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Abstract. Chaotic dynamical systems that are symmetric provide the
possibility of multistability as well as an independent amplitude control
parameter.The Rössler system is used as a candidate for demonstrat-
ing the symmetry construction since it is an asymmetric system with
a single-scroll attractor. Through the design of symmetric Rössler sys-
tems, a symmetric pair of coexisting strange attractors are produced,
along with the desired partial or total amplitude control.

1 Introduction

Multistability poses a threat for engineering systems because the system may unpre-
dictably switch into an undesirable state. Even simple chaotic flows can have such
multistable states [1–7]. Systems with a symmetry are especially vulnerable to mul-
tistability since any asymmetric attractor is guaranteed to have a twin attractor
symmetric with it. However, multistability may have benefits such as allowing one to
simulate and study phenomena in the real world where it also occurs.
Amplitude control provides one method for detecting multistability since different

initial conditions may lie in different basins of attraction [8]. Furthermore, amplitude
control is a key issue for chaos applications in communications and radar engineering
because a proper amplifier is difficult to design for the broad-band frequency spectrum
[9–11]. Most components in a chaotic circuit affect both the amplitude of the signals
and their character, and thus they affect both the amplitude and the bifurcations.
Sometimes there are pure amplitude control parameters in chaotic systems, which
are physically realized by varying one of the existing resistors in a circuit rather
than using additional variable-gain amplifiers. Examples include systems of ordinary
differential equations in which all the terms except for one are of the same degree
[12–14] or where the system has an involutional symmetry [13,14].
Multistability and amplitude control sometimes become entangled in dynamic sys-

tems with involutional symmetry [14]. We can find the phenomenon of multistability
accompanied with possible amplitude control in real world directly; however, from
the construction of symmetric systems, we can clearly get a good observation of the
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multistability generated from the symmetrization which also gives various kinds of
amplitude control. Furthermore the originally symmetric systems may be globally
attracting (all initial conditions approach it) [17], which hides part of their general
characteristics. In this paper, construction of symmetric chaotic flows based on the
Rössler system are presented as prototypical examples of multistability and amplitude
control. In Sect. 2, a rotationally invariant system with a polynomial nonlinearity is
designed in which an additional equilibrium point is introduced for multistability. In
Sect. 3, an inversion invariant system is obtained by introducing linear feedback and
removing some of the polarity information. Independent amplitude parameters are ob-
tained for both cases, allowing partial and total amplitude control. Coexisting strange
attractors are observed in the respective basins of attraction. Some conclusions are
given in the last section.

2 Multistability in symmetric systems with partial amplitude control

According to the definition of partial amplitude control [13], one can find independent
amplitude control parameters in some symmetric flows [14]. However, even in systems
without any symmetry, one can often simultaneously obtain multistability and an
independent amplitude control parameter. For example, consider the Rössler system
[15], which is described by

ẋ = −y − z
ẏ = x+ ay
ż = b+ z(x− c).

(1)

When a = b = 0.2, c = 5.7, the system is chaotic as shown in Fig. 1 with Lya-
punov exponents (LEs) of (0.0714, 0,−5.3943) and a Kaplan-Yorke dimension of
DKY = 2.0132. System (1) has two equilibrium points, (0.0070,−0.0351, 0.0351)
and (5.6930,−28.4649, 28.4649) with corresponding eigenvalues (−5.6870, 0.0970 ±
0.9952i) and (0.1930,−0.000005± 5.4280i), which are spiral saddle points.
Unlike the symmetric Lorenz system [16], the Rössler system is asymmetric. It has

seven terms including one constant, one quadratic term, and correspondingly three
parameters. Thus it is a good candidate for making symmetric attractors, producing
multistability, and providing amplitude control parameters. To construct a symmetric
system, the structure can be altered by revising either the linear or nonlinear terms.
To construct a rotationally invariant system, consider the system that is invariant
under the transformation (x, y, z) → (−x,−y, z), corresponding to a 180◦ rotation
about the z-axis. Thus it is necessary to multiply some of the terms in system (1) by
appropriate choices of the variables, one example of which is given by

ẋ = −y − yz
ẏ = x+ ay
ż = b+ z(x2 − c).

