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It has recently been shown that the Chen system with c > 0 is identical to the reversed-time
Lorenz system with particular negative parameters and that the Chen system with c < 0 is iden-
tical to the forward-time Lorenz system with particular negative parameters. This note describes
this new regime and shows that it admits chaotic solutions that were previously unexplored in
either system.
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1. Introduction

The Lorenz system [Lorenz, 1963] given by

Ẋ = σ(Y − X)

Ẏ = ρX − Y − XZ

Ż = −βZ + XY

(1)

has long been a paradigm of chaos since it has
strange attractors over a significant range of the
parameters (σ, ρ, β) usually taken to be positive
with typical values of (10, 28, 8/3). Similarly, the
Chen system [Chen & Ueta, 1999] given by

ẋ = a(y − x)

ẏ = (c − a)x + cy − xz

ż = −bz + xy

(2)

has been much studied for positive values of its
parameters (a, b, c) and has chaotic solutions for
typical parameters of (35, 3, 28).

Recently, Algaba et al. [2013] have shown that
the Chen system has only two independent param-
eters a/c and b/c and that it is identical to the
reversed-time Lorenz system for c > 0 and to the
forward-time Lorenz system for c < 0 in the param-
eter plane ρ + σ = −1. Hence it follows that the

Lorenz system has a strange repeller for certain
negative values of its parameters corresponding to
the strange attractor in the Chen system with cer-
tain positive parameters. Furthermore, Algaba et al.
showed that for c < 0, Chen’s attractor exists if
the Lorenz attractor exists in this unusual range of
its parameters. In particular, for c = −1 the two
equations are identical provided σ = a, ρ = c − a,
and β = b. The purpose of this paper is to show
that such attractors do exist and to determine their
properties and the conditions under which they
occur.

2. Parameter Space of the Chen
System

Since the Chen system has only two independent
parameters, it is feasible to explore its entire
parameter space and identify all possible dynami-
cal behaviors. This would be more difficult for the
Lorenz system since it has three parameters. It is
worth noting that since Eq. (2) has seven terms,
four of whose coefficients can be set to unity by a lin-
ear rescaling of x, y, z, and t, its most general form
would have an additional parameter that has been
implicitly set to 1.0 and that could be introduced
to make an even stronger connection to the Lorenz
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Fig. 1. Dynamical regions of the Chen system over its entire parameter range; U = unbounded, P = periodic, C = chaotic,
S = stable.

system. In particular, if the factor (c−a) in Eq. (2)
were replaced with a new independent parameter ρ,
Eq. (2) would become functionally identical to the
Lorenz system (1) for c = −1.

Figure 1 shows all the dynamical regions in the
parameter space of the Chen system for all signs of
the parameters. Most solutions are unbounded, but
there are two distinct regions that admit attractors,
one for positive c and the other for negative c. For
each point in this plot, it was necessary to search for
initial conditions that give bounded solutions and
then to estimate the largest Lyapunov exponent for
each point. The criterion used was to assume that
Lyapunov exponents in the range (−0.001, 0.001)
are periodic (limit cycles), those that are more neg-
ative are stable equilibria (point attractors), and
those that are more positive are chaotic (strange
attractors), shown in their respective colors.

The absence of attractors at intermediate val-
ues of a/c is easily understood by noting that the
rate of volume expansion for Eq. (2) is given by
−a + c − b, which is positive for 0 < a/c < 1 − b/c.
The case with c = 0 is a special case of the “T-
system” [Tigan & Opriş, 2008; Jiang et al., 2010]
with a single parameter b/a, and it is not equiva-
lent to the Lorenz system for any choice of param-
eters. For b/a < −1 and c = 0, the system is
volume-expanding, and all solutions are unbounded.
For −1 < b/a < 0 and c = 0, all solutions
approach infinity along the +z axis. For b/a > 0 and
c = 0, all solutions approach a stable equilibrium at
the origin. Hence, there are no periodic or chaotic
solutions for c = 0. Note also that no attractors
exist for b/c < 0 when a/c > 0.

The region in the upper right quadrant of
Fig. 1 is the conventional Chen system with posi-
tive parameters that has been much studied [Ueta &
Chen, 2000; Lü et al., 2002], with the usual parame-
ters shown as a blue dot, and thus will not be further
examined here. The region on the left is the new
regime that admits chaotic solutions, not previously
observed. It maps into the forward-time Lorenz sys-
tem provided the parameters are chosen accord-
ing to σ = −a/c, ρ = a/c − 1, β = −b/c, which
is a seldom considered region of the Lorenz sys-
tem. Some special cases of the Lorenz system with
negative and zero parameters have been studied
[C̆elikovský & Vanĕc̆ek, 1994; C̆elikovský & Chen,
2002, 2005; Cao & Zhang, 2007; Llibre et al., 2010;
Sprott, 2010; Li & Sprott, 2014], but apparently not
the one considered here.

