Using Rate of Divergence as an Objective Measure to
Differentiate between Voice Signal Types Based on the
Amount of Disorder in the Signal
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Summary: Objective/Hypothesis. The purpose of this paper is to introduce the rate of divergence as an objec-
tive measure to differentiate between the four voice types based on the amount of disorder present in a signal. We
hypothesized that rate of divergence would provide an objective measure that can quantify all four voice types.
Study Design. A total of 150 acoustic voice recordings were randomly selected and analyzed using traditional per-
turbation, nonlinear, and rate of divergence analysis methods.

Methods. We developed a new parameter, rate of divergence, which uses a modified version of Wolf’s algorithm for
calculating Lyapunov exponents of a system. The outcome of this calculation is not a Lyapunov exponent, but rather
a description of the divergence of two nearby data points for the next three points in the time series, followed in three
time-delayed embedding dimensions. This measure was compared to currently existing perturbation and nonlinear dynamic
methods of distinguishing between voice signals.

Results. There was a direct relationship between voice type and rate of divergence. This calculation is especially ef-
fective at differentiating between type 3 and type 4 voices (P < 0.001) and is equally effective at differentiating type 1,
type 2, and type 3 signals as currently existing methods.

Conclusion. The rate of divergence calculation introduced is an objective measure that can be used to distinguish
between all four voice types based on the amount of disorder present, leading to quicker and more accurate voice typing

as well as an improved understanding of the nonlinear dynamics involved in phonation.
Key Words: Voice type—Nonlinear—Chaos—Parameter—Disorder.

INTRODUCTION
The existence of chaotic dynamics in phonation has been widely
recognized since the early 1990s."> Subsequently, Titze, Baken,
and Herzel separated voice signals into three types. Type 1 signals
are periodic in nature, type 2 signals contain subharmonic or
modulating frequencies, and type 3 signals have no apparent pe-
riodic structure.” Traditional perturbation measures such as jitter
and shimmer have proven effective in analyzing type 1 and type
2 voice signals, but not type 3.*® These measurements are de-
termined by estimating the fundamental frequency and peak
amplitude of each phonatory cycle, respectively. As voice type
increases, estimates for jitter and shimmer have been proven to
contain significantly larger trk and err values.” The limited ro-
bustness of these methods leads to poor reliability and large
variance during irregular phonation.”'” Nonlinear dynamic mea-
surements such as correlation dimension (D2) or largest Lyapunov
exponent are successful in differentiating between normal and
irregular phonations, whereas thes traditional perturbation methods
fail.>'> Recently, Sprecher et al introduced the addition of a fourth
voice type. This scheme reclassified type 3 voice as chaotic with
a finite dimension, and defined type 4 voice as chaotic with in-
finite dimension.” These type 4 signals are heavily obscured by
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stochastic signal components, making it impossible to accurate-
ly calculate the D2 and the Lyapunov exponent.”'""* Therefore,
there are currently only subjective measures available for evalu-
ating type 4 voice, such as spectrograms and perceptual analysis.
These methods of analyses remain valid, but a method of ob-
jective evaluation is needed.

As mentioned above, previous studies have demonstrated that
Lyapunov exponent calculations are capable of differentiating
between regular and irregular phonation.'*'® This is unsurprising
since Lyapunov exponents, which are the average exponential
rates of divergence or convergence of nearby orbits in phase space,
are effective descriptors of chaos.'”'® Exponential orbital diver-
gence indicates that points with minuscule initial differences will
soon diverge to drastically different values. The magnitude of
the exponent reflects the time scale at which the system becomes
unpredictable.'® Thus, a higher maximum Lyapunov exponent
indicates that the system is more chaotic. However to calculate
a true Lyapunov exponent, a sufficient embedding dimension is
required. This cannot be calculated for type 4 voice because the
dimension of the signal is immeasurably high and potentially
infinite. Using the correct embedding dimension allows the
Lyapunov exponent to be measured in as many dimensions as
there are present in the system.

Although we cannot calculate the Lyapunov exponent for type
4 voice, we reasoned that the rate of divergence in a certain di-
mension of each data sample could still be calculated. This value
of divergence should increase as the amount of disorder in a
sample increases. We hypothesized that the rate of divergence
of two nearby points in a data series followed in three dimen-
sions would have a direct relationship with voice type. That is,
the rate of divergence would increase from type 1 to type 2, type
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2 to type 3, and type 3 to type 4. The calculated result would
provide an objective parameter to specifically distinguish between
type 3 and type 4 voices because there is no measure currently
available to do so based on nonlinear principles. Second, we hy-
pothesized that the rate of divergence measure proposed in this
paper would be comparable with the existing measures used to
quantify voice signals, such as correlation dimension, Lyapunov
exponent, and percent jitter and percent shimmer.

