally, Sect. 5 draws some conclusions.

Notation C” stands for n dimensional complex vec-
tor space. If z € C" is a complex vector, then z =
7'+ jz', j = /—1 is the imaginary unit, superscripts r
and i stand for the real and imaginary parts of z, respec-
tively, z1, z" are the conjugate transpose and transpose
of z, respectively and ||z|| implies the 2-norm of z. If z
is a complex scalar , |z| indicates the modulus of z and
7 is the conjugate of z, while MY (z) is the conjugate
transpose of M(z), provided that M(z) is a complex
matrix.

2 The definition of CMHFPS of complex chaos
(hyperchaos) with complex parameters and
problem descriptions

First, we consider the following general m-dimensional
complex chaotic (hyperchaotic) drive system

z(t) = H(z,1), 3)

and n-dimensional complex chaotic (hyperchaotic)
response system

w(t) = R(w,t) +v(z,w, 1), “4)
where z = (z1, 22, ..., zw)!T € C", w = (wy,
wa, ..., w,)T € C" are complex state vector, and

v =V 4 jv € C" is the control input.

Next, we introduce the definition of CMHFPS with
complex function transformation matrix of complex
chaotic systems with complex parameters as follows.

Definition 1 For the drive system (3) and response sys-
tem (4), it is said to be CMHFPS with D(¢) between
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w(t) and z(t), if there exists a controller v(z, w, t)
such that , ligrn lw(t) —D()z(t)|| = 0, where D(t) =
—+00

D'(t)+j D! (#), the elements of D(¢) should be contin-
uously differential functions with bounded.

Remark 1 The n x m matrix D(¢) is called a complex
function transformation matrix. Several kinds of func-
tion synchronization are special cases of CMHFPS,
such as complex modified generalized function pro-
jective synchronization (CMGFPS), complex function
projective synchronization (CFPS), modified hybrid
function projective synchronization (MHFPS), mod-
ified generalized function projective synchronization
(MGFPS), modified function projective synchroniza-
tion (MFPS), function projective synchronization
(FPS), see Table 1.

Remark 2 If D(¢) is a complex constant matrix, the
problem becomes CMHPS, CMPS and CPS for com-
plex dynamical systems [23,24,30,31].

The general m-dimensional complex drive chaotic
system with unknown complex parameters is consid-
ered as

#(t) = H(z,1) = F@)A +£(2), )

where z = z_’—i—jzi € C"andz" = (], 25, U LN
' = (), 25 -, zi,l)T. A= (a1, ar, ..., a,)" €
C* is a's x 1 complex vector of unknown parame-
ters, F(z) is a m x s complex matrix and its ele-
ments are functions of complex state variables, and
f = (f1, fo, -, fm)T is a m x 1 vector of com-
plex nonlinear function. On the other hand, the n-
dimensional complex response chaotic system with the
controller is depicted as

w(t) =R(w,t) +v=G(w)B+g(w) +v, ©6)

wherew:wr—}—jwi e C'and w" = (wf, wj, ...,
T i i i\T
wp)t, W= (Wi, wh, ..., wy) . B = (b, by, ...,
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bq)T € C? is a g x 1 complex vector of unknown
parameters, G(w) is a n X g complex matrix and its
elements are functions of complex state variables, and
g = (g1, 82, ..., gn) T isan x 1 vector of complex
nonlinear function. The controller v = v’ + jv/ € C"
needs to be designed.

Remark 3 Most of the well-studied complex chaotic
and hyperchaotic systems can be written as the form of
system (5), such as complex Lorenz system, complex
Chen system, complex Lii system, complex Van der
Pol oscillator, complex Duffing system, and complex
hyperchaotic Lorenz system, complex hyperchaotic Lii
system.

Remark 4 In many previous works, the numbers of
variables and parameters are equal in chaotic systems.
In our paper, the condition is not necessary. That is,
m # s in system (5) and n # ¢ in system (6).

