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A symmetric chaotic flow is time-reversible if the equations governing the flow are unchanged
under the transformation t → −t except for a change in sign of one or more of the state space
variables. The most obvious solution is symmetric and the same in both forward and reversed
time and thus cannot be dissipative. However, it is possible for the symmetry of the solution to
be broken, resulting in an attractor in forward time and a symmetric repellor in reversed time.
This paper describes the simplest three-dimensional examples of such systems with polynomial
nonlinearities and a strange (chaotic) attractor. Some of these systems have the unusual property
of allowing the strange attractor to coexist with a set of nested symmetric invariant tori.
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1. Introduction

At the microscopic level, the laws of physics are
time-reversible. To deal with such systems, Hamil-
tonian mechanics was developed long ago, and it
works well even when the solutions are chaotic as,
for example, in the three-body gravitational prob-
lem. However, Hamiltonian systems do not allow
the kind of strange attractors that are evident in
most natural systems that are driven out of equi-
librium by some source of energy that is dissi-
pated as heat and leads to an increase in entropy
according to the Second Law of Thermodynamics.
In the dynamical equations, the energy source usu-
ally takes the form of positive feedback, and the
dissipation is in some kind of frictional damping.
Chaotic systems generally have strange attractors
in the reversed-time direction if the parameters are
altered to reverse the sign of the damping and feed-
back terms, but the interest here is in relatively rare
examples that have strange attractors in both for-
ward and reversed time for the same parameters.

Thus it is interesting to consider symmetric
continuous-time dynamical systems that are time-
reversible and that also have strange attractors,
and in particular, to find the simplest examples
of such systems, which are common in physical
problems, but are rarely studied mathematically.
In that spirit, the present paper considers three-
dimensional autonomous flows with quadratic non-
linearities, the most general form of which is

ẋ = a1 + a2x + a3y + a4z + a5x
2 + a6y

2

+ a7z
2 + a8xy + a9xz + a10yz

ẏ = a11 + a12x + a13y + a14z + a15x
2

+ a16y
2 + a17z

2 + a18xy + a19xz + a20yz

ż = a21 + a22x + a23y + a24z + a25x
2

+ a26y
2 + a27z

2 + a28xy + a29xz + a30yz.

(1)

The simplest type of time-reversal invariance
would be (x, y, z, t) → (x, y, z,−t), which reverses
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the sign of all 30 of the coefficients (a1 through a30)
in Eq. (1) and hence leads to the trivial case ẋ =
ẏ = ż = 0. Of more interest are cases in which time
is reversed as well as the sign of three, two, or one
of the state space variables. These three cases will
be considered in turn in the following sections.

2. Inversion Invariant Systems

For systems that are invariant under the trans-
formation (x, y, z, t) → (−x,−y,−z,−t), only the
constant and quadratic terms in Eq. (1) survive,
resulting in a system of the form

ẋ = a1 + a2x
2 + a3y

2 + a4z
2

+ a5xy + a6xz + a7yz

ẏ = a8 + a9x
2 + a10y

2 + a11z
2

+ a12xy + a13xz + a14yz

ż = a15 + a16x
2 + a17y

2 + a18z
2

+ a19xy + a20xz + a21yz.

(2)

Systems of this type were recently explored
[Li & Sprott, 2014], and the simplest chaotic exam-
ple is given by

ẋ = 1 + yz

ẏ = −xz

ż = y2 + ayz

(3)

which for a = 2 has a symmetric attractor/repellor
pair as shown in Fig. 1. The dissipation, or equiv-
alently, the rate of state space contraction, is given
by the negative trace of the Jacobian matrix time-
averaged along the orbit, −〈ay〉 = 2.2350. The
Lyapunov exponents are (0.1520, 0,−2.3870), and
the Kaplan–Yorke dimension is 2.0637. When time
is reversed, the attractor becomes a repellor, and
the repellor becomes an attractor with identical
characteristics, which is a general feature of time-
reversible systems with a strange attractor [Moran
et al., 1987]. Of course, the Kaplan–Yorke dimen-
sion is not strictly defined for a repellor, but its
dimension is identical to that of the corresponding
attractor as a consequence of the symmetry. Such
examples are well known in iterated maps [Hoover
et al., 1996] but have been relatively little studied
in ordinary differential equations.

