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A general method is introduced for controlling the amplitude of the variables in chaotic systems
by modifying the degree of one or more of the terms in the governing equations. The method
is applied to the Sprott B system as an example to show its flexibility and generality. The
method may introduce infinite lines of equilibrium points, which influence the dynamics in the
neighborhood of the equilibria and reorganize the basins of attraction, altering the multistability.
However, the isolated equilibrium points of the original system and their stability are retained
with their basic properties. Electrical circuit implementation shows the convenience of amplitude
control, and the resulting oscillations agree well with results from simulation.
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1. Introduction designed, an additional linear transformation is usu-

Amplitude control of chaotic signals is important ally necessary to obtain the desired size of the

for engineering applications since appropriate
amplitude must be obtained for generation and the limitation of the circuit elements. The broad-

transmission of the signals [Li et al., 2005; Wang  band nature of chaotic signals makes it difficult to
et al., 2010; Yu et al., 2008; Li & Sprott, 2013;  design a linear amplifier. Moreover, if the amplitude
Li et al., 2014b, 2015]. Once a chaotic system is  of the variables requires further adjusting, several

attractor so that the amplitude does not exceed
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parameters or coefficients in the system may need
to be controlled to avoid altering the chaotic nature
of the signal. An independent amplitude control
parameter is thus desired that preserves the Lya-
punov exponent spectrum [Li & Wang, 2009; Li
et al., 2012; Li et al., 2015 or that proportionally
rescales the exponents [Li & Sprott, 2014a] without
introducing new bifurcations except perhaps caused
by using inappropriate initial conditions when the
system is multistable [Li & Sprott, 2014a].

Some chaotic systems have an amplitude con-
trol parameter when all the terms in the governing
equations are monomials of the same degree except
for one whose coefficient then determines the ampli-
tude of all the variables [Li & Sprott, 2014a, 2014b;
Li & Wang, 2009; Li et al., 2012]. However, most
chaotic systems are not of that form, but they can
usually be modified to achieve the goal. As pointed
out [Li et al., 2015], the chaos in dynamic systems
usually survives when the amplitude information in
some of the variables is removed, or when addi-
tional amplitude information is added. Therefore,
the signum function and absolute-value function
can be applied to decrease or increase the degree
of the terms in the equations so as to isolate a sin-
gle term of different degree whose coefficient then
provides the desired amplitude control. However,
the degree modification may yield infinite lines of
equilibrium points, which in turn will reorganize
the basins of attraction for multistability, which
can cause difficulty unless the initial conditions are
appropriately rescaled.

In this paper, we illustrate the approach of
providing a total amplitude control parameter in
a chaotic system by degree modification using the
signum and absolute-value functions. In Sec. 2,
the degree modification is applied to the Sprott B
system, showing both degree-decreasing with the
signum function and degree-increasing with the
absolute-value function. The amplitude control with
different scales is analyzed. In Sec. 3, the proper-
ties of the modified Sprott B systems are explored,
including equilibria and multistability. Electronic
circuit implementation is presented in Sec. 4. Con-
clusions and discussions are given in the last section.

2. Degree Modification for
Amplitude Control

Here we select the Sprott B system as an example
because this system is simple and has two quadratic
terms, two linear terms, and one constant term,

which provides relatively comprehensive cases for
demonstrating the degree modification for ampli-
tude control. The Sprott B system [Sprott, 1994,
2010] is given as

Z=a—uxy. (1)

j":yza :l):fB—y,

This system has rotational symmetry with
respect to the z-axis as evidenced by its invariance
under the coordinate transformation (z,y,z) —
(—x,—vy, z), and it has a partial amplitude control
parameter hidden in the coefficient of the xy term,
which controls the amplitude of x and y, but not
z. The parameter a is a constant, and when a = 1,
the corresponding strange attractor is as shown in
Fig. 1.

There are at least two methods to make all
but one of the terms the same degree and thereby
achieve total amplitude control. One is to unify
them to be first degree (linear), and the other is
to unify them to be second degree (quadratic). The
signum operation retains the polarity information
while removing the amplitude information. Apply-
ing it to one of the factors in the quadratic terms
reduces the degree of those terms from 2 to 1. Con-
sequently, the remaining constant term gives total
amplitude control because it is the only term with
degree different from unity.

