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A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized 
versions have an independent total amplitude control parameter. Additional further linearization leads 
naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single 
amplitude controller is then implemented using a new switch element, producing a chaotic oscillation 
that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system.
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1. Introduction

The Lorenz model [1] describes the motion of a fluid under 
the conditions of Rayleigh–Bénard flow [2], and it has become a 
paradigm for chaotic dynamics. Furthermore, recent publications 
[3–10] show that the Lorenz system is still being actively re-
searched. There is an inherent mechanism for the motion of the 
convective flow, which is governed by the stream function and the 
temperature deviation function. When the goal is to find the fac-
tors that lead to chaotic dynamics, it is necessary to consider the 
nonlinearity in the Lorenz model that represents a coupling be-
tween the fluid motion and the temperature deviation. The Lorenz 
equations provide a useful physical model of the dynamics assum-
ing the actual fluid motion has only one spatial mode in the x
direction and the temperature difference between top and bottom 
boundaries is not too large. Therefore, the Lorenz model has in-
herent limitations, and it is instructive to study diversified forms 
of it that could have physical implications. A natural question to 
ask is how the Lorenz system is modified when the amplitude in-
formation in the nonlinearity is removed by using a signum func-
tion, which leads to a piecewise linearization of the Lorenz model, 
which to our knowledge has not previously been done.
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Furthermore, the piecewise linearity can be simply imple-
mented electronically using diodes and operational amplifiers 
[11–16], whereas the usual quadratic nonlinearities require mul-
tipliers [17–19]. For some dynamical systems, this substitution 
preserves the chaotic dynamics. Another reason for doing this is 
that the resulting equations can be solved exactly in the linear re-
gions with boundary conditions where the discontinuities occur. 
The method is analogous to Lozi’s piecewise linearization of the 
Hénon map, where the quadratic term is replaced by an absolute-
value term [20], or to the piecewise linearization of a jerk system 
by Linz and Sprott [21]. In addition, the piecewise linearization 
may allow a single amplitude control parameter [17,22,23], which 
is helpful for circuit implementation in radar or communication 
engineering to reduce the circuit complexity and avoid saturation 
of the amplifiers, which can be a problem because of the broad-
band frequency spectrum of a chaotic signal.

In this paper, linearization of the Lorenz system is achieved 
by ignoring the amplitude of one variable in the quadratic terms. 
What we are doing is not the same as the common linearization of 
a nonlinear system about an equilibrium point, but rather a piece-
wise linearization of a nonlinear system that retains the chaotic 
dynamics. In Section 2, one of the two quadratic terms is trans-
formed into a non-smooth term with a signum operation, and a 
partially linearized version of the Lorenz system is derived. In Sec-
tion 3, both of the quadratic terms are linearized by the signum 
operation, and a corresponding completely linearized version of 
the Lorenz system is obtained. Both cases have a total amplitude 
control parameter. In Section 4, a piecewise linear diffusionless 
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Fig. 1. Strange attractor from system (2) with σ = 10, r = 28, β = 8/3 for initial conditions (0, 1, 0) with LEs = (0.4056, 0, −14.0723) (a) x–y plane, (b) x–z plane, (c) y–z
plane.
Lorenz system is obtained by further simplification, which has the 
same structure as the quadratic case but with coexisting strange 
attractors for some values of the parameters. In Section 5, the bi-
furcation and multistability of the piecewise linear diffusionless 
Lorenz system is analyzed. The circuit implementation is presented 
in Section 6. Conclusions and discussions are given in the last sec-
tion.

2. Partially linearized Lorenz system

The familiar Lorenz system is given by

ẋ = σ(y − x)

ẏ = −xz + rx − y

ż = xy − βz (1)

with chaotic solutions for σ = 10, r = 28, β = 8/3. The system 
has rotational symmetry with respect to the z-axis as evidenced 
by its invariance under the coordinate transformation (x, y, z) →
(−x, −y, z), and it has a partial amplitude control parameter hid-
den in the coefficient of the xy term, which controls the amplitude 
of x and y, but not z. To obtain total amplitude control, it is neces-
sary to introduce an equal control factor into the xz term [22]. To 
obtain total amplitude control with a single parameter, it is neces-
sary to make all the terms have the same order except for the one 
whose coefficient provides the amplitude control [17,23]. Since a 
signum operation will retain the polarity information while remov-
ing the amplitude information, applying it to one of the factors in 
a quadratic term reduces the order of that term from 2 to 1. Then 
the coefficient of the remaining quadratic term gives total ampli-
tude control because it is the only term with an order different 
from unity. This idea leads to the partial linearization