3. Equilibria

The starting point for analysis of system (2) is to
identify the equilibria with c < 0 and their prop-
erties. One equilibrium is at (x∗, y∗, z∗) = (0, 0, 0)
with eigenvalues that satisfy λ3 + (a + b − c)λ2 +
(ab − bc − 2ac + a2)λ + ab(a − 2c) = 0. For 0 >
a/c > −0.1547 this equilibrium is a node, and for
a/c < −0.1547 it is a focus. For b/c < 0 the equilib-
rium is stable, and for b/c > 0 it is unstable. This
accounts for the stable region in Fig. 1 for b/c < 0
and allows us to focus on the region b/c > 0 where
the equilibrium at the origin is unstable and chaos
can occur.

The other two equilibria are at (±x∗,±y∗, z∗)
where x∗ = y∗ =

√
b(2c − a) and z∗ = 2c − a with

1550033-2



February 13, 2015 15:39 WSPC/S0218-1274 1550033

New Chaotic Regimes in the Lorenz and Chen Systems

eigenvalues that satisfy λ3 + (a + b − c)λ2 + bcλ +
2ab(2c − a) = 0. These equilibria experience a
supercritical Hopf bifurcation when λ = iω, giving
birth to limit cycles with a frequency ω =

√
bc,

and this occurs along the curve given by b
c =

1 + a
c (3 − 2a

c ), which coincides with the upper part
of the boundary between the periodic and stable
regions on the left in Fig. 1.

4. Bifurcations

To continue the bifurcation analysis, it suffices to
consider a one-dimensional variation of a/c at a

Fig. 2. Lyapunov exponents (LEs), Kaplan–Yorke dimen-
sion (Dky), and maximum values of x (Xm) versus a/c with
(b, c) = (−0.3,−1) in Eq. (2). The plot of Xm shows the
maxima of x in green and the negative of the minimum of x
in red so as to distinguish the symmetric and nonsymmetric
solutions.

Fig. 3. Projection onto the xz-plane of the double hetero-
clinic orbits for (a, b, c) = (0.4208,−0.3,−1) with initial con-
ditions (x0, y0, z0) = (±0.8522,±0.8519,−2.421) in Eq. (2).

fixed value of b/c = 0.3, which cuts across the var-
ious dynamical regions shown in Fig. 1. Figure 2
shows the Lyapunov exponents, Kaplan–Yorke
dimension and bifurcation diagram starting on the
right from the stable equilibria, and continuing to
the Hopf bifurcation at a/c = 0.75 − √

0.9125 =
−0.20525 where a symmetric pair of limit cycles
is born. The limit cycles grow in size until a new
symmetric limit cycle is born at infinity for a/c ≈
−0.284 and begins shrinking, and the three limit
cycles coexist until a/c ≈ −0.297 where the two
symmetric limit cycles disappear. The larger sym-
metric limit cycle remains until a/c ≈ −0.309
where its symmetry breaks in a pitchfork bifurca-
tion, forming a symmetric pair of interlinked limit
cycles. These limit cycles then begin period dou-
bling at a/c ≈ −0.319 and form a symmetric pair of
strange attractors at a/c ≈ −0.322. These strange
attractors grow in size until they merge into a single
symmetric strange attractor at a/c ≈ −0.325.

The chaos persists except for periodic windows
until a/c ≈ −0.4208 where a bifurcation occurs with
a symmetric pair of heteroclinic orbits that connect
the symmetric saddle foci as shown in Fig. 3. Since
the eigenvalues for these equilibria are given by
−1.2654197, 0.0723099 ± 0.6912134i, the Shilnikov
condition [Shilnikov et al., 2001] for the existence
of chaos is satisfied. For a/c < −0.4208, there is
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a region of long duration chaotic transients and
unbounded orbits, until a new symmetric limit cycle
appears in the approximate range −0.444 > a/c >
−0.518. For a/c < −0.518, all orbits are unbounded.
All the behavior described here also occurs in the
Lorenz system provided σ = −a/c, ρ = a/c−1, and
β = −0.3.

5. Attractors

The behavior just described gives rise to a variety
of attractors including stable equilibria, limit cycles,
and strange attractors, some of which are shown in
Fig. 4. For a/c = −0.29, a symmetric pair of limit
cycles coexist with a larger symmetric limit cycle.

Fig. 4. Various attractors for Eq. (2) with b = −0.3 and c = −1 for different values of a/c projected onto the xz-plane.
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Fig. 5. Four views of the strange attractor for (a, b, c) = (0.4,−0.3,−1) with initial conditions (x0, y0, z0) = (1, 0, 0) in
Eq. (2). The three equilibrium points are shown as red dots.