(2)

System (2) also has seven terms and three independent parameters. The dynamic
regions in the parameter space of (a, c) at b = 0.2 are shown in Fig. 2. In this
plot, initial conditions are chosen randomly from a Gaussian distribution centered
on the origin with unit variance for each pixel, so that the dotted regions represent
candidates for coexistence of different attractor types. When a = b = 0.2, c = 6.5,
system (2) is chaotic with double peaks as shown in Fig. 3. The corresponding Lya-
punov exponents are (0.1639, 0,−2.7607), and the Kaplan-Yorke dimension is DKY =
2.0594. The new system (2) now has three equilibrium points, (0, 0, 0.0308) and
(±2.5884,∓12.9422,−1) with eigenvalues (−6.5, 0.1±1.0103i) and (0.2, 0.1±8.1847i),
which are spiral saddles. The additional nonlinearities add another equilibrium point
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Fig. 1. Four views of the Rössler attractor for (a, b, c) = (0.2, 0.2, 5.7) with initial conditions
(−9, 0, 0) in Eq. (1). One of the two equilibrium points is shown as a red dot; the other is
off scale.

Fig. 2. Regions of various dynamical behaviors for system (2) as a function of the bifurcation
parameters a and c with b = 0.2. The chaotic and transiently chaotic regions (C) are shown
in red, the periodic regions (P) are shown in cyan, and the stable equilibrium regions (S)
are shown in dark blue.
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Fig. 3. Four views of the rotationally-symmetric Rössler attractor for (a, b, c) = (0.2, 0.2, 6.5)
with initial conditions (1, 0, 0) in Eq. (2). The equilibrium points are shown as red dots.

so that the system has a symmetric pair of equilibria, but the strange attractor is
symmetric.
Unlike system (1), this system has one independent partial amplitude control

parameter as evidenced by introducing a coefficient h in the cubic term,

ẋ = −y − yz
ẏ = x+ ay
ż = b+ z(hx2 − c).

(3)

To show this, let x = u/
√
h, y = v/

√
h, z = w to obtain new equations in the variables

u, v, w that are identical to Eq. (2). Therefore, the coefficient h controls the amplitude

of the variables x and y according to 1/
√
h, while the amplitude of z is unchanged.

In addition to the single symmetric attractor, system (2) can have a symmetric
pair of strange attractors. When a = b = 0.2, c = 4.6, system (2) has coexisting
interlinked strange attractors with single peaks as shown in Fig. 4 with basins of
attraction as shown in Fig. 5. The basins of attraction for the two chaotic attractors
are indicated by light blue and red, respectively, while the white regions of the plot
correspond to initial conditions that are unbounded and approach infinity. Generally,
we select a cross section going through equilibrium points for observing the dynamics
near the critical points, although the section z = 2 was chosen here to go through the
middle of the attractor. The black lines are cross-sections of the corresponding strange
attractors that nearly touch their basin boundaries. The basins have the expected
symmetry about the z-axis and a fractal structure. The corresponding Lyapunov
exponents for the two coexisting strange attractors are (0.0724, 0,−1.2974), and the
Kaplan-Yorke dimension is DKY = 2.0558.
With an increase in the parameter c, the two coexisting strange attractors merge

into one like the attractor shown in Fig. 3. After merging, there is a periodic window
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Fig. 4. Four views of the rotationally-symmetric pair of Rössler attractors for (a, b, c) =
(0.2, 0.2, 4.6) with initial conditions (±1, 0, 0) in Eq. (2). The green and red attractors cor-
respond to two symmetric initial conditions, and the equilibrium points are shown as red
dots.