ẋ = σ(y − x)

ẏ = −xz + rx − y

ż = x sgn(y) − βz (2)

With (σ , r, β) the same as for the quadratic system, system (2)
gives the strange attractor shown in Fig. 1, which resembles the fa-
miliar Lorenz attractor, but with considerably larger x and y values. 
The Lyapunov exponents (LEs) given in the figure caption imply 
a Kaplan–Yorke dimension of 2.0288 and provide the main evi-
dence that the system is chaotic. Note that the variable x appears 
in four of the seven terms, and thus it is especially important in 
determining the dynamic behavior. Although there are two ways 
to linearize xy, namely x sgn(y) and y sgn(x), it is reasonable that 
x sgn(y) works better for retaining the chaos. It is tempting to lin-
earize the xz term in system (2) by replacing it with x sgn(z), but 
that destroys the coupling among the variables since z is always 
positive, and consequently, the first two dimensions will be inde-
pendent of the third dimension.
Systems (1) and (2) both have three equilibrium points. The 
equilibrium points of system (1) are (x, y, z) = (0, 0, 0) and 
(±8.4853, ±8.4853, 27), whose eigenvalues are (11.8277, −2.6667,

−22.8277) and (−13.8546, 0.0940 ± 10.1945i), respectively. The 
origin equilibrium point is a saddle-node, and the symmetric 
pair of equilibrium points are saddle-foci with identical eigen-
values. The equilibrium points of system (2) are (0, 0, 0) and 
(±72, ±72, 27), whose eigenvalues are (11.8277, −2.6667,

−22.8277) and (−14.9316, 0.6324 ± 6.9152i), indicating the same 
stability as for system (1). For both systems, the rate of volume ex-
pansion is −(σ +β +1), and thus the systems are dissipative when 
the parameters are positive with solutions as time goes to infin-
ity that contract onto an attractor of zero measure in their state 
space. However, the bifurcations for the parameters σ or β in the 
original system (1) and the revised system (2) are totally differ-
ent. The revised system (2) shows relatively robust chaos over a 
range of both parameters. Specifically, there is a wide range of the 
parameter σ for system (2) to give a symmetric pair of coexist-
ing strange attractors, while the original system (1) shows global 
attraction and bifurcations with different dynamics.

There is a well-known difficulty when calculating Lyapunov ex-
ponents for systems that involve discontinuous functions such as 
the signum. This problem arises because of the abrupt change 
in the direction of the flow vector at the discontinuity and the 
difficulty of maintaining the correct orientation of the Lyapunov 
vectors. Although there is a proper procedure for correcting this 
problem [24], we use here a simpler method in which sgn(y) is 
replaced by a smooth approximation given by tanh(N y) with N
sufficiently large that the calculated Lyapunov exponents are in-
dependent of its value [25]. For the case of system (2), a value 
of N = 10 is sufficient to give three-digit accuracy because of the 
large values of y. It is important with this method to use an inte-
grator with an adaptive time step and error control to resolve the 
rapid change in the vicinity of y = 0 and to repeat the calculation 
with slightly perturbed initial conditions to verify the number of 
significant digits. Out of an abundance of caution, we quote only 
two significant digits in the largest Lyapunov exponents and in-
clude the remaining questionable digits as subscripts.

The linearized system (2) has two amplitude parameters, unlike 
system (1), which has only one. A new introduced coefficient h in 
the remaining quadratic term is a total amplitude controller,

ẋ = σ(y − x)

ẏ = −hxz + rx − y

ż = x sgn(y) − βz (3)

To show this, let x = u/h, y = v/h, z = w/h to obtain new equa-
tions in the variables u, v , w that are identical to system (2). 
Therefore, the coefficient h controls the amplitude of all variables 
according to 1/h. Otherwise, simply note that xz is the only term 
not of first order.