In principle, the system in Eq. (3) could have
conservative solutions, as one might expect for a

Fig. 1. Attractor (red) and repellor (green) from Eq. (3)
with a = 2 and initial conditions (0, 0, 2). The two sad-
dle points (eigenvalues: −2.979261, 0.075417 ± 0.971434i and
2.979261, −0.075417 ± 0.971434i) are shown as blue dots.

time-reversible system if the solution were symmet-
ric about the y = 0 axis so that the dissipation
−〈ay〉 would be exactly zero. Such solutions appar-
ently do not occur for any value of the parameter a
and initial conditions.

Furthermore, there is a variant of Eq. (3) given
by

ẋ = 1 − y2

ẏ = −xz

ż = y2 + ayz

(4)

in which the yz term in the ẋ equation is replaced
with −y2, and it also has an attractor/repellor
pair for a = 2.5 as shown in Fig. 2 but no
conservative solutions. The dissipation is given
by −〈ay〉 = 1.9012, and the basin of attraction
is relatively small. The Lyapunov exponents are
(0.0739, 0,−1.9751), and the Kaplan–Yorke dimen-
sion is 2.0374.

These appear to be the only systems in the
form of Eq. (2) with five or fewer terms and a
strange attractor. Three-dimensional systems with
five terms are desirable because they are completely
governed by a single parameter since four of the
coefficients can usually be set to ±1 by a linear
rescaling of x, y, z, and t. Many similar examples
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Fig. 2. Attractor (red) and repellor (green) from Eq. (4)
with a = 2.5 and initial conditions (0, 0, 0.24). The two
equilibrium points (eigenvalues: −2.5, ±0.894427i and 2.5,
±0.894427i) are shown as blue dots.

of systems with six terms exist but will not be fur-
ther explored here in the spirit of identifying the
simplest such systems.

3. Rotation Invariant Systems

Systems that are invariant under the transforma-
tion (x, y, z, t) → (x,−y,−z,−t) have a time-
reversed dynamic that is symmetric with the one for
forward time but rotated by 180◦, here taken about
the x-axis without loss of generality. The most gen-
eral such three-dimensional quadratic form is

ẋ = a3y + a4z + a8xy + a9xz

ẏ = a11 + a12x + a15x
2 + a16y

2

+ a17z
2 + a20yz

ż = a21 + a22x + a25x
2 + a26y

2

+ a27z
2 + a30yz.

(5)

An example of a system of this form has
recently been described [Sprott, 2014] and is given
by

ẋ = y + 2xy + xz

ẏ = 1 − 2x2 + yz

ż = x − x2 − y2.

(6)

All orbits of this system are bounded, and it has no
equilibrium points. It also has the unusual property
of having a chaotic attractor/repellor pair and a set
of nested symmetric invariant tori for the same val-
ues of the parameters. Initial conditions of (2, 0, 0)
give a strange attractor, and (1, 0, 0) give an invari-
ant torus. The rate of state space contraction, is
given by −2〈y + z〉, which has a value of 0.1035 for
the strange attractor and 0±10−10 for the torus. For
the strange attractor, the Lyapunov exponents are
(0.0540, 0,−0.1575), and the Kaplan–Yorke dimen-
sion is 2.3429. The goal of this section is to iden-
tify and describe even simpler examples of such
behavior.

The simplest example of a system in the form
of Eq. (5) with a strange attractor was long ago
identified [Sprott, 1994] (Case D) and is given (with
a transformation of variables) by

ẋ = y + z

ẏ = −x

ż = ax2 + yz.

(7)

For a = 3, it has a strange attractor/repellor pair
as shown in Fig. 3 but apparently no conserva-
tive solutions for any value of a. The Lyapunov
exponents are (0.1027, 0,−1.3198), and the Kaplan–
Yorke dimension is 2.0778. The basin of attraction

Fig. 3. Attractor (red) and repellor (green) from Eq. (7)
with a = 3 and initial conditions (0,−0.23, 1). The center
(eigenvalues: 0,±i) at the origin is shown as a blue dot.

1550078-3



May 14, 2015 11:18 WSPC/S0218-1274 1550078

J. C. Sprott

is relatively large, occupying about a third of the
volume of the state space.

A simple system in the form of Eq. (5) with
a conservative chaotic sea and coexisting invariant
tori, but without a strange attractor, was also iden-
tified in the same paper (Case A) as given by

ẋ = y

ẏ = −x + yz

ż = 1 − y2.