In this paper, we discuss the CMHFPS between
two different dimensional complex chaotic systems,
ie.m > n or m < n. And CMHFPS error is
defined as e(r) = w(t) — D(2)z(t), where e(t) =
e (t)+jel(t) e Clande” = (], ¢, ..., e0)T, e =
(e’i, eé, R eZ)T. The essential control goal is to
design an adaptive controller v such that synchroniza-
tion error tends to zero, i.e.

Jim el = lim [w() — D@zl =0.  (7)

3 Adaptive CMHFPS schemes of different
dimensional complex chaotic systems with
uncertain complex parameters

According to the definition of CMHFPS, we have

60 = W) — d(D(fi)tZ(t))
= w(r) — (D(1)z(r) + D(1)a(1)). (8)
SetJ(z,t) = w =1, Jo, ..., Jn)T isacom-

plex vector.

Theorem 1 For given complex function transforma-
tion matrix D(t) and initial conditions w(0), z(0), if
the adaptive controller is designed as
v=—RwB, 1) +JzA, 1) —Ke
= —GW)B — gw) + D)z(t) + DO (F@A
+f(z)) — Ke, )

and the complex update laws of complex parameters
are selected as

[ A=—DOF@)e—y, A,

: - (10)
B=GH(w)e—yB,

where y, = diag{ya,, Yay» ---» Va,}, vo = diag{ys,,
Vbys - os ybq} and K = diag{k;, ko, ..., k,} are real
positive definite matrices, ki, i = 1,2,...,n) are
coupling strengths, A, B are parameter estimations
of the unknown vectors A and B, A=A—Aand
B = B — B are the parameter error vectors, respec-
tively, then adaptive CMHFPS between the response
system (6) and drive system (5) is achieved asymp-
totically, and A B converge to the true values of the
complex constant vectors A and B, respectively, (10) is
called complex update laws of unknown complex para-
meter vectors A and B.

Proof Insertion of (5), (6) and (9) into (8) gives

d(D(r)z(1))
dt
=w{) —J(z, A, 1)

=Rw,B,t) + [-RW.,B, 1) + J(z,A, 1)
—Ke] - J(z, A, 1)
= G(wW)B + g(w) — G(W)B — g(w) + D(1)z(?)
+D(t)(F(z)A + f(z))
—Ke — D(1)z(1) — D(t) (F(2)A + f(2))
=D®)Fz)(A —A) — G(w)(B — B) — Ke
= D()F(z)A — G(w)B — Ke, (11)

e(r) =w() —

where A = A — A and B = B — B are the parameter
error vectors, respectively.

Introducing the following Lyapunov function can-
didate as

~ o~ 1 g~ g~
Vie.AB.) =2 (eHe+AHA+BHB), (12)
from complex update laws (10) and A = A, ﬁ = ﬁ,

the time derivative of the V (¢) along the trajectories of
the errors system (11) reads

. 1 Lo~ o~ A Ay ~pp
Vi =5 [(@Fe+eH@)+AUA+AHA + BHB + BHB

%[((D(I)F(Z))A — G(w)B — Ke)'le

+e(D()F@)A — G(w)B — Ke)
+(-D®O)F@) e — v, AT A
+ A" [(-D)F @)™ e — y, A]
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+(GH(w) e — 1, B)'B + BY(G" (w)e — 3, B)]
= —eKe — APy, A — BHy,B < 0. (13)

Since V() < 0, based on the Lyapunov stability
theory, the error vector e(t) — 0 as t — —+o00. So,
one arrives at CMHFPS with desired complex func-
tion transformation matrix D(¢) between two differ-
ent dimensional complex chaotic systems (5) and (6)
by using the controller (9) and complex update laws
(10). According to (10), when t — 400, the parame-
ter errors A and B also converge to zero, which shows
the estimation of unknown complex parameter vectors
A and B in both the drive and response systems also
converge to the selected true values. The proof is com-
pleted. O