There are four methods of linearization as
follows:

& = zsgn(y),
Z=m — aysgn(z),
& = zsgn(y),

y:x_ya (3)

Z=m — axsgn(y),

y=x—y (4)

Z=m — aysgn(z),

i = ysgn(z),
Z=m — axsgn(y).
Two parameters a and m represent the bifurca-

tion parameter and the amplitude parameter, either
of which leads the system to different dynamics

1530025-2



B - I T T T T B By N BN
-7 X 7

Fig. 1.

Constructing Chaotic Systems with Total Amplitude Control

-5 | | L | |
-4 Y 4

Four views of the strange attractor in Eq. (1) for @ = 1 with initial conditions (1,0, —1) and LEs = (0.2101, 0, —1.2101).

The colors indicate the value of the local largest Lyapunov exponent with positive values in green and negative values in red.

Two equilibrium points are shown as blue dots.

or only determines the size of the attractor corre-
spondingly. To understand the connections in the
above systems, we consider that there are two kinds
of coupling for each variable, one associated with
its amplitude information and the other with its
polarity information. Using a solid line or a dot-
ted line with arrow to represent respectively the
amplitude and the polarity of each variable that
influences the derivative of another variable, leads
to the structures shown in Fig. 2 describing the

above four systems. In the original Sprott B system,
there are twelve connections, six of which are ampli-
tude coupling, and the other six are polarity cou-
pling. After the linearization based on two signum
operations, there are ten connections, four of which
are amplitude coupling, and the remaining six are
polarity coupling, as shown in Fig. 2. We see that
there are pure polarity connections between two
variables, marked as the dotted line in Figs. 2(b)-
2(d), which indicates that the systems (3)—(5) risk

Fig. 2.
(d) system (5).

The amplitude and polarity connections in the network structures: (a) system (2), (b) system (3), (c) system (4) and
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losing chaos. System (3) fails to give chaos because
its amplitude link with the variable y is destroyed.
As shown in Fig. 2(c) and 2(d), the amplitude con-
nection between the variables y and z is preserved
by an indirect coupling, which plays an important
role in the topology of the Sprott B system. The
rest of the polarity feedback from the variable z

-4 | |
-5 X 5

Fig. 3.

into the variable x shows that the first two dimen-
sions more likely oscillate as an independent two-
variable driving system according to the polarity of
the variable z and correspondingly the systems (4)
and (5) can hardly survive chaos but gives a solu-
tion with a very different look from the regular
Sprott B. The structure (a) of system (2) most

Strange attractors observed from amplitude-controllable Sprott B systems in Table 1 for m = 1 projected onto the z—z

phase plane. The colors indicate the value of the local largest Lyapunov exponent with positive values in green and negative

values in red, the equilibrium points are shown in red.
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Table 1. Amplitude-controllable Sprott B systems.