Fig. 5. Cross section for z = 2 of the basins of attraction for the symmetric pair of strange
attractors (light blue and red) of system (2) at a = b = 0.2, c = 4.6.
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where a symmetric limit cycle is born around c = 5.4 that then undergoes a pitchfork
bifurcation around c = 5.6, forming a symmetric pair of limit cycles that period-
double into a symmetric pair of strange attractors in the vicinity of c = 5.8 that then
merge into a single symmetric strange attractor around c = 5.9.
Note that even though the equations have rotational symmetry, it does not follow

that the solutions are multistable with a symmetric pair of coexisting attractors. On
the contrary, as examples, the piecewise rotationally-symmetric systems [17] have
a single global symmetry as does the Lorenz attractor [16]. Similarly, the symmetry
brings the possibility of an amplitude controller. However, we cannot claim that all the
symmetric systems have independent amplitude parameters because that symmetry
requires only a balance of polarity rather than necessarily a balance of amplitude, in
which case a signum operation can satisfy this condition even though the amplitude
information is removed.
For example, based on system (1), we design a reflection invariant system [14],

which is invariant under the transformation (x, y, z) → (x, y,−z), corresponding to
symmetry about the z = 0 plane. To balance the polarity, we apply a signum function,
which leads to the system

ẋ = −y − z2
ẏ = x+ ay
ż = bsgn(z) + z(x− c).

(4)

When a = b = 0.2, c = 2.5, system (4) has a coexisting symmetric pair of single-
scroll strange attractors as shown in Fig. 6 with smooth basins of attraction as shown
in Fig. 7. System (4) is different from the equivariant double cover with reflection
symmetry of the Rössler system proposed in [18]. The corresponding Lyapunov expo-
nents of the two coexisting attractors are (0.0583, 0,−2.2601), and the Kaplan-Yorke
dimension is DKY = 2.0258. There is a well-known difficulty when calculating Lya-
punov exponents for systems that involve discontinuous functions such as the signum.
This problem arises because of the abrupt change in the direction of the flow vector
at the discontinuity and the difficulty of maintaining the correct orientation of the
Lyapunov vectors. Although there is a proper procedure for correcting this problem
[19], we use here a simpler method in which sgn(z) is replaced by a smooth approx-
imation given by tanh(Nz) with N sufficiently large that the calculated Lyapunov
exponents are independent of its value [20]. System (4) has four equilibrium points,
(2.4428,−12.2139,±3.4948) and (0.0013,−0.0064,±0.0800) with eigenvalues (0.1899,
−0.0236±5.0423i) and (−2.4942, 0.0978±0.9956i), respectively, which are two differ-
ent kinds of spiral saddles. The two pairs of equilibrium points are symmetric about
the z = 0 plane. The signum function of the variable z in the third dimension pre-
vents the coefficient of the quadratic term z2 in the first dimension from being an
amplitude control parameter unless the sgn(z) function is replaced by z.

3 Multistability in symmetric systems with total amplitude control

For constructing a symmetric system with a total amplitude parameter, the balance
of polarity must be achieved, and this leads to an inversion invariant system with
respect to changes in all three variables (also called parity invariant) [14]. Such a
system is invariant under the transformation (x, y, z)→ (−x,−y,−z), corresponding
to symmetry about the origin. Kremliovsky also constructed an inversion invariant
Rössler system using a nonlinear term zx2 to cancel the extra polarity [21]. Here we
introduce an absolute-value function to cancel the redundant polarity in the third
dimension of system (1) and introduce a linear variable to substitute for the constant
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Fig. 6. Four views of the reflection-invariant Rössler attractors for (a, b, c) = (0.2, 0.2, 2.5)
with initial conditions (0, 0,±1) in Eq. (4). The green and red attractors correspond to two
symmetric initial conditions, and the four equilibrium points are shown as red dots.

Fig. 7. Cross section for x = 0.00128 of the basins of attraction (light blue and red) for the
symmetric pair of strange attractors for system (4) at a = b = 0.2, c = 2.5.
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Fig. 8. Regions of various dynamical behaviors for system (5) as a function of the bifurcation
parameters a and c with b = 0.2. The chaotic and transiently chaotic regions (C) are shown
in red, the periodic regions (P) are shown in cyan, the stable equilibrium regions (S) are
shown in green, and the unbounded regions (U) are shown in white.

and compensate for the polarity so as to keep the balance, giving the system

ẋ = −y − z
ẏ = x+ ay
ż = bx+ x|z| − cz.