Theorem 2 Suppose the parameter B of the response
system (6) is known a priori. Then, for given complex
function transformation matrix D(t) and initial condi-
tions w(0), z(0), if the adaptive controller is designed
as

v=—RW,B,t)+JzA,1) — Ke
= —F(w)B — g(w) + D(t)z(t) + D(t)(F(2)A
+f(z)) — Ke, (14)

and the complex update law of complex parameter is
selected as

A=-DOF@)" e—y, A, (15)
where v, = diag{ya;, Yaps -+ Va, ), and K =
diag{ki, k2, ..., k,} are real positive definite matri-
ces, ki, (i = 1,2,...,n) are coupling strengths, A

is parameter estimation of the unknown vector A,
A=A—Aisthe parameter error vector, respectively,
then adaptive CMHFPS between the response system
(6) and drive system (5) is achieved asymptotically, and
estimation A converges to the true value of the complex
constant vector A.

Proof Introduce the following Lyapunov function can-
didate as

Ve, A, 1) = %(eHe + AHA). (16)

Then it is similar to the proof in Theorem 1 and thus is
omitted. |

Theorem 3 Suppose the parameter A of the drive sys-
tem (5) is known a priori. Then, for given complex func-
tion transformation matrix D(t) and initial conditions
w(0), z(0), if the adaptive controller is designed as

@ Springer

—RW,B,t) +J(z, A, 1) — Ke
= —G(W)B — g(w) + D()z(t) + D(1)(F(z)A
+f(z)) — Ke, (I7)

<
I

and the complex update law of complex parameter is
selected as

B=G"we-yB, (18)
where vy, = diag{yp,, Yoy, -, b}, and K =
diag{ky, k2, ..., k,} are real positive definite matri-
ces, ki,(i = 1,2,...,n) are coupling strengths, B

is parameter estimation of the unknown vector B,
B =B —Bis the parameter error vector, respectively,
then adaptive CMHFPS between the response system
(6) and drive system (5) is achieved asymptotically, and
B converges to the true value of the complex constant
vector B.

Proof Introduce the following Lyapunov function can-
didate as

Ve, B, 1) = %(eHe—i-ﬁHfS). (19)

Then it is similar to the proof in Theorem 1 and thus is
omitted. O

Theorem 4 Suppose both parameter vectors A and
B are known a priori. Then, for given complex func-
tion transformation matrix D(t) and initial conditions
w(0), z(0), if the adaptive controller is designed as

v=—R(w,B,1)+ J(z,A,t) — Ke
= —G(W)B — g(w) + D()z(t) + D(1)(F(z)A
+f(z)) — Ke, (20
where K = diaglky, ko, ..., k,} is real positive
definite matrix, ki, i = 1,2,...,n) are coupling

strengths, then CMHFPS between the response system
(6) and drive system (5) is achieved asymptotically.

Proof Introduce the following Lyapunov function can-
didate as

1
Ve, t) = EeHe.

Then it is similar to the proof in Theorem 1 and thus is
omitted. O

Remark 5 Compared with prior work [5-8,16,18,21—
24,26,29], we aim at CMHFPS scheme of complex
chaotic systems with uncertain complex parameters,
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and design complex update laws of uncertain parame-
ters and adaptive controller without separating the real
and imaginary parts of the complex state variables or
complex parameters; thus, the conclusion is very con-
cise and easier to be applied.

Remark 6 Note that the complex function transforma-
tion matrix D(¢) has no effect on the time derivative
V; thus, one can adjust complex function transfor-
mation matrix arbitrarily without altering the control
robustness. Hence, the complex function transforma-
tion matrix can be used as information signal for the
communication scheme. In particular, when D(¢) is
real, Theorem 14 are also applied to achieve MHFPS
with real function transformation matrix of complex
chaotic systems with uncertain parameters [29].

Remark 7 If either of the two matrices A, B is complex
parameter vector, then Theorem 1-4 are also be applied
to realize CMHFPS of chaotic complex systems with
partly complex parameters. In particular, when para-
meter matrices A and B are real parameter vectors,
Theorem 1-4 are also applied to achieve CMHFPS of
chaotic complex systems with real parameters.