Models Equations Parameters Equilibria Eigenvalues LEs Dy
i =yz, L /%0 0.2101
A a = m m (—1.3532,0.1766 + 1.2028:) 0 51736
BO y=x—y, .
m =1 a a (—1.3532,0.1766 4+ 1.20284)
Zz =a — may, —/—, = E’O —1.2101
Vi
= zsgn mm 0.1191
A En(y) a=1 a’ a 0 (—1.4656, 0.2328 + 0.79267) 0 5 1065
B1 y=x—y .
m=1 m  m (—1.4656, 0.2328 + 0.79261)
Z:mfaysgn(x) 7;77550 —1.1191
a a
& = zsgn(y) > m’m’ (—1.5448,0.2724 £ 0.8760i)  0.0906
a=1.
AB2 J=z—y X 0,0, 2 0,0, -1 0 2.0831
m =
Z = alz| — may a (—1.5448,0.2724 £+ 0.87601) —1.0906
T T
a /2
i = zsgn(y) . m’\ m’ (—1.8637,0.4319 + 1.1930i)  0.1486
a=1.
AB3 g=x—vy 0,0, 2 0,0, -1 0 2.1294
m =
Z = alz| — mayly| P P (—1.8637,0.4319 + 1.19307)  —1.1486
N
m’ m’
i=yz g2 R0 A 0.2355
a=1 a a (—1.3532,0.1766 4+ 1.20284)
AB4 Y = z|z| — yl|z| ' 0 2.1858
m=1 m m (—1.3532,0.1766 + 1.20284)
Z=m —axy -/ =, - ;,0 —1.2677
a
mom
a’a’ (—1.4656, 0.2328 + 0.79267)
T =yz 0.0993
a = 07%0 (\/E|y|707_\/a|y|)
AB5 Yy = z|z| — yl|z| 0 2.0843
m=1 0.0. z 0,0,0
z = m|w‘ —azry » ] —1.1783
m o m (—1.4656, 0.2328 + 0.79261)
a’ a’
a ey
m’m’ (—2.1964, 0.3982 + 1.2612i)
T =yz 0.0 0.1006
RS '7 07 - ;
AB6 g = zla| — ylz| @ 14 v (Vmlyllyli, 0, =/mlyllyli 0 2.0782
: m 0,0,z 0,0,0
a 0 (—2.1964, 0.3982 + 1.26121)
m7 -
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closely matches the original topological structure
with well-balanced coupling of amplitude and polar-
ity and therefore gives a chaotic attractor as shown
in Fig. 3 (Case AB1) even without any revision
of the parameters. It resembles the usual Sprott B
attractor in Fig. 1 except for discontinuities in the
direction of the flow.

Alternately, we can modify system (1) so that
the constant term and one of the quadratic terms
has degree-1 so that the coefficient of the remaining
quadratic term becomes an amplitude parame-
ter. Since the chaotic solution is bounded, it is
reasonable to increase the degree of the constant by
multiplying it by the absolute-value of one of the
variables leading to system AB2. For the same rea-
son as in the complete linearization, some modifica-
tions of the Sprott B system do not give chaos since
the network dimension collapses from 3 to 2 because
one of the variables is not part of any feedback loop.
The sole nonlinear term need not be quadratic, and
system AB3 shows the case where it is cubic. The
properties of these modified Sprott B systems are
listed in Table 1, the Lyapunov Exponents (LEs)
and the Kaplan—Yorke Dimension (Dgy) are also
included.

Furthermore, we can modify all but one of the
terms to be quadratic. Since the normal Sprott B
system has two quadratic terms, two linear terms,
and one constant term, it is necessary to increase
the degree of two of the three nonquadratic terms.
By introducing absolute-value functions, a new
amplitude-controllable Sprott B system (AB4) with
all quadratic terms except one is derived, where
the linear terms in the second dimension are mul-
tiplied by an absolute-value of the variable z, and
the remaining constant term is an amplitude param-
eter. From the rotational symmetry of the system,
it is reasonable to apply an absolute-value to the
variable y to get a degree increase. The only non-
quadratic term can be degree-1 or any degree higher
than 2. Table 1 gives some other cases with the
term of first degree (AB5) and third degree (AB6),
respectively. Comparing with the first three cases
in Table 1, instead of the signum function ignor-
ing the amplitude of the variables, here absolute-
value functions are used to modify the amplitude
of the terms giving a higher degree. From Table 1
and the corresponding attractors in Fig. 3, we see
that the isolated equilibrium points and their sta-
bility and the main structure of the phase trajec-
tory are preserved in these modified systems. The

similarity of all the attractors for the modified sys-
tems is evidence that the essential dynamics are
retained despite the appearance of additional equi-
libria. Since all of these systems have five terms,
there is a single bifurcation parameter taken as a,
and by design a single amplitude parameter taken
as m, both put arbitrarily into the Zz equation.

3. Analysis of the Amplitude
Scaling

Generally, autonomous chaotic flows include some
positive feedback to compensate for the dissipation.
Each variable has three essential factors: ampli-
tude, phase, and frequency. Therefore, any change
in the variables will result in some possible alter-
ation of the flow dynamics. Since the symmetric
structure of the system depends more on the polar-
ity information of the variables, modification of
the amplitude information will not usually destroy
the fundamental structure. Namely, the structure
of rotational symmetry with respect to the z-
axis will be preserved by its invariance under the
coordinate transformation (z,y,z) — (—z,—vy, 2),
(%a |Z_‘7'Z) - (*é_p *é_‘vz) and (x|$‘vy|y‘vz) -
(—x|z|, —yly|, z). That is to say, the signum oper-
ation removes the amplitude information while
retaining the phase information, and the absolute-
value function adds only amplitude information
without changing the phase information. Therefore,
these operations can preserve the chaos after degree
modification when the parameters are reassembled
for rescaling the size of the attractor or controlling
its bifurcations.

