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This paper describes an unusual example of a three-dimensional dissipative chaotic flow with quadratic 
nonlinearities in which the only equilibrium is an unstable node. The region of parameter space with 
bounded solutions is relatively small as is the basin of attraction, which accounts for the difficulty of its 
discovery. Furthermore, for some values of the parameters, the system has an attracting torus, which is 
uncommon in three-dimensional systems, and this torus can coexist with a strange attractor or with a 
limit cycle. The limit cycle and strange attractor exhibit symmetry breaking and attractor merging. All 
the attractors appear to be hidden in that they cannot be found by starting with initial conditions in the 
vicinity of the equilibrium, and thus they represent a new type of hidden attractor with important and 
potentially problematic engineering consequences.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Most familiar examples of low-dimensional chaotic flows occur 
in systems having one or more saddle points. Such saddle points 
allow homoclinic and heteroclinic orbits and the prospect of rigor-
ously proving the chaos when the Shilnikov condition is satisfied. 
Furthermore, such saddle points provide a means for locating any 
strange attractors by choosing an initial condition on the unstable 
manifold in the vicinity of the saddle point. Such attractors have 
been called “self-excited,” and they are overwhelmingly the most 
common type described in the literature.

Recently, many new chaotic flows have been discovered that 
are not associated with a saddle point, including ones without any 
equilibrium points, with only stable equilibria, or with a line con-
taining infinitely many equilibrium points [1–10]. The attractors 
for such systems have been called “hidden attractors” [11–17], and 
that accounts for the difficulty of discovering them since there is 
no systematic way to choose initial conditions except by extensive 
numerical search. Hidden attractors are important in engineering 
applications because they allow unexpected and potentially dis-
astrous responses to perturbations in a structure like a bridge or 
aircraft wing.

Here we introduce a new class of hidden attractor that occurs 
in a system in which the only equilibrium is an unstable node, and 

* Corresponding author.
E-mail address: sajadjafari@aut.ac.ir (S. Jafari).
http://dx.doi.org/10.1016/j.physleta.2015.06.039
0375-9601/© 2015 Elsevier B.V. All rights reserved.
we identify what may be the simplest example of such a system 
with a strange attractor. By “unstable node” we mean an equilib-
rium point whose eigenvalues are all real and positive. The system 
was found by extensive numerical search and appears to be ex-
tremely rare in the class of system studied, but it has a number 
of interesting and unusual properties including symmetry break-
ing, attractor merging, and multistability, as well as an attracting 
torus.

Section 2 describes the numerical search procedure, and Sec-
tion 3 describes the properties of the equilibrium point. Section 4
shows the variety of different dynamics and their bifurcations. Sec-
tion 5 illustrates examples of coexisting attractors, and Section 6
provides the evidence that these attractors are hidden. Finally, Sec-
tion 7 gives the conclusions.

2. Numerical search

Perhaps the simplest chaotic flow with a single equilibrium 
point is a jerk system, the most general quadratic form of which is 
given by

ẋ = y

ẏ = z

ż = f (x, y, z) = a1x + a2 y + a3z + a4 y2

+ a5z2 + a6xy + a7xz + a8 yz + a9 (1)
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System (1) has only one equilibrium point at (− a9
a1

, 0, 0) with 
eigenvalues λ that satisfy

λ3 − f zλ
2 − f yλ − fx = 0 (2)

where fx = a1, f y = a2 − a6a9/a1, and f z = a3 − a7a9/a1. Since 
the Routh–Hurwitz stability criterion gives the conditions for hav-
ing the real part of all eigenvalues negative, a transformation of 
Eq. (2) with λ → −λ gives the conditions for having them all posi-
tive. Thus Eq. (2) becomes −λ3 − f zλ

2 + f yλ − fx = 0, which after 
multiplying by −1 gives

λ3 + f zλ
2 − f yλ + fx = 0 (3)

Thus the conditions for the equilibrium to be unstable are f z > 0, 
fx + f y f z < 0, and fx > 0, or(

a3 − a7a9

a1

)
> 0

a1 +
(

a2 − a6a9

a1

)(
a3 − a7a9

a1

)
< 0

a1 > 0 (4)

An extensive numerical search involving millions of random com-
binations of the coefficients a1 through a9 and initial conditions 
subject to the constraints in Eq. (4) did not reveal any bounded so-
lutions with a largest Lyapunov exponent greater than 0.001. Thus 
it seems likely that system (1) does not admit chaotic solutions in 
the presence of such a fully unstable equilibrium.