METHODS

Voice selection

We randomly selected 150 voice samples from the Disordered
Voice Database Model 4337 (KayPEN-TAX, Lincoln Park, NJ).
The sampling frequency for each of the samples used was 25 kHz.
Each sample consisted of 0.75 seconds of sustained “ah” pho-
nation. Table 1 displays the summary characteristics of the
subjects selected for analysis.

Spectrogram analysis

A spectrogram was generated for each sample for voice
classification. Based on the spectrogram classification system
proposed by Sprecher et al,’ each of the samples was subjec-
tively sorted into one of the four voice types by three researchers.
Samples that were not traditional representations of voice
types or were sorted differently by any researchers were not
used in the analysis. The final sample consisted of 22 type 1
samples, 49 type 2 samples, 50 type 3 samples, and 26 type 4
samples.

Sampling rate determination

The original sampling rate for each of the voice samples was
25 kHz. However, choosing the optimum time delay when con-
ducting nonlinear dynamics calculations is critical to ensure
accuracy. When the time difference between two points is too
small, each data point is too close to its predecessors. This causes
the attractor to stretch out along the diagonal in reconstructed
space, and leads to a divergence calculation that is spuriously
low. However, when time delay is too long, the system loses its
determinism.

TABLE 1.

To determine the optimum time delay, we constructed the
attractor of each sample with differing time delays. Figure 1 shows
the relationship between a type 3 voice sample’s attractor and
the rate of down sampling used. Under the assumption that the
system is chaotic, which is true for type 3 voice, this plot is of
an attractor. We reviewed several voice samples and found that
as the time delay increased, the attractor continued to expand
until a downsampling rate of 8 and then began to fold over itself.
This indicated that a sample frequency of 3.125 kHz was the
optimum time delay between each point for our analysis. This
method of calculating the time delay is consistent with the
minimum mutual information calculation we performed. The
minimum mutual information method of calculating the time delay
provides a systematic method for choosing time delays and quan-
titatively describes the spatial patterns of chaotic signals by
choosing the first minimum of the mutual information for the
signal’s attractor.'”~!

Perturbation analysis

Perturbation analysis was conducted using the TF32 software.”
The measures of percent jitter and percent shimmer were cal-
culated for each type 1 and type 2 signals. Jitter represents the
cycle-to-cycle variation in signal frequency, whereas shimmer
measures the cycle-to-cycle variation in signal amplitude.?” Per-
turbation analysis was not conducted for either type 3 or type
4 voices because of the previous research that found that for those
types of phonation, perturbation analysis is neither valid nor
reliable.**%1

Correlation dimension and Lyapunov exponent
analysis

Nonlinear dynamic analysis was applied to type 1, type 2, and
type 3 voices using the same method that has been used in nu-
merous publications.”'*'*"> Correlation dimension and Lyapunov
exponent calculations cannot be accurately calculated for type
4 voice signals because of the extremely high dimensionality of
those samples. The correlation dimension (D2) measures the
number of degrees of freedom necessary to describe a system.
Thus, a system with a higher degree of complexity needs more
degrees of freedom to characterize its dynamic state.'”"

Subject Characteristics and Average and Standard Deviation for the Rate of Divergence Values of Each Voice Type for

Each Signal Type Group

Voice Number of Age in Average Rate Standard

Type Samples Years Gender of Divergence Deviation

1 22 37.3 (22-63) 3 Males 0.238761 0.06912
19 Females

2 49 44.5 (23-75) 24 Males 0.347352 0.102767
25 Females

3 50 49.9 (7-80) 24 Males 0.541578 0.13259
26 Females

4 26 62.8 (30-85) 9 Males 0.740452 0.047607
17 Females

Age is displayed as mean age (age range).
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FIGURE 1. The shape of the attractor at each downsampling rate (distance). As we increase the time delay from a downsampling rate of 1-8,
we see that the attractor begins to expand. Then, as we reach a downsampling rate of 12, the attractor begins to fold over itself.

Lyapunov exponents were calculated using Wolf’s algorithm.'®
The embedding dimension to compute the Lyapunov exponent
was calculated via the method presented in Cao.” Then, D2 was
calculated using a time delay technique to create a phase space:

X, = {x(t), x(t 1), o x(t —(m—1)7)} (D
where m is the embedding dimension, and T is the time delay.”'
A more detailed description of this calculation can be seen in
Figure 2.

Chaos data analyzer program and rate of divergence
analysis

After sorting the samples by voice type and determining the
optimum time delay, the samples were analyzed using Chaos Data
Analyzer (CDA) Pro version 2.2 (Physics Academic Software,
Raleigh, NC). The CDA performs various tests on a time series
with the goal of detecting and quantifying hidden determinism. The
files that are analyzed are standard ASCII text supplied by the user.”