Because of the boundedness of the variables, a
chaotic system will reach a new balance of ampli-
tude after the signum or absolute-value operation.
Consequently, its coefficient will control the ampli-
tude without changing the sign of the Lyapunov
exponents provided one remains in the basin of
attraction [Li et al., 2015]. If the coefficient controls
both the amplitude and frequency, the Lyapunov
exponents will change in magnitude as a result of
the time rescaling [Li & Sprott, 2014a).

Specifically, the unified degree in the systems
with all but one term of degree-1 gives only ampli-
tude control of the variables. The constant m in
ABI1 controls the amplitude of all three variables in
proportion to m, while the coefficient m of the only
quadratic term in AB2 controls the amplitude of all
three variables in proportion to % The coefficient

1530025-6



m of the only cubic term in AB3 controls the ampli-
tude of all three variables in proportion to ﬁ The

corresponding coefficient also rescales the coordi-
nates of the equilibrium points as shown in Table 1.

However, the unified degree in the systems with
all terms quadratic except for one will introduce
both amplitude and frequency control of the vari-
ables [Li & Sprott, 2014a]. The constant term m in
AB4 scales the amplitude and frequency according
to y/m, while the coefficient m of the only linear
term in AB5 controls the amplitude and frequency
according to m. The coefficient m of the only cubic
term in AB6 controls the amplitude and frequency
in proportion to % As an illustration, consider a
simultaneous amplitude and frequency control of
ABG6 by the transformation z — mz,y — my,z —
mz,t — % Then the equations of AB6 transform
back to: & = yz,y = zlz| — ylz|, 2 = alzy| — zylyl,
which means that the coefficient m of the cubic term
zyly| in the Z equation can rescale the amplitude
and frequency according to %

(a) 2 T T T

-3 I 1 |
-3 X 3

Fig. 4.

Constructing Chaotic Systems with Total Amplitude Control

4. Equilibria and Multistability

The equilibrium points play an important role in
the degree modification. As shown in Table 1, the
amplitude control can be identified also from those
retained isolated equilibrium points whose coordi-
nates are revised proportionally with the amplitude
parameters, but the stability of each isolated equi-
librium point is preserved. In other words, if the
degree modification introduces additional isolated
equilibrium points or changes the stability of the
equilibria, amplitude modification may not occur
because the revised system will not retain its chaos
or will give a strange attractor with a different
manifold.

On the other hand, the additional absolute-
value terms will usually yield additional lines of
equilibrium points [Li et al., 2014c; Jafari & Sprott,
2013] when the constant term disappears and the
rank of the Jacobian matrix at some of these lines is
not full. New introduced redundant absolute-value
terms may have a common factor with the linear or

(b) 2

-2 |

-2 X 2

Phase portrait of coexisting attractors in the z—z plane: (a) a =0.32 with initial conditions (£0.58, £1, —1), (b) a =0.28

with initial conditions (£0.15, £0.11, 0.10), (c) a =0.23 with initial conditions (0.15,0.14, 0) for green and (0.3, 0.3, —1) for red
and (d) a = 0.16, initial conditions (0.98,0.72,0.3) for blue and symmetric initial conditions (0.45,0, —1) for green and red.
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Fig. 5. Cross-section for x = 0 of the basins of attraction
for the symmetric pair of strange attractors (light blue and
red) for ABO with a = 0.32.
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Fig. 6.