As with the quadratic system (1), a coefficient m in the signum 
term will realize partial amplitude control,
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Fig. 2. Strange attractor from system (6) with a = 0.1, b = 0.2, c = 2.8 for initial conditions (0, 1, 0) with LEs = (0.0215, 0, −1.3215) (a) x–y plane, (b) x–z plane, (c) y–z
plane.
ẋ = σ(y − x)

ẏ = −xz + rx − y

ż = mx sgn(y) − βz (4)

To show this, let x = u/m, y = v/m, z = w to obtain new equa-
tions in the variables u, v , w that are also identical to system (2). 
Therefore, the coefficient m controls the amplitude of the variables 
x and y according to 1/m, while the amplitude of z is unchanged. 
Note that this control has a different scaling from the quadratic 
case in system (1) where the amplitude of x and y varies as 1/

√
m

rather than 1/m. Finally, note that m and h must be positive to re-
tain the form of the respective equations. The two different kinds 
of amplitude parameters are independent. If they both exist in the 
second and third dimension of the system, the amplitude of the 
variables x and y will change according to 1/mh, while the ampli-
tude of z will change according to 1/h. To show this, let x = u/mh, 
y = v/mh, z = w/h to obtain new equations in the variables u, v , 
w that are identical to system (2).

3. Completely linearized Lorenz system

As mentioned above, we selected the piecewise-linearity of 
x sgn(y) in the third dimension for retaining the chaos since the 
variable x appears repeatedly in equations determining the dy-
namic behavior. Furthermore, in order to obtain a completely lin-
earized Lorenz system it is also necessary to linearize the xz term 
in equation (2) by replacing it with z sgn(x) for positive z. How-
ever, that would make all the terms of first order, and there would 
be nothing to determine the size of the attractor. Thus to retain 
the chaos, it is necessary either to increase the order by imposing 
a quadratic nonlinearity or reduce the order by applying a further 
signum operation to one of the linear terms.

To scale the variables to more convenient values and move the 
parameters to different terms, we make a linear transformation of 
system (1) by taking x → σ x, y → σ y, z → σ z, t → t/σ to obtain

ẋ = y − x

ẏ = −xz + cx − ay

ż = xy − bz (5)

where the new parameters are a = 1/σ = 0.1, b = β/σ = 4/15, 
and c = r/σ = 2.8. The new system (5) is the same as the original 
Lorenz system (1) except for the amplitude and frequency, and so 
the physics is preserved. Linearization of system (5) will not only 
provide amplitude control, but will provide an explanation of the 
sensitive dependence on initial conditions in the Lorenz model.

It is possible to linearize both quadratic terms (making them 
first order) and remove the amplitude dependence in the cx term 
(making it zeroth order) by replacing it with c sgn(x) to obtain a 
completely linearized Lorenz system given by
ẋ = y − x

ẏ = −z sgn(x) + c sgn(x) − ay

ż = x sgn(y) − bz (6)

There is no direct chaotic solution in the completely linearized 
Lorenz system if it comes from system (1) because the common 
coefficient σ in the first dimension implies different time scales 
in the evolution of the variables. The system (5) gives birth to 
chaotic solutions with small amplitude and low frequency. There-
fore the loss of amplitude information in the variables x and y
will not greatly influence the dynamics. Although system (6) is no 
longer chaotic for the given parameters, a small change of b from 
b = 4/15 to b = 3/15 = 0.2 restores the chaos and gives trajecto-
ries as shown in Fig. 2 that resemble the familiar Lorenz attractor 
except for discontinuities in the direction of the flow. The cor-
responding Lyapunov exponents (LEs) are calculated by replacing 
sgn(x) and sgn(y) by tanh(100x) and tanh(100y), respectively, giv-
ing the values in the caption and a corresponding Kaplan–Yorke 
dimension of 2.0163.

Since c sgn(x) in system (6) is now the only term that is not 
first order, the parameter c is an amplitude parameter, and it 
gives total amplitude control. Even though the linearization does 
not change the rotational symmetry, partial amplitude control for 
variables x and y is now destroyed since the amplitude modifi-
cation of the variable x is shielded by the signum function, and 
thus the second dimension cannot give a common coefficient for 
the reduction by a fraction. However, the coefficient of the term 
x sgn(y) in the third dimension can change the amplitude of the 
variables x and y and give robust chaotic solutions over a large 
range, while the amplitude of the variable z remains nearly con-
stant.

The piecewise linearization of the Lorenz system (6) retains the 
equilibrium at the origin and also has the other two equilibrium 
points, which occur at ( bc

1+ab , bc
1+ab , c

1+ab ) and ( −bc
1+ab , −bc

1+ab , c
1+ab ), 

like the original system (1) except that here the position of 
both symmetric equilibrium points is proportional to the pa-
rameter c, as expected, since c is an amplitude parameter. The 
equilibrium at the origin has eigenvalues (−1, −a, −b), show-
ing it is a stable focus for positive a and b. When a = 0.1, 
b = 0.2, and c = 2.8, the other two equilibrium points are at 
(x, y, z) = (±0.5490, ±0.5490, 2.7451) with eigenvalues given by 
(−1.5276, 0.1138 ±0.8092i), indicating that the equilibrium points 
are saddle-foci.