4 Numerical examples

Throughout this section, in order to demonstrate the
effectiveness and feasibility of the proposed synchro-
nization scheme in Sect. 3, examples are shown for two
kinds of cases: CMHFPS between two different dimen-
sional chaotic complex systems based on the increased
order for m < n and reduced order for m > n, respec-
tively.

4.1 Adaptive CMHFPS of complex chaotic Lorenz
drive system with complex parameters and
complex hyperchaotic Lorenz response system
with real parameters

In order to illustrate adaptive increased order CMHFPS,
it is assumed that 3-dimensional complex Lorenz sys-

tem (1) with unknown complex parameters drives 4-
dimensional complex hyperchaotic Lorenz system with
unknown real parameters [7]. Therefore, the drive
chaotic Lorenz system is given as

21 =a1(za — 21),

20 = arz1 — A3zn — 2133, 21
. 1,- -

23 = 5(Z1z2 + 2122) — a4z3,

where 71 = z] + jz’i,zz = z; + jzé are com-
plex state variables and z3 is a real state variable,
A = (a1, a2, az, as)T is unknown complex parameter
vector. Equation (21) is chaotic when a1 = 2, a» =
60 + 0.02j, a3 = 1 —0.06j, as = 0.8, see [1] for
more details.

The complex response hyperchaotic Lorenz system
with the controller is written as

wy = by(wz — wy) + vy,
W2 = byw| —wy — wiw3 + wy + v2,

. _ _ 22
w3 = —b3ws + (1/2)(wiwz + wiwsz) + v3, 22)
wg = bgwy + bswy + vy,

where w; = wj —i—jw’i, wy = wh + jwé and wy =

wy + jwf‘ are complex state variables, and wj3 is a real
state variable, B = (b1, by, b3, by, b5)T is unknown
real parameter vector. Equation (22) is chaotic when
by =14, bp =35, b3 =3, by = =5, b5 = —4 and
in the absence of the controller v = (v, va, v3, v4)T,

see [6] for more details.
The complex function transformation matrix is taken
as

0.5exp(jmt/5) 0 0
_ 0 exp(jmt/10) 0
D) = 0 0 1.5cos(rt/15) |

2exp(jmt/20) 0 0
(23)

where pexp(jft) = p(cosft + jsinOt). Note that
z3, w3 € R in systems (21) and (22), we choose
the scaling function d33(f) € R in (23) to make
e3 = w3 — 1.5cos(mwrt/15)z3 € R for the convenience
of real discussion.

The controller is constructed according to (9) in The-
orem 1 as

—by (wr—w)4+(0.17j21+0.541 (za—z1)) exp(jmt /5)—ki el

—bywy +way + wiws — wy + (0.1 22 + (G221 — G322 — 2123)) exp(jt/10) — kaer
byws — %(u_)]wz + wiwy) — 0.1 z3 sin(wt /15) + [1.5(%(21Z2 +2122) — dazz)]cos(mt/15) — kzes

L))

—l;4w1 — I;Swg + (0.17jz1 4+ 2a1(z2 — z1)) exp(jrt/20) — kaes
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the complex update laws of parameters are given
according to (10) as

of unknown parameters in both drive and response sys-
tems are identified successfully with the designed con-

—(0.5exp(—jmt/5)er + 2exp(—jmt/20)es)(Za — Z1) — Va, (@1 — ar)

2 —exp(—jmt/10)Z1e2 — Ya, (a2 — a2)
A= exp(—jt/10)E2e2 — 4y (@3 — a3) ’ @
1.5cos(t/15)z3e3 — Yy, (Ga — as)
and
. troller (24) and the complex update laws (25) and (26)
(W2 — w1)er = yp, (b1 — b1) of parameters.
R wiez = Yp, (b2 — b2)
B = —w3e3 — Vb3 (b3 — b3) . (26)

wie4 — Vb, (124 — ba)
waeq — Yps (bs — bs)