Therefore, inspired by the Sprott A (Nose–Hoover) system 
[18–20], and using a form that has successfully given other chaotic 
flows with hidden attractors [1,2,5], system (1) was modified 
slightly according to

ẋ = y

ẏ = −x + yz

ż = a1x + a2 y + a3z + a4x2 + a5 y2

+ a6xy + a7xz + a8 yz + a9 (5)

System (5) has only one equilibrium point at (0, 0, −a9/a3) with 
eigenvalues λ that satisfy

λ3 −
(

a3 − a9

a3

)
λ2 + (−a9 + 1)λ − a3 = 0 (6)

Changing the variable λ → −λ gives

λ3 +
(

a3 − a9

a3

)
λ2 + (1 − a9)λ + a3 = 0 (7)

The Routh–Hurwitz stability criterion guarantees that the real part 
of all eigenvalues are positive provided(

a3 − a9

a3

)
> 0

(
a3 − a9

a3

)
(1 − a9) − a3 > 0

a3 > 0 (8)

For this case, many chaotic solutions were found in an extensive 
computer search, although they are still relatively rare. Perhaps the 
simplest such system [21] is given by

ẋ = y

ẏ = −x + yz

ż = z + ax2 − y2 − b (9)
with an appropriate choice of the parameters a and b and initial 
conditions. System (9) satisfies the conditions of Eq. (8) provided 
b > 0. With seven terms, this is actually a three-parameter sys-
tem, but for simplicity, the third parameter is taken as unity. The 
remainder of the paper is concerned with the properties of sys-
tem (9).

3. Equilibrium properties

By design, this system (9) has only one equilibrium at (0, 0, b)

with eigenvalues λ given by

λ3 − (b + 1)λ2 + (b + 1)λ − 1 = 0 (10)

whose roots are λ = 1, b/2 ±√
b2 − 4. Since one of the eigenvalues 

is +1, the equilibrium is always unstable, but the type of equi-
librium depends on b and is independent of a as summarized in 
Table 1 where � = b2 − 4 and ω = √

4 − b2.
Chaotic solutions occur for b > 1 and are most abundant at 

large b where the equilibrium is an unstable node. For a typical 
value of b = 4, the eigenvalues are λ1 = 3.732050808, λ2 = 1, λ3 =
0.267949192, and the corresponding eigenvectors are

v1 = ±(kx + 3.732050808ky)

v2 = ±kz

v3 = ±(kx + 0.267949192ky) (11)

Table 1
Types of equilibrium points for different values of the parameter b.

Parameter b Eigenvalues Type of equilibrium point

b < −2 1, (b ± √
�)/2 saddle node

−2 < b < 0 1, (b ± iω)/2 saddle focus
0 < b < 2 1, (b ± iω)/2 unstable focus
b > 2 1, (b ± √

�)/2 unstable node

Fig. 1. Regions of various dynamical behaviors for system (9) as a function of the 
bifurcation parameters a and b. The chaotic regions are shown in red, the pe-
riodic (limit cycle) and quasiperiodic (torus) regions are shown in blue, and the 
unbounded regions are shown in white. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Chaotic attractors from Eq. (9) for b = 4 at various values of a. The unstable node is shown as a red dot along with its most unstable manifold in green. See Table 2
for more detail. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
where kx , ky , and kz are unit vectors in the x, y, and z direc-
tions, respectively. These vectors define the unstable manifolds in 
the vicinity of the equilibrium point and are independent of the 
parameter a.

4. Dynamic regions and bifurcations

Most of the solutions of system (9) are unbounded, but there is 
a narrow triangular region in the vicinity of the line b = 0.8a − 3
where periodic and chaotic solutions occur as shown in Fig. 1. For 
each (a, b) combination in this plot, it was necessary to search 
for initial conditions that give bounded solutions and then test 
whether the solution is periodic or chaotic by calculating the 
largest Lyapunov exponent. The chaotic regions indicated in red 
have a largest Lyapunov exponent greater than 0.001. Some of the 
periodic solutions indicated in blue with Lyapunov exponents close 
to zero are actually quasiperiodic with an attracting torus. Further-
more, there are regions of multistability where there are coexisting 
attractors as will be discussed shortly and that accounts for the 
mingling of red and blue dots in some regions of the plot. Note 
that bounded solutions only occur for b > 1 and are most promi-
nent at large b. There is some uncertainty in the results because 
the Lyapunov exponent can converge slowly, but the qualitative 
features should be correct.