4. Linearized diffusionless Lorenz system

It happens that system (6) is chaotic even when a = 0, by anal-
ogy with a similar result for the ordinary Lorenz system [26]. Fur-
thermore, the system remains chaotic if the amplitude information 
in the variable z in bz is removed by replacing bz with b sgn(z) to 
obtain
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Fig. 3. Strange attractor from system (8) with b = 1 for initial conditions (0,1,0) with LEs = (0.1223,0,−1.1223) (a) x–y plane, (b) x–z plane, (c) y–z plane.
ẋ = y − x

ẏ = −z sgn(x) + c sgn(x)

ż = x sgn(y) − b sgn(z) (7)

System (7) retains the three equilibrium points at (0, 0, 0), (b, b, c) 
and (−b, −b, c).

Since z is always positive for the attractor of system (7), the 
term b sgn(z) is just b. In addition, the term c sgn(x) is symmetric 
about the origin and hence averages to zero, leading to the further 
reduced system given by

ẋ = y − x

ẏ = −z sgn(x)

ż = x sgn(y) − b (8)

System (8) is exactly a piecewise linearized version of the quadratic 
diffusionless Lorenz system [18,27],

ẋ = y − x

ẏ = −zx

ż = xy − R (9)

System (8) has two saddle-focus equilibria at (b, b, 0) and (−b,

−b, 0) with eigenvalues (−1.4656, 0.2328 ± 0.7926i), and thus it 
satisfies the Shilnikov condition for the existence of chaos [28].

Note that the parameter b in system (8) is the only term not of 
first order, and hence it is an amplitude parameter and can be set 
to unity without loss of generality, unlike the case of system (9)
where R is a bifurcation parameter. The strange attractor for sys-
tem (8) shown in Fig. 3 resembles the diffusionless Lorenz system 
but with discontinuities in the direction of the flow. The Lyapunov 
exponents were calculated by replacing the signum functions with 
hyperbolic tangents using N = 100 and imply a Kaplan–Yorke di-
mension of 2.1090.

The coefficient of x sgn(y) cannot give partial amplitude con-
trol unless the amplitude information of variable x in the second 
dimension is restored by replacing z sgn(x) with zx. The strange 
attractor in system (8) attracts nearly all initial conditions except 
those along the z-axis that attract to z = −∞. Unlike system (9)
where the parameter R can be used to observe the merging of 
a symmetric pair of strange attractors [29], the parameter b in 
system (8) cannot be used in that way since it only controls the 
amplitude of the variables.

5. Bifurcation analysis

Since system (8) has five terms, four of which can be scaled 
to ±1 by a linear rescaling of the variables x, y, z, and t , it 
should have one bifurcation parameter, just like system (9). In fact, 
a linear transformation of system (9) with x → √

Rx, y → √
R y, 

z → Rz, t → t moves the parameter R from the ż equation to the 
ẏ equation whose linearized form is then
Fig. 4. Lyapunov exponents (LEs), Kaplan–Yorke dimension (Dky) and maximum val-
ues of x (Xm) as a function of the parameter R for system (10). (For interpretation 
of the colors in this figure, the reader is referred to the web version of this article.)

ẋ = y − x

ẏ = −Rz sgn(x)

ż = x sgn(y) − 1 (10)

The amplitude parameter b can be inserted back into system (10)
if desired, but there is no loss of generality by taking b = 1. Now 
the bifurcation parameter R can be used to illustrate multistability 
and attractor merging as shown in Fig. 4.

In this figure, the plot labeled Xm shows the local maxima of x
in red and the negative of the local minima of x in green. Since 
the equations are symmetric under the transformation (x, y) →
(−x, −y), any attractor must either share that symmetry, or there 
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Fig. 5. Projection onto the x–y plane for a symmetric pair of homoclinic orbits for 
system (10) with R = 1.2353. The equilibrium points are shown as blue dots.

must be a symmetric pair of them. In the former case, the two 
colors are intermingled, and in the latter case, they are separated.

The two equilibrium points have eigenvalues that satisfy λ3 +
λ2 + R = 0 and hence are unstable for all values of R . For R = 7, 
there is a symmetric pair of limit cycles that undergo period dou-
bling as R decreases, forming a pair of strange attractors that 
merge into a single symmetric attractor at approximately R = 5.81
that persists with periodic windows down to approximately R =
0.63. The behavior at small R is similar except there is a presum-
ably fractal succession of ever smaller pairs of limit cycles that 
period-double into a pair of strange attractors that merge into ever 
smaller symmetric strange attractors. Similar behavior has been 
observed in system (9) [27]. There is no evidence for hysteresis or 
the coexistence of attractors other than the symmetric pair shown 
in red and green in Fig. 4.