nonlinear terms, and therefore give birth to a line
or to two perpendicular lines of equilibrium points.
Generally, the new introduced lines of equilibria are
“safe” for the systems and are usually unstable or
neutrally stable. As shown in Table 1, there is one
line of equilibria in systems AB2 and AB3, and
there are two perpendicular lines of equilibria in
AB5 and AB6. The eigenvalues of the single line
of equilibrium points in systems AB2 and AB3 are
(0,0, —1) showing that the line is stable in one direc-
tion, while the eigenvalues of the two perpendicular
line equilibrium points in system AB5 are (0,0,0)
for the line (0,0,2) and (y/aly|,0,—+/aly|) for the
line (0,y,0), indicating that one of the lines is neu-
trally stable, while the other line contains unstable
saddle nodes. The new lines of equilibrium points
will influence the dynamics along with the alter-
ation of the form of the nonlinearities, the effect of
which can be partially observed by the rearrange-
ment of the basins of attraction in multistable sys-
tems. The Sprott B system and its diverse modified

-3 Y 3

Symmetric pair of strange attractors for (a,m) = (1.2,1) with initial conditions (zq,yo, 2z0) = (0,%1,1) in AB2. The

green and red attractors correspond to two symmetric initial conditions, and the equilibrium points are shown as blue dots.
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Fig. 7. Cross-section for x = 0 of the basins of attraction
for the symmetric pair of strange attractors (light blue and
red) for AB2 with a =1.2,m = 1.

Fig. 8.

Constructing Chaotic Systems with Total Amplitude Control

versions provide a good candidate for observing dis-
turbed multistability.

The Sprott B system was selected as an exam-
ple for amplitude control precisely because of its
symmetric structure and resulting multistability.
The Sprott B system has four regimes of mul-
tistability for appropriate choice of the parame-
ters, including a symmetric pair of limit cycles,
a symmetric pair of strange attractors, and limit
cycles coexisting with strange attractors, as shown
in Fig. 4. The coexisting symmetric pair of strange
attractors at ¢ = 0.32 has Lyapunov exponents
(0.0058,0, —1.0058), the coexisting symmetric pair
of limit cycles at ¢ = 0.28 has Lyapunov expo-
nents (0, —0.0587,—0.9413), while the coexisting
strange attractor and limit cycle at a = 0.23
have Lyapunov exponents (0.0662,0, —1.0662) and
(0, —0.0194, —0.9806), respectively, and the coex-
isting symmetric pair of strange attractors and a
symmetric limit cycle at @ = 0.16 have Lyapunov
exponents (0.0160,0,—1.0160) and (0,—0.0446,
—0.9554), respectively. The basins of attraction for

Symmetric pair of strange attractors for (a,m) = (1.2,1) with initial conditions (xg,yo, z0) = (0,%1, 1) in AB5. The

green and red attractors correspond to two symmetric initial conditions, and the equilibrium points are shown as blue dots.
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Fig. 9. Cross-section for x = 0 of the basins of attraction
for the symmetric pair of strange attractors (light blue and
red) for AB5 with a = 1.2,m = 1.

the coexisting strange attractors when a = 0.32 are
shown in Fig. 5, indicating its fractal structure.
There are similar coexisting attractors in sys-
tems AB2, AB3, AB5, and AB6. Even the systems
without any lines of equilibrium points, such as AB1
and AB4, still have coexisting attractors. The sys-
tem ABI1 has coexisting symmetric and asymmet-
ric attractors, while the system AB4 has symmetric
pairs of limit cycles, which merge into a single sym-
metric one before the chaos onsets. When a = 0.31,
the system ABI has a symmetric pair of strange
attractors with Lyapunov exponents (0.0137,
0,—1.0137) at the initial condition (£1.00,£0.79,
0.92). When a = 0.52, it has a symmetric strange

attractor coexisting with a symmetric limit cycle
having Lyapunov exponents (0.0701,0, —1.0701) at
the initial condition (—0.18,—-2.16,0.32) and Lya-
punov exponents (0, —0.0195, —0.9805) at the initial
condition (1.02,2.15,0.72), respectively. Both of the
revisions of AB1 and AB4 have robust symmetric
solutions over a relatively large range of the bifur-
cation parameter a.