For the system to have attractors, the state space contraction 
given by 1 + 〈z〉 must be negative, or 〈z〉 < −1, where 〈z〉 is 
the time-averaged value of z along the orbit. Furthermore, since 
the system is rotationally symmetric under the transformation 
(x, y, z) → (−x, −y, z), any attractors are either symmetric under 
a 180◦ rotation about the z-axis or there is a symmetric pair of 
them.

As indicated in Fig. 1, most of the qualitative behavior is cap-
tured by varying a over a narrow range with b fixed at a value 
chosen as b = 4. Fig. 2 shows a variety of different attractors that 
occur with their properties summarized in Table 2.
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Table 2
Details of the attractors shown in Fig. 2.

Figure Parameter 
(b = 4)

Initial conditions Lyapunov 
exponents

Kaplan–Yorke 
dimension

Attractor type

0.1767

2(a) a = 8.894 (0,3.8,0.7)
0

2.1929 Symmetric strange attractor−0.9158

0.1642

2(b) a = 8.888
(1,−2,4) 0

2.1468 Symmetric pair of strange attractors
(−1,2,4) −1.1189

0

2(c) a = 8.8
(1,7,−9.5) −0.4116

1.0 Symmetric pair of limit cycles
(−1,−7,−9.5) −0.4116

0

2(c) a = 8.8 (1.518,0.488,−6)
−0.0056

1.0 Symmetric limit cycle−0.0056

0

2(d) a = 8.496 (0.09,7.6,0)
0

2.0 Symmetric attracting torus−0.0370

0.0476

2(d) a = 8.496
0

2.1807 Symmetric strange attractor
(0,4.4,0.65) −0.2632

0

2(e) a = 8.45
−0.0810

1.0 Symmetric limit cycle
(1.46,0,0.1) −0.0810

2(e) a = 8.45
0

2.0 Symmetric attracting torus
0

(0,5.6,0.86) −0.0438

0.0403
Symmetric strange attractor2(f) a = 8.365 (0,−5,0.8) 0 2.4498

−0.0896
Fig. 3 shows the Lyapunov exponents (LEs), Kaplan–Yorke di-
mension (Dky), and the maximum values of x (Xm) for 8.8 < a <
8.9 and b = 4. At small a, there is a symmetric pair of limit cycles 
that undergo a period-doubling route to chaos and then continue 
to grow, with periodic windows, until they merge into a single 
symmetric strange attractor at a = 8.89, which is destroyed in a 
boundary crisis at a = 8.895.

The behavior of the system at smaller values of the parameter 
a is shown in Fig. 4. As a is decreased from 8.8, the symmet-
ric pair of limit cycles is destroyed in a discontinuous bifurcation 
around a = 8.77, and a symmetric limit cycle appears and gives 
birth to a thin attracting torus at a = 8.72, which is unusual in a 
three-dimensional system. The torus grows in size, with small pe-
riodic windows, until it is destroyed in a discontinuous bifurcation 
around a = 8.44, and a new symmetric limit cycle appears that 
abruptly vanishes around a = 8.35.

5. Multistability

Already mentioned is the symmetric pair of limit cycles that 
period-double into the symmetric pair of strange attractors shown 
in Fig. 2(b). This is an example of symmetry breaking in which 
the symmetric equations produce a symmetric pair of asymmetric 
attractors.

The discontinuous bifurcations that are evident in Fig. 4 sug-
gest hysteresis and bistability as confirmed by Fig. 5 which is the 
same as Fig. 4 except that a is slowly increased from 8.35 with-
out reinitializing. The regions of multistability are clearly evident 
when the two figures are compared. In particular, the pair of limit 
cycles that appears in Fig. 4 at a = 8.8 is accompanied by a sym-
metric limit cycle indicated in Fig. 5, and the three coexisting limit 
cycles are shown in Fig. 2(c).

Furthermore, there is a small region near a = 8.496 where there 
is a symmetric strange attractor as evidenced by the positive Lya-
punov exponent in Fig. 5(a). This symmetric strange attractor co-
exists with a symmetric attracting torus as evidenced by the zero 
Lyapunov exponent at the same value of a in Fig. 4(a), and the two 
attractors are strongly intertwined as seen in Fig. 2(d). The coex-
istence of a strange attractor and attracting torus in a 3-D system 
with quadratic nonlinearities is surely unusual, and this may be 
the first such reported example.