System (10) has a symmetric pair of homoclinic orbits for R =
1.2353 as shown in Fig. 5, despite the fact that the corresponding 
strange attractor is symmetric. The figure shows a projection of 
the orbits onto the x–y plane with the equilibrium points shown 
Fig. 7. Circuit structure with three integration channels for system (8).

as blue dots. No obvious bifurcations seem to occur at this value 
of R in Fig. 4.

6. Electrical circuit realization

The new switch element, shown in Fig. 6, can be adopted to 
realize the polarity reversal associated with the signum function, 
which is the main nonlinearity in the linearized Lorenz systems 
(6)–(8). Such a circuit was built based on a signal line and a con-
trol line with just diodes, resistors, and a few extra operational 
amplifiers [12]. In Fig. 6(a), signals z and −z pass through a sig-
nal line and can be blocked when a voltage source is applied from 
a control line. Whether the control line will apply this voltage de-
pends on the polarity of the signal x. If x is positive, signal z is 
blocked, and −z will pass through. If it is negative, then −z is 
blocked, and z passes through. If it is zero, both signals z and −z
sum to zero. Two independent signals z and −z are selected by 
the control line to pass, whereas each signal (z or −z) occupies 
two separate signal lines according to its polarity. Another switch 
with a signal line and a control line realizes the function x sgn(y). 
All signal lines have their own independent voltage followers to 
provide impedance matching.

By combining this with the main circuit of three integration 
channels, as shown in Fig. 7, the dynamic behavior of system (8)
can be reproduced without any multipliers. The integration chan-
nels are designed by general analog computation methods, and the 
oscilloscope traces from the output of the integration channels are 
shown in Fig. 8. The circuit parameters are C1 = C2 = C3 = 1 nF, 
R1 = R2 = R5 = R8 = R9 = 100 k�, R3 = R4 = R6 = R7 = R10 =
Fig. 6. Switch elements to realize the signum function (a) z sgn(x), (b) −x sgn(y).
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Fig. 8. Experimental phase portraits of system (8) (a) x–y plane, (b) x–z plane, (c) y–z plane (1 V/div).
R11 = 10 k�, R16 = R17 = R22 = R23 = 200 k�, R12 = R13 = R14 =
R15 = R18 = R19 = R20 = R21 = 10 k�, and V cc = 1 V. The opera-
tional amplifiers are TL084 ICs powered by ±9 volts. Germanium 
diodes 1n60p were used to reduce the influence of the threshold 
voltage and crossover distortion. Other diodes such as the 1n4148 
will not give an attractor that is in such close agreement with nu-
merical results. Operational amplifiers U9 and U12 are required to 
provide a current sufficient to drive the corresponding resistors R5

and R8. The voltage of V cc or the resistor R9 can provide an easy 
amplitude control, which corresponds to changing the amplitude 
parameter b in system (8).

7. Discussion and conclusions

A partially linearized Lorenz system and a completely linearized 
Lorenz system were derived by using the signum function to ignore 
the amplitude of one of the variables, while retaining its sign. This 
transformation succeeds in retaining the dynamics in the nonlinear 
systems because the systems have the potential self-balance for 
the polarity and amplitude. The method of linearization is widely 
applicable to other systems including ones with higher order terms 
if the linearization does not destroy the capacity to self-balance 
with amplitude and if the resulting equations can be solved in the 
linear regions.

However, such a linearization changes the order of the origi-
nal nonlinearity and can thus change a bifurcation parameter into 
an amplitude parameter or vice versa. If there is only one term 
in the equations that is not of first order, the coefficient of that 
term becomes a useful amplitude controller which determines the 
size of all the variables and thus the scale of the attractor. The 
rotational symmetry of the Lorenz system is not destroyed in the 
linearization, but the amplitude extraction of the signum breaks 
the amplitude balance in the differential equations and destroys 
the partial amplitude control.

With further signum operations, a concise linearized Lorenz 
system is obtained, which is exactly a piecewise linear variant of 
the diffusionless Lorenz system. A unique circuit switch to execute 
variable selection is designed based on a signal line and control 
line. The phase portraits from the circuit agree well with those 
calculated numerically for the piecewise linear diffusionless Lorenz 
system.
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