Meanwhile, the intrusion of lines of equilibria
will alter the multistability and correspondingly
rearrange the basins of attraction. Except for pos-
sibly introducing new multistability along the line,
the modifications more often suppress the multi-
stability than enhance it. The system AB2 with
a neutrally stable line of equilibrium points has
coexisting strange attractors at a = 1.2 as shown
in Fig. 6. The corresponding Lyapunov exponents
of the two coexisting attractors are (0.0387,0,
—1.0387), and the Kaplan—Yorke dimension is
Dgy = 2.0373. The system AB5 with two lines
of equilibrium points shows a similar symmetric
pair of interlinked strange attractors at a = 1.2
as shown in Fig. 8. The corresponding Lyapunov
exponents of the two coexisting attractors are
(0.0251,0, —1.0346), and the Kaplan—Yorke dimen-
sion is Dgy = 2.0243. The corresponding basins of
attraction are shown in Figs. 7 and 9. The basins
of attraction for the two chaotic attractors are indi-
cated by light blue and red, respectively. The basins
have the expected symmetry about the z-axis and
a fractal structure. The full spread of red and light
blue in the whole plane in Fig. 9 indicates the two
lines of equilibrium points are both unstable, while
the basins of attraction for AB2, shown in Fig. 7,
are damaged since the line of equilibria is neutrally
stable. Since these basin plots are just one slice of a
3-D basin taken in the plane of the equilibria, it is

06 [ S ]
w 0 — wn
- o
= =

Z 0D E o 8
= =
o &
5 =
o B >
= g
= DB R =
=% =
< =
- =)

e A S e — ]

2 4m 6 8 10

(b)
Fig. 10.

Lyapunov exponents when the amplitude parameter m varies in [0,10]: (a) a = 0.23 with initial conditions
(z0,y0,20) = (0.5,0.5,0.5) for ABO and (b) a = 1.2 with initial conditions (zg, yo, 20) =

(0,4, —4) for ABS5.
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not surprising that the plot has a discontinuity there
especially if two of the eigenvalues are zero. Further
exploration shows that the green basin for the sys-
tem AB2 indicates new extra multistability, where
the variable z stretches (evolves) to negative infinity
while the variables x and y oscillate with an increas-
ing amplitude or with a small constant amplitude.
AB2 and AB5 both have isolated equilibria that
border the basins of attraction of the strange attrac-
tors, and thus all these attractors are self-excited.
All the reorganized basins are different from others
[Jafari & Sprott, 2013] where the line of equilibrium
points threads the attractor with different stability
for separate segments of the line, indicating that
the corresponding attractor is hidden [Leonov et al.,
2011, 2012; Leonov & Kuznetsov, 2013].

However, the existence of multistability can
degrade the amplitude control because fixed ini-
tial conditions may switch basins of attraction and
therefore trigger a state-shift among the coexist-
ing attractors [Li & Sprott, 2014a]. The initial
conditions need to be rescaled when the ampli-
tude parameter varies to adjust the variables. Fig-
ure 10(a) shows that in the normal Sprott B system
(ABO) when the partial amplitude parameter m,
namely, the coefficient of the quadratic term in the
third dimension, varies from 0 to 10, there are states
of limit cycle and chaos. Figure 10(b) shows that
the Lyapunov exponents increase with the ampli-
tude parameter since it also controls the frequency
of the variables. There are no notches in Fig. 10(b)
because the coexisting attractors are a symmetric
pair with the same Lyapunov exponents, which still
indicates that the same initial conditions may not

Constructing Chaotic Systems with Total Amplitude Control

safely result in a desired state. One can check that
the same initial conditions make the system AB5
locate on the left and right attractors alternatively
atm=1,2,3.

5. Electrical Circuit Implementation

The electrical circuits for the amplitude-controlla-
ble Sprott B systems are designed with the main
structure for different unified degrees, as shown in
Fig. 11. The structure has the same terms in the
first and second dimensions for both triplets of
cases. For the first three cases, i.e. AB1, AB2, AB3,
S1 = —zsgn(y), S2 = —x, S3 = y; for the sec-
ond three cases, i.e. AB4, AB5, AB6, S1 = —yz,
S2 = —z|z|, S3 = y|z|. The third dimension pro-
vides the corresponding feedback of G,,(z,y) and
Ga(z,y), by which the amplitude of the variables
and the bifurcation dynamics of the systems may
be controlled or observed. In accordance with the
structure in Table 1, the feedback for the first
three systems is Gpi(z,y) = —1, Gpal(z,y) =
LY, Gm3<x7y) = a:y\y!, Ga1<x7y) = ysgn(x>7
Ga2(x7y) = Ga3(xay) = *‘QZ| when S1 = fzsgn(y),
S2 = —x, S3 = y. The feedback for the second
three systems is Gpa(z,y) = —1, Gus(z,y) = —|z],
Gme(z,y) = 2ylyl, Gaa(z,y) = Gas(z,y) = 29,
Gas(z,y) = —|zy| when S1 = —yz, S2 = —z|z|,
S3 = yl|z|. The circuit elements for G,,(z,y) and
Go(z,y) are shown in Fig. 12. The special switch
elements [Li et al., 2014b, 2015] can be used to
decrease the required number of multipliers.