(5)

System (5) is an inversion-invariant system. The dynamic regions of system (5)
in the parameter space of (a, c) at b = 0.2 are shown in Fig. 8. When a =
0.5, b = 0.2, c = 5.7, it shows chaotic behavior with an attractor as shown in
Fig. 9. The corresponding Lyapunov exponents are (0.1597, 0,−1.9865), and the
Kaplan-Yorke dimension is DKY = 2.0804. System (5) has three equilibrium points,
(0, 0, 0) and (±5.6,∓11.2,±11.2) with eigenvalues (−5.6657, 0.2328 ± 0.9665i) and
(0.4526,−0.0263± 3.5175i), respectively, which are two different kinds of spiral sad-
dles. The transformation adds one equilibrium point, and the equilibria are symmetric
with respect to the origin.
System (5) has one independent total amplitude parameter m in the x|z| term,

ẋ = −y − z
ẏ = x+ ay
ż = bx+mx|z| − cz.

(6)

To show this, let x = u/m, y = v/m, z = v/m to obtain new equations in the variables
u, v, w that are identical to Eq. (5). Therefore, the coefficientm controls the amplitude
of the variables x, y and z according to 1/m. Note that since system (5) has only one
nonlinear term, an independent total amplitude parameter can be obtained without
any other coordinated control as is necessary if there is more than one nonlinear term.
When a = 0.5, b = 0.2, c = 4, system (5) has a symmetric pair of coexisting

strange attractors as shown in Fig. 10 with basins of attraction as shown in Fig. 11.



Multistability: Uncovering Hidden Attractors 1501

Fig. 9. Four views of the inversion-symmetric Rössler attractor for (a, b, c) = (0.5, 0.2, 5.7)
with initial conditions (1, 0, 0) in Eq. (5). The three equilibrium points are shown as red
dots.

The basins of attraction for the two chaotic attractors are indicated by light blue and
red, respectively. The basins have the expected symmetry about the origin and an
intricate fractal structure. With a change of parameter c, the two coexisting strange
attractors merge into one like the attractor shown in Fig. 9. The corresponding Lya-
punov exponents of the two coexisting attractors are (0.1007, 0,−0.8982), and the
Kaplan-Yorke dimension is DKY = 2.1121.
In addition, considering the balance of polarity based on system (2), two other

inversion-invariant systems can be derived as described by

ẋ = −y − xyz
ẏ = x+ ay

ż = bx+ z(x2 − c)
(7)

ẋ = −y − yz2
ẏ = x+ ay

ż = bx+ z(x2 − c).
(8)

When a = b = 0.2, these systems have a symmetric pair of coexisting strange at-
tractors at c = 5.5 and c = 2.25, respectively, as shown in Figs. 12 and 13. The
corresponding Lyapunov exponents for the two pairs of coexisting attractors are
(0.0509, 0,−2.7365) and (0.0938, 0,−0.4278), and the Kaplan-Yorke dimensions are
2.0186 and 2.2193, respectively. Note that the coefficient of any cubic term in system
(7) or (8) now is not an independent amplitude parameter unless the coefficient of
the other cubic term varies proportionally [13]. The new introduced coefficient h in
both of the cubic terms will control the amplitude of all the variables according to
1/
√
h.
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Fig. 10. Four views of the inversion-symmetric Rössler attractors for (a, b, c) = (0.5, 0.2, 4)
with initial conditions (±1, 0, 0) in Eq. (5). The green and red attractors correspond to two
symmetric initial conditions, and the three equilibrium points are shown as red dots.

Fig. 11. Cross section for x = 0 of the basins of attraction for the symmetric pair of strange
attractors (light blue and red) for system (5) with a = 0.5, b = 0.2, c = 4.
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Fig. 12. Four views of the inversion-symmetric Rössler attractors for (a, b, c) = (0.2, 0.2, 5.5)
with initial conditions (±1, 0, 0) in Eq. (7). The green and red attractors correspond to two
symmetric initial conditions, and the three equilibrium points are shown as red dots.