In the vicinity of a = 8.45, Fig. 5 shows a limit cycle while 
Fig. 4 shows a torus. The two attractors are intertwined as shown 
in Fig. 2(e). The limit cycle undergoes period doubling, leading to 
the strange attractor just described, all the while coexisting and 
intertwined with an attracting torus. A cross section of the basins 
of attraction in the x = 0 plane at a = 8.496 is shown in Fig. 6. The 
basin of the strange attractor (in red) is nested within the basin of 
attraction of the torus (in blue), which itself occupies a small frac-
tion of the space of initial conditions. These behaviors are surely 
unusual. Whether they have anything to do directly with the pres-
ence of the unstable node is an open question worthy of further 
study.

Finally, there is a region near a = 8.65 in Fig. 5 where another 
narrow band of chaos occurs with a symmetric strange attractor 
having a relatively large Kaplan–Yorke dimension of 2.4498 and 
shown in Fig. 2(f). All of the attractors have a similar shape pre-
sumably because they occur nearby in parameter space.

6. Hidden attractors

Recent research has involved categorizing periodic and chaotic 
attractors as either self-excited or hidden [11–17]. A self-excited 
attractor has a basin of attraction that is associated with an un-
stable equilibrium, whereas a hidden attractor has a basin of at-
traction that does not intersect with small neighborhoods of any 
equilibrium points. The classical attractors of Lorenz, Rössler, Chua, 
Chen, Sprott systems (cases B to S) and other widely-known at-
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Fig. 3. (a) Lyapunov exponents, (b) Kaplan–Yorke dimension, and (c) maxima of x
for system (9) versus a with b = 4.

tractors are those excited from an unstable equilibrium. From a 
computational point of view this allows one to use a numerical 
method in which a trajectory started from a point on the un-
stable manifold in the neighborhood of an unstable equilibrium, 
reaches an attractor and identifies it [15]. Hidden attractors cannot 
be found by this method and are important in engineering appli-
cations.

As a test of whether the attractors described here are hid-
den, initial conditions were chosen on the most unstable mani-
fold given by the vector v1 in Eq. (11) using values of (±0.001, 
±0.003732050808, 4) close to the node. The subsequent trajecto-
ries as shown in green in Fig. 2 diverge toward infinity and do not 
approach any of the attractors. Furthermore, three cross sections 
of the basin of attraction for the strange attractor with a = 8.894, 
b = 4 that intersect the unstable node are shown in Fig. 7, where it 
appears that the basin comes nowhere near the equilibrium point. 
The small size of the attractor basin along with the narrow region 
of parameter space shown in Fig. 1 illustrate why this chaotic sys-
tem was hard to find, and this may be a general feature of chaotic 
systems with unstable nodes.

As an additional test of whether the attractors are hidden, 
a hundred thousand Gaussian random initial conditions were cho-
Fig. 4. (a) Lyapunov exponents, (b) Kaplan–Yorke dimension, and (c) maxima of x for 
system (9) versus a with b = 4. In this plot, a is slowly decreased from 8.8 without 
reinitializing.

sen centered on the equilibrium with a variance of 0.001, and they 
all diverged toward infinity. Finally, another hundred thousand ini-
tial conditions were chosen randomly on the strange attractor and 
followed backward in time so that the attractor becomes a re-
pellor, and none of the resulting trajectories approached a small 
neighborhood of the node, which is stable in reversed time with a 
relatively large basin of attraction. Hence we conclude that these 
attractors are hidden by any of the means usually used to find 
them.

7. Conclusion

A very rare three-dimensional quadratic flow has been reported 
here in which periodic, quasiperiodic, and chaotic attractors coex-
ist with a single unstable node. It was found by carefully designing 
a system to have a single equilibrium whose eigenvalues have only 
positive real parts and then numerically searching the resulting 
space of nine parameters and three initial conditions for chaotic 
solutions. This system has unusual properties including symme-
try breaking, attractor merging, attracting tori, and various types 
of multistability. Numerical evidence shows that these attractors 
are hidden and hence represent a new class of hidden attractor. It 
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Fig. 5. (a) Lyapunov exponents, (b) Kaplan–Yorke dimension, and (c) maxima of x
for system (9) versus a with b = 4. In this plot, a is slowly increased from 8.35 
without reinitializing.

may be the simplest system with this combination of characteris-

tics, although it could be generalized by adding a third bifurcation 
parameter.
Fig. 6. Cross section in the x = 0 plane of the basins of attraction for a = 8.496
and b = 4. The blue area is the basin of the torus, the red area is the basin of the 
strange attractor, and unbounded regions are shown in white. Cross sections of the 
attractors are shown in black, and the unstable equilibrium is shown as a small 
circle at the center toward the top. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)
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