In the numerical simulations, the fourth-order
Runge—Kutta method is applied, the true values of
unknown parameters are chosen as A = (ai, a2, a3,
ay)T = (2,60 + 0.02j,1 — 0.067,0.8)T and B =
(b1, ba, b3, by, bs)T = (14, 35,3, =5, —=4)T, respec-
tively. The initial conditions of drive system (21) and
response system (22) are randomly taken as z(0) =
2+0.02j,14+0.2j,—D)T and w(0) = (-1 — 2,
—3 —4j,-5,—6 — 7/)T. The initial values of esti-
mated parameters and control strength are A(0) =
(@10, 4(0), 43(0), asO)T = (1, 1,1, DT,
B(0) = (b1(0), b2(0), b3(0), b4(0), bs(0)T = (10,
10, 10, 10, 10), v, = diag{ya,, Vay» Yas» Yai} =
diag{16, 6, 5, 18}, y» = diag{ys,, Vb, Vb3» Vbss Vbs}
= diag{15, 20, 6, 5, 18} and K = diag{ky, k2, k3, ka}
= diag{l, 2, 3, 4}.

The adaptive CMHFPS errors of systems (21)
and (22) converge asymptotically to zero as demon-
strated in Fig. 2, where the solid line shows the real
part of the error and the dotted line presents the imag-
inary part of the error.

The processes of parameters identification of A and
B are shown in Figs. 3 and 4, respectively, where
the red line shows the real part of the parameter
and the blue line the imaginary part of the parame-
ter. The estimated values of the unknown parame-
ters gradually converge to the selected values A =
(a1, az, a3, az)" = (2,60 +0.02j,1 — 0.067,0.8)T
and B = (by, by, b3, by, bs)T = (14,35,3, 5,
—4)T as t — oo, respectively.

As expected, the above results demonstrate that
adaptive CMHFPS has been achieved between com-
plex chaotic Lorenz drive system (21) and complex
hyperchaotic Lorenz response system (22), and that all

@ Springer

4.2 Adaptive CMHFPS of complex hyperchaotic Lii
drive system with real parameters and complex
Lorenz response system with complex parameters

In order to illustrate adaptive reduced order CMHFPS,
it is assumed that 4-dimensional complex hyperchaotic
Lii system with unknown real parameters [8] drives 3-
dimensional complex Lorenz system (1) with unknown
complex parameters. Therefore, the drive system is
written as

z1 =ai(z2 — z1) + 24,

22 = az2 — 2123 + 24,

. _ _ 27

23 = —a3zz + (1/2)(2122 + 2122), @7
4 = —agza + (1/2)(Z122 + 2122),

where z; = zi + jz{.z2 = 25 + jzi are com-

plex state variables and z3, z4 are real state variable,

e(t)

t

Fig. 2 The CMHFPS error dynamic of systems (21) and (22)
with the controller (24), complex parameter update laws (25),

(26). Here e; = w; — 0.5exp(jmt/S)z1,e2 = wy —
exp(jmt/10)z2,e3 = w3 — 1.5cos(wt/15)z3,e4 = wg —
2exp(jnt/20)z;
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Fig. 3 The identification 10 2
process of unknown = =
parameter vector A of drive w 9 n‘ w O©
system (21) 0 " >
0 5 10 0 5 10
t t
100 1
Sa 50 [ :f“a. 0 Nyl\
0 -1
0 5 10 0 5 10
t t
20 5
o 0 \ﬂ/\/\’\ o OM‘I\“
—20 -5
0 5 10 0 5 10
t
5 0.2
= A = Un,
= p =
o 0 = 0 -
-5 -0.2
0 5 10 0 5 10
Fig. 4 The identification —~ 151, —~ 2
process of unknown = =~ 0 \!L
Q Q
parameter vector B of 10 2
response system (22) 0 5 10 0 5 10
t
40 1
£ 20 [ = ol
ES =<' f
0 -1
0 5 10 0 5 10
t
— 10 —~ 02
% shy = oy
Q Len Q
-0.2
% 5 10 02, 5 10
t
—~ 10 —
§ o S ol
-10 -1
0 5 10 0 5 10
t t
—~ 10 1
= $ of
-10 -1
0 5 10 0 5 10
t t
A = (ai, a2, a3, a4)" is unknown real parameter vec- wy = b(wz — wy) + vy,
tor. Equation (27) is chaotic when a; = 15, a, = Wy = bywy — b3wy — wiw3 + vy, (28)
36, a3 = 4.5, as = 12, see [8] for more details. w3 = —bgwsz + (1/2)(wiwa + wiwz) + v3,
The complex response system with the controller is