Fig. 13. Four views of the inversion-symmetric Rössler attractors for (a, b, c) =
(0.2, 0.2, 2.25) with initial conditions (±1, 0, 0) in Eq. (8). The green and red attractors cor-
respond to two symmetric initial conditions, and the single equilibrium point at the origin
is shown as a red dot.
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Otherwise, to realize amplitude control with an independent parameter, a non-
linear equation with only one term of different degree should be derived. Such a
system is

ẋ = −y − |z|sgn(y)
ẏ = x+ ay

ż = bx+ z(x2 − c)
(9)

where the coefficient of the cubic term can control the amplitude of all the variables
according to h−1/3. When c = 4.25, system (9) has a symmetric pair of strange
attractors that resemble those in the cubic system (8) but with discontinuities in the
direction of the flow. The introduction of the piecewise linear element will shrink
the region of parameter space where multistability occurs, but coexisting strange
attractors still occur in a narrow parameter region.

4 Asymmetric coexisting attractors

In addition to the symmetric pairs of strange attractors resulting from the symmetry
of the above equations, there are regions of parameter space that admit symmetric
pairs of limit cycles, asymmetric pairs of attractors of the same type, and asymmetric
pairs of attractors of different types. Even the regular Rössler system (1) has regions
of coexisting attractors. Figure 14(a) shows two coexisting interlinked strange at-
tractors with Lyapunov exponents (0.0398, 0,−3.6120) and (0.0346, 0,−3.8953), and
Fig. 14(b) shows a limit cycle with Lyapunov exponents (0,−0.2063,−1.8803) coex-
isting and interlinked with a strange attractor with Lyapunov exponents (0.0549, 0,
−2.3166) for system (1). In addition, there are regions where limit cycles of different
periods coexist. Attempts to find parameters where a strange attractor coexists with
a stable equilibrium in system (1) were unsuccessful.
The symmetric systems (2) through (8) also exhibit asymmetric coexisting attrac-

tors for certain values of the parameters. For example, Fig. 14(c) shows a symmetric
limit cycle with Lyapunov exponents (0,−0.1686,−1.3144) coexisting with a symmet-
ric strange attractor with Lyapunov exponents (0.1936, 0,−1.6127), and Fig. 14(d)
shows a symmetric pair of limit cycles with Lyapunov exponents (0,−0.0179,−1.8236)
coexisting with a symmetric pair of strange attractors with Lyapunov exponents
(0.0317, 0,−1.7427) in system (2). The basins of attraction for those coexisting asym-
metric attractors are also asymmetric, which are different from the basins of the
coexisting symmetric ones. Note that all of the attractors for these systems appear to
be self-excited rather than hidden [22–24] in the sense that their basin of attraction
includes the neighborhood of one or more of the unstable equilibrium points.

5 Discussion and conclusions

Multistability and amplitude control unify in systems with symmetry. Coexisting
attractors may be born in symmetric systems, and one independent amplitude pa-
rameter may exist in the coefficient of the term with different degree. By different
alterations of the Rössler system, three different kinds of symmetry are derived, which
show that symmetrization is a valid path to lead to multistability and amplitude
control. Symmetry provides an independent amplitude control parameter in chaotic
systems, which is good for engineering applications. However, the symmetry allows
multistability, which may influence the amplitude control resulting in an undesir-
able “hop” among the coexisting attractors unless the initial conditions are modified
proportionally.
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Fig. 14. Coexisting attractors in the original and symmetric Rössler systems. (a) System (1)
with (a, b, c) = (0.29, 0.14, 4.52) and initial conditions (2, 6, 0.75) and (−3, 0, 0.04) shows two
coexisting asymmetric strange attractors. (b) System (1) with (a, b, c) = (0.41, 0.72, 3.12)
and initial conditions (1, 2.4, 1) and (0,−2.3, 0.2) shows an asymmetric limit cycle coexisting
with an asymmetric strange attractor. (c) System (2) with (a, b, c) = (0.39, 2.23, 4.71) with
initial conditions (2.3, 0, 4.6) and (0,−1, 5.5) shows a symmetric limit cycle coexisting with
a symmetric strange attractor. (d) System (2) with (a, b, c) = (0.34, 1.7, 5.03) with initial
conditions (±0.4,±1, 6.6) and (±2.8, 0, 2.8) shows a symmetric pair of limit cycles coexisting
with a symmetric pair of strange attractors.
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