To realize the systems in Table 1, we select
smaller capacitors, C1 = Cy = C5 = 1 nF, for higher

___________ A - - - - — - = "
r Circuit Structure I :_ Signals for First Two Dimensions I
1 R C, X R, R; -x I | z I

O I Wr—p—AM o y .
> e R
82 g (& y R R I: R I

1 6 7 x R -abs(x]

o—ww—r— | MA—p— A —T—O || - N S -absox |
o—A— | |

|

G, (x,y) Ry G Z Ry Ry ¥y -y
o——— | M——AW I| o abs(x)y |
G (xp) Ry |, =2 P2 _abs(x) |
o—w»—;’_y & I| o— o] |
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Fig. 11.

Circuit structure and signal provider for the first two dimensions of the AB systems.
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Circuit Elements for G,.(x,y)
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Fig. 12.

frequency. The resistors for the absolute-value are
Ris = Ri3 = Ry = Ri5 = Rig = Ri7 = Rig =
Ri9g = Rog = Ro1 = 470Q. The operational ampli-
fiers are TL084 1Cs powered by 10 volts. The mul-
tipliers are all AD633, and the diodes are 1N3659.
The resistors for the phase inverters are Ry = R3 =
Rg = Ry = Rig = Ry1 = 100k, and V.. = 1V.
The resistors Ri, R4, R5, Rg, Ry in the adder line

7.05mvV

M 400us’ A Chl -5

Fig. 13.
Fig. 3.

-y

X , ( )
S

G, (x,y) = psgn(x)

-abs(x)

x Rig

Gar(x,p) = Gua(x,y) = -abs(x)

xy

G.'M(x;y) = GﬂS(x’y) Ay

Ry -ahs(,x})

Circuit elements providing the inputs for the third dimensions of the AB systems.

are critically determined by the system parameters.
The resistors Rq, R4, R5 are set to 100kS) for the
unit coefficients in the first two dimensions. Rg is set
to 100 k€ for unit value in the amplitude terms. Ry
is also set to 100 k2 except 76.9 k(2 for AB2, 66.7 k{2
for AB3, and 71.4k€) for AB6. The corresponding
phase trajectories from the oscilloscope shown in
Fig. 13 agree well with the predictions of Fig. 3.

M1.00ms

Experimental phase portraits of the AB systems in the z—z plane observed from the oscilloscope for comparison with
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6. Discussion and Conclusions

It is useful to rescale a chaotic signal by an indepen-
dent amplitude parameter in order to simplify the
broadband amplifier design in electronic engineer-
ing applications. Most chaotic systems fail to give
an amplitude-controllable signal due to the linear
and nonlinear terms of different degrees. If all the
terms have the same degree except one, the coeffi-
cient of the lone term with a different degree will
be a functional independent amplitude controller.
Because each of the variables in chaotic sys-
tems includes polarity and amplitude information,
the degree of the linear or nonlinear terms can be
increased by using an absolute-value function or
decreased by using a signum function. The basic
equilibria (except for proportional revision in ampli-
tude) and their stability must be retained when
choosing among the many options to guarantee
the degree modification will work. This degree-
modification procedure often leads to a chaotic

Constructing Chaotic Systems with Total Amplitude Control

M 200us A Chl 5 20.3mV

(Continued)

system but generally requires that the parameters
be readjusted to recover the chaos. Besides the mod-
ification of the chaotic system providing an ampli-
tude parameter for rescaling the variables, lines of
equilibrium points are often introduced, which in
turn influence the dynamics especially when the sys-
tem is multistable.
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