where w; = w] + jw{,wy = wj + jw) are com-

iven as . . .
g plex state variables, and w3 is a real state variable,
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= (b1, by, b3, b4)T is unknown complex parameter
vector, and the controller v = (vy, va, v3)T is to be

designed.
The complex function transformation matrix is
selected as

0.5exp(jmt/5) 0 0 0
D(r) = 0 exp(jrt/10) 0 0 s
0 0 1.2 +sint 1.2 4 cost
(29)

Note that z3, z4, w3 € Rinsystems (27) and (28), we
choose the scaling functions d33(t), dz4 € Rin (29) to
make e3 = w3 — (1.2 +sint)z3 — (1.2 +cost)zg € R

The adaptive CMHFPS errors of systems (27)
and (28) converge asymptotically to zero as demon-
strated in Fig. 5, where the dotted line shows the real
part of the error and the solid line presents the imagi-
nary part of the error.

The processes of parameters identification of A
and B are shown in Figs. 6 and 7, respectively,
where the red line shows the real part of the parame-
ter and the blue line presents the imaginary part of
the parameter. The estimated values of the unknown
parameters gradually converge to the selected values

= (a1, as, az, an)T = (42,25,6,10)T and B =

for convenience of real discussion. (bl, by, b3, by)T = (2,60 + 0.02j,1 — 0.06/,0.8)T
The controller is constructed according to (9) in The- as t — oo, respectively.
orem 1 as
= —bl(wz —w1) + (0.17jz1 +0.5(@1(z2 — 21) + z4)) exp(jm/5) — kier,
v = —bzwl + bywy + wyws + (0.17jz2 + G222 + 24 — 2123) exp(jmt/10) — kper, (30)

V3 = b4w3

F@ywy 4+ win) + (1.2 + sin ) (—aszz + (1/2)(Z122 + 2122))

+(1.2 + cost)(—asza + (1/2)(Z122 + 2122)) + 23 cost — 74 sint — kzes,

the complex update laws of parameters are given
according to (10) as

—0.5exp(—jmt/5)(z2 — Z1)e1 — Yq, (A1 — a1)

A _ —exp(—jnt/10)z2e2 — Ya, (@2 — a2)
(1.2 +sin1)z3es — yay (a3 — a3)
(1.2 + cost)zaez — yq, (4a — as)
3D
and
(@2 — D)er — v, (b — b)
B = wiez — Yp, (b2 — b2) . (32)

—W2e2 — Vi, (lf3 — b3)
—w3e3 — Yy (ba — bs)

In the numerical simulations, the true values of
unknown parameters are chosen as A = (ai, a2, a3,
a))T = (42,25,6,10)T and B = (b1, b2, b3, ba)T =
(2,6040.02/,1—0.06/, O.8)T, respectively. The ini-
tial conditions of drive system (27) and response sys-
tem (28) are randomly chosen as z(0) = (1045, 10+
67,2,12)T and w(0) = 2+ 0.02j,1+ 0.2/, —1)T.
The initial values of estimated parameters and control
strength are A(O) (a1(0) a, (0) as (0) o (O))T
(15,16,174j, 184+ /)T, B(O) (b1(0), b2(0), b3(0),
b4(0))T = L1,1+ J) Ya = diag{ya,, Yay» Va3»
va,} = diag{l6, 8, 10, 18}, v, = diag{ys,, Vp,,
Vb, Vby) = diag(15, 20, 16, 18} and K = diag{ky, k2,
k3} = diag{5, 10, 20}.