(8)

It was later pointed out [Hoover, 1995] that this
system is a special case of the Nosé–Hoover ther-
mostated oscillator [Nosé, 1991] with a spatially
constant temperature. This system is also unusual
since it has no equilibrium points.

A generalization of Eq. (8) with a nonuni-
form temperature gradient has recently been stud-
ied [Sprott et al., 2014] as given by

ẋ = y

ẏ = −x − yz

ż = y2 − 1 − ε tanh(x).

(9)

For ε = 0.42, it has an attracting limit cycle coex-
isting with a pair of nested invariant tori, and for
ε = 0.38 it has a multifractal strange attractor coex-
isting with a complicated set of invariant tori. For
the strange attractor, the Lyapunov exponents are
(0.0019, 0,−0.0020), and the Kaplan–Yorke dimen-
sion is 2.945. The dissipation for the strange attrac-
tor is very small, approximately 1.2 × 10−4, but
decidedly nonzero.

A simplification of Eq. (9) with a somewhat
nonphysical constant temperature gradient is given
by

ẋ = y

ẏ = −x − yz

ż = y2 − a − x.

(10)

For a = 1.2, this system has a strange attrac-
tor/repellor pair that coexists with a set of nested
invariant tori, one of which is shown in Fig. 4. The
strange attractor is produced using initial condi-
tions (0, 0.2, 1), and the torus is produced using ini-
tial conditions (−0.5, 0.75, 0). Note that the strange
attractor links the torus three times. The symmetric
repellor is not shown, but in this plane it is identical
to the attractor but upside down and intertwined
with it. For the strange attractor, the Lyapunov

Fig. 4. Strange attractor (red) coexisting with an invariant
torus (green) from Eq. (10) with a = 1.2. The symmetric
repellor is not shown. This system has no equilibrium points,
and thus the strange attractor is hidden.

exponents are (0.0472, 0,−0.8631), and the Kaplan–
Yorke dimension is 2.0547. The basin of attraction
is relatively large, occupying about half the volume
of the state space. As for Eq. (6), this system has no
equilibrium points, and thus the strange attractor
is hidden in the sense that it cannot be found by
choosing an initial condition on the unstable man-
ifold in the neighborhood of an equilibrium point
[Leonov et al., 2011; Leonov & Kuznetsov, 2013].

Since the intermingling of the strange attrac-
tor, its symmetric repellor, and the set of nested
tori is hard to visualize in Fig. 4, a cross-section
of the state space for z = 0 is shown in Fig. 5 for
various initial values of x with y = z = 0. This
plot is not called a “Poincaré section” because it
shows orbits crossing the z = 0 plane going in both
directions. The nested tori (shown in black) are
clearly seen. The repellor (shown in green) appears
to intersect the strange attractor (shown in red)
in some regions of space, but the dissipative and
conservative regions are clearly separated and inter-
linked. The light blue background shows initial con-
ditions that give conservative tori, and the yellow
background indicates the basin of attraction of the
strange attractor.

A system with one less term than Eq. (10) but
with three rather than two nonlinearities is given

1550078-4



May 14, 2015 11:18 WSPC/S0218-1274 1550078

Symmetric Time-Reversible Flows with a Strange Attractor

Fig. 5. Cross-section in the plane z = 0 of the strange
attractor (red), its symmetric repellor (green), and the coex-
isting invariant tori (black) from Eq. (10) with a = 1.2. The
light blue background shows initial conditions that give con-
servative tori, and the yellow background indicates the basin
of attraction of the strange attractor.

by

ẋ = z, ẏ = x, ż = ax2 − y2 − yz (11)

which is chaotic for a = 1.3 with a strange attrac-
tor/repellor pair, but without coexisting invariant

Fig. 6. Attractor (red) and repellor (green) from Eq. (11)
with a = 1.3 and initial conditions (−0.6, 0, 0.2). The equilib-
rium (eigenvalues: 0, 0, 0) at the origin is shown as a blue dot.

tori. The system can be written more compactly
in jerk form as

...
y = aẏ2 − y2 − yÿ. The basin

of attraction occupies about a third of the vol-
ume of the state space, and an initial condition of
(−0.6, 0, 0.2) is in the basin and close to the attrac-
tor. The equation is relatively stiff, and the attrac-
tor is unusual in the sense that the orbit spends a
long time in the vicinity of the origin with occa-
sional excursions far away as shown in Fig. 6 along
with the symmetric repellor. The only equilibrium
is at the origin, and it has eigenvalues that satisfy
λ3 = 0. The damping is very large but very brief
and is given by 〈y〉 = 14.3188. The Lyapunov expo-
nents are (0.0359, 0,−14.3547), and the Kaplan–
Yorke dimension is 2.0025.