For a/c = −0.32, a symmetric pair of period-2 limit
cycles are interlocked. For a/c = −0.323, a sym-
metric pair of strange attractors are interlocked. For
a/c = −0.326, the symmetric pair of strange attrac-
tors has merged into a single symmetric strange
attractor. For a/c = −0.34, there is a window with
a symmetric period-2 limit cycle. For a/c = −0.5
there is a symmetric limit cycle.

Figure 5 shows a more detailed view of the
strange attractor that occurs toward the middle of
the chaotic region at (a, b, c) = (0.4,−0.3,−1) as
shown by a blue dot on the left side of Fig. 1. For
this case, the Lyapunov exponents are (0.0743, 0,
−1.1743), and the Kaplan–Yorke dimension is
2.0633. The same attractor occurs for the Lorenz
system in Eq. (1) with (σ, ρ, β) = (0.4,−1.4,−0.3).

6. Basin of Attraction

The Lorenz system with positive parameters is glob-
ally attracting except for the three equilibrium

points as can be understood intuitively by not-
ing that all three of the equations in Eq. (1)
are damped. Similarly, the Chen system with the
usual positive parameters is also globally attracting
[Ueta & Chen, 2000] despite the antidamping term
cy in Eq. (2). However, the Chen system with c < 0
in the chaotic regime and its Lorenz counterpart,
also with two damping terms and one antidamping
term in the ż and Ż equations, do not have global
attractors.

Figure 6 shows in light blue a cross-section of
the basin of attraction in the plane z = −2.4 for
the strange attractor in Fig. 5. This is the plane
in which the symmetric saddle points lie, as indi-
cated by the red dots in the figure. Also shown in
black is a cross-section of the strange attractor. The
white regions of the plot correspond to initial con-
ditions that approach infinity as t → ∞. Plots in
other planes that intersect the attractor are simi-
lar. Since the equilibrium points are completely sur-
rounded by the basin of the strange attractor, it is
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Fig. 6. Cross-section of the strange attractor (black) and
its basin of attraction (light blue) in the plane z = −2.4 for
(a, b, c) = (0.4,−0.3,−1) in Eq. (2). The two saddle points
that lie in the plane are shown as red dots.

an example of a self-excited attractor [Leonov &
Kuznetsov, 2013].

It is useful to quantify the size of a basin of
attraction, but this is difficult because some basins
have infinite volume but occupy a negligible fraction
of the state space, while others have finite volume
yet stretch to infinity in certain directions. Further-
more, the basin boundary may be a fractal. A pro-
posed method proceeds as follows.

First find the center of mass of the attractor
by averaging each of its variables over time and
the standard deviation of the distance of the orbit
from that center as a measure of the size of the
attractor. Then construct (hyper)spheres of various
sizes centered on the center of mass, for example
using radii of r = 1, 2, 4, 8, . . . standard deviations.
Then in Monte Carlo style, pick random initial
conditions uniformly distributed inside the spheres,
and calculate the probability P that the points are
in the basin of attraction. Then make a plot of
log(P ) versus log(r). In the limit r → ∞, the curve
will typically be straight with a slope γ such that
P (r) = (r0/r)γ where γ is the codimension of the
basin (the dimension of the space not in the basin)
and r0 is a measure of its linear size relative to the
attractor if γ > 1. For γ < 1, P (r) gives an estimate
of the probability that a point within a distance r
from the center of the attractor is within its basin.

This method was applied to the strange attrac-
tor in Fig. 5 whose center is at (xc, yc, zc) ≈ (0,
0,−3.1875) and whose size is

√
〈(x − xc)2 + (y − yc)2 + (z − zc)2〉 ≈ 3.7288.

Over the range 0 ≤ log2(r) ≤ 10, a least squares
fit of log(P ) versus log(r) gives γ ≈ 0.01, which is
not convincingly different from zero. Thus P (r) is
nearly constant over the range with an average value
of about 0.86, which is suspiciously close to what
would be expected if all but one of the eight octants
in state space lies in the basin (7/8 = 0.875). How-
ever, initial conditions that lie outside the basin are
scattered among all eight octants, although they all
escape in the −z direction. Therefore, unlike the
conventional Chen attractor with c > 0, this one
with c < 0 is not globally attracting, but suitable
initial conditions are easily found.

7. Conclusions

The dynamical behavior of the Chen system
has been examined throughout its entire two-
dimensional parameter space with special atten-
tion to the region with c < 0 where it maps into
the Lorenz system with negative parameters. This
new regime admits stable equilibria, coexisting limit
cycles, symmetry breaking, period-doubling, chaos,
attractor merging, and heteroclinic orbits satisfying
the Shilnikov condition for the existence of chaos.
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C̆elikovský, S. & Vanĕc̆ek, A. [1994] “Bilinear systems
and chaos,” Kybernetika 30, 403–424.
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