@ Springer

As expected, the above results demonstrate that
adaptive CMHFPS has been achieved between com-
plex hyperchaotic Lii drive system (27) with unknown
real parameters and complex chaotic Lorenz response
system (28) with unknown complex parameters, and
that all of unknown parameters in both drive and
response systems are identified successfully with the
designed controller (30) and the complex update
laws (31) and (32) of parameters.

t
T

U

N

o

T T
N e e e

t

Fig. 5 The CMHFPS error dynamic of systems (27) and (28)
with the controller (30) and complex parameter update laws (31),
(32). Here ¢; = w; — 05exp(jnt/S)z1,e0 = wy —
exp(jmt/10)z2,e3 = w3 — (1.2 +sint)zz — (1.2 4 cost)za
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Fig. 6 The identification 50 0.05
process of unknown = o
parameter vector A of drive o o 0
system (27) 0 005
0 5 10 0 5 10

30 1 L
o 20 N 0
10 -1
5 10 0 5 10
t t
20 1 \
o 10 0
0 -1
0 5 10 0 5 10
t t
20 1
< 0 - 0
-20 -1
0 5 10 0 5 10
t t
Fig. 7 The identification 5 0.5
process of unknown = V’ =
parameter vector B of = 0 o 0 [
response system (28) -5 05
0 5 10 ~o 5 10
t t
100 0.5
S wf = o
0 -0.
0 5 10 05 5 10
t t
5 1
> 0 0 L
Q Q
-5 -1
0 5 10 0 5 10
t t
10 1
-10 -1
5 10 0 5 10
t t
5 Discussion and conclusions and complex parameters. With the present method, in
the complex space, the response system is asymptoti-
In this paper, CMHFPS is introduced for two different cally synchronized different dimensional drive system
dimensional chaotic systems with complex variables by a desired complex function transformation matrix,
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not a square matrix. The adaptive controller and update
laws of unknown complex parameters are designed to
make the response system become a complex function
projection of the drive system.

The presented synchronization scheme is simple and
theoretically rigorous. It is worth pointing out that suf-
ficient criteria on adaptive CMHFPS are derived by
constructing appropriate Lyapunov functions depen-
dent on complex variables and employing adaptive con-
trol technique. Quite different from the schemes pro-
posed in the literature, we do not separate the real and
imaginary parts of complex variables or complex para-
meters. This goes beyond the known results, and we
hope the performed work will serve as a guideline for
further studies in chaotic synchronization of complex
nonlinear systems.

Moreover, the CMHFPS between complex chaotic
Lorenz drive system with uncertain complex parame-
ters and complex hyperchaotic Lorenz response sys-
tem with uncertain real parameters is implemented as
an example to discuss increased order synchroniza-
tion, and CMHFPS between complex hyperchaotic
Lii drive system with uncertain real parameters and
complex Lorenz response system with uncertain com-
plex parameters is implemented as an example to dis-
cuss reduced order synchronization, as well. Numeri-
cal results are plotted to show the rapid convergence
of errors to zero and of the estimations of unknown
complex parameters to the selected true values.

The CMHFPS bridges the gap between different
dimensional complex chaos with complex parame-
ters by a complex function transformation matrix. The
transformation matrix is composed of complex func-
tions, which increases the complexity and scope of
the synchronization and directs high security and large
variety of secure communications. What’s more, more
choices of both control parameters and scaling func-
tions are provided to realize secure communications
by chaos synchronization, stronger anti-attack ability
and more anti-translated capacity are strengthened for
our method. Our findings indicate that the proposed
scheme is particularly efficient and of wide real-world
applicability, a more bright future is waiting for secure
communication and information processing.
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