4. Reflection Invariant Systems

Systems that are invariant under the transforma-
tion (x, y, z, t) → (x, y,−z,−t) have a time-reversed
dynamic that is symmetric with the one for forward
time but reflected in a plane here taken as z = 0
without loss of generality. The most general such
three-dimensional quadratic form is

ẋ = (a4 + a9x + a10y)z

ẏ = (a14 + a19x + a20y)z

ż = a21 + a22x + a23y + a25x
2

+ a26y
2 + a27z

2 + a28xy.

(12)

However, there do not appear to be any chaotic
solutions for Eq. (12).

On the other hand, when the 14 cubic terms
that satisfy the symmetry conditions are added,
chaotic solutions occur. One simple case is given
by

ẋ = −yz

ẏ = (ax + y + z2)z

ż = x − x3.

(13)

For a = 2, it has a strange attractor/repellor pair
symmetric about the z = 0 plane as shown in Fig. 7.
The Lyapunov exponents are (0.0892, 0,−1.2270),
and the Kaplan–Yorke dimension is 2.0727. The
basin of attraction is relatively small.

This system is unusual because it has two
equilibrium points at (−1, 0,±√

2) with eigenvalues
(−2.090161, 0.337974±2.301872i), respectively, and
three infinite lines of equilibrium points at (0, 0, z)
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Fig. 7. Attractor (red) and repellor (green) from Eq. (13)
with a = 2 and initial conditions (0, 0,−0.94). The lines of
equilibrium points are shown in blue.

Fig. 8. Cross-section in the plane x = −1 of the strange
attractor (red) and its symmetric repellor (green) from
Eq. (13) with a = 2. The light blue background shows initial
conditions that give conservative solutions, the yellow back-
ground indicates the basin of attraction of the strange attrac-
tor, and the white background corresponds to unbounded
orbits. The two point equilibria are shown as blue dots, and
the line equilibrium that lies in the plane is shown as a hori-
zontal blue line.

and (±1, y, 0). The equilibrium points at (±1, y, 0)
have eigenvalues (0,±√

2y), and the equilibrium
at (0, 0, z) has eigenvalues that satisfy λ3 − zλ2 +
az2λ − 3z3 = 0, whose solution is a spiral saddle
for all z �= 0.

This system also has a range of initial condi-
tions for which the solutions are symmetric and
conservative, a cross-section of which in the plane
z = −1 is shown in Fig. 8. Note that the conser-
vative region is symmetric about z = 0 but the
basin of attraction of the strange attractor is not
symmetric. However, the solutions in the conserva-
tive region are not nested tori, but they are a dense
sea of symmetric invariant periodic orbits, a few of
which are shown in Fig. 9 along with the strange
attractor. The periodic orbits have Lyapunov expo-
nents (0, 0, 0). The evidence that they are periodic
as opposed to quasiperiodic is that an orbit with an
initial condition such as (−1,−2, 1) returns repeat-
edly to that value within an uncertainty of 1×10−4

for at least ten million cycles, which also provides
confidence that the fourth-order Runge–Kutta inte-
grator with adaptive step size is sufficiently accu-
rate and does not introduce significant numerical
damping.

Fig. 9. A perspective view of the strange attractor (red)
and a few selected conservative periodic orbits (green) for
Eq. (13) with a = 2. The point equilibrium at (−1, 0,−√

2)
with eigenvalues (−2.090161, 0.337974 ± 2.301872i) is shown
by a blue dot.
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5. Conclusion

Systems with all three types of involutional sym-
metries allow solutions that are dissipative and
time-reversible. The resulting strange attractors are
asymmetric but are accompanied by a twin strange
repellor. Some of the attractors are hidden in the
sense that their basins of attraction do not inter-
sect small neighborhoods of any equilibrium points.
Some of the systems have regions in the space of ini-
tial conditions where symmetric conservative orbits
coexist with the strange attractor. These orbits are
typically quasiperiodic and lie on a set of nested
tori, but they can also form a dense periodic sea.
This work has shown what may be the simplest
examples of systems with these unusual and coun-
terintuitive properties.
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