To examine the rate of divergence of each of our samples, we
used the Lyapunov exponent function in the CDA. The program
utilizes the algorithm described in Wolf et al'® to calculate the
Lyapunov exponent. As mentioned above, because we cannot
calculate the dimension of type 4 voice, it is impossible to set
the embedding dimension necessary to calculate the Lyapunov
exponent for type 4 voice samples. Thus, we chose an embed-
ding dimension (D) of 3, which was kept consistent across the
four different voice types for our calculation purposes. This value
indicates that we start with two points close in time-lag space
and follow their degree of separation in three dimensions. Al-
though the system may consist of more than three dimensions,
the calculation consistently chooses the same three dimensions
for each sample. The next parameter set by the user is the number
of sample intervals (n) over which each pair of points is fol-
lowed before a new pair is chosen. We chose the default n value
of 3, because following a pair of points too long causes the ex-
ponential divergence of the orbits to be lost and following too
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FIGURE 2. A flow chart to demonstrate the calculation of correlation dimension. (A) Reconstruction of phase space using a minimum embed-
ding dimension of 3. (B) A correlation integral C(r) was calculated using the algorithm presented by Theiler.** 14. (Takens F. Detecting strange
attractors in turbulence. In: Rand D. A. and Young L.-S, ed. Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898. Springer-
Verlag; 1986:366-381). The radius around X; is denoted as r. Using r to define the scaling region, curves of log, C(r) versus log, r were generated,

and the value of D2 was calculated by taking the slope of the most linear part of the curve.

short makes the calculation less representative of the system.
Lastly, the accuracy of the data was set to 107 to exclude out-
liers. Therefore, the output of this calculation is a measure of
the rate of divergence in three dimensions of two nearby data
points for the next three sample intervals. An output of 0 sig-
nifies that the sample is perfectly periodic, and an output of 1
signifies that the separation of nearby orbits doubles at each time
step. A higher average rate of divergence corresponds to a system
with a higher degree of chaos.

Each voice sample was downsampled by a factor of 8; thus,
there were 8 fragments for each voice type. For example one of
the fragments used data points 1 and 9, whereas the next frag-
ment used data points 2 and 10, as seen in Figure 3. We opted to
run each of the 8 fragments of every sample to completion to
provide a more accurate representation of each sample. Once the
rate of divergence of all the samples had been calculated, the
average and standard deviation were calculated for each voice type.

Statistical analysis

A normality test determined that there was not a normal distri-
bution across the four voice signal types. Thus, the rate of
divergence, Lyapunov exponent, jitter %, shimmer %, and Cor-
relation dimensions of different voice signal types were compared
using a Kruskal-Wallis one-way ANOVA on ranks. Then, Dunn
tests were used to compare each of the individual groups. All
calculations and graphs were plotted using SigmaPlot version
11.0 (Systat Software, San Jose, CA), and a significance level
of o0 =0.05 was used throughout.

RESULTS
The results of the Kruskal-Wallis one-way ANOVA on ranks dem-
onstrated that the differences between the voice type rate of
divergence values were significant (P < 0.001). Table I lists the
average, standard deviation, and number of samples for each voice
type. The type 2 rate of divergence was significantly different
than type 1 divergence (P < 0.001). Type 3 voice was signifi-
cantly different from type 1 and type 2 voices (P < 0.001). Lastly,

Original Sample

12 Downsampling Rate
of8

A / \

Fragments 3, 4, etc...

i

1

Fragment 2

10 18

2
FIGURE 3. A visual representation of the fragment analysis used in
this study. Because a downsampling rate of 8 was used, 8 fragments
of each original signal sample were produced. Each fragment was ana-
lyzed to improve power and accuracy.
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FIGURE 4. Histogram of the rate of divergence values for each voice type. The y-axis displays the actual rate of divergence value, and the x-axis

shows the frequency of occurrence of each value range.

type 4 voice was significantly different from type 1, type 2, and
type 3 voices (P < 0.001). Visual representations of these results
can be seen in Figures 4 and 5A and in Table 2.

Perturbation analysis showed an increasing degree of com-
plexity as voice type increased. Both jitter and shimmer % were
significantly different between type 1 and type 2 voices
(P <0.001). Visual representations of these results can been seen
in Figure 5B,C and in Table 2.

Lastly, the nonlinear analysis of the samples indicated in-
creasing system complexity with increasing voice type. The
Kruskal-Wallis ANOVA on ranks showed that there was a sig-
nificant difference among the group’s Lyapunov exponent values.
Type 2 signals had significantly higher Lyapunov exponents than
type 1 (P <0.001), and type 3 signals had significantly higher
Lyapunov exponents than type 1 and type 2 voices (P < 0.001).
A box plot of this data can be seen in Figure 5D. The Kruskal-
Wallis ANOVA on ranks of correlation dimension demonstrated
that there was a significant difference among the groups
(P <0.001). D2 increased with voice type, with type 3 voice
having significantly higher D2 values than type 2 and type 1
voices (P =0.01 and P < 0.001, respectively). However type 1
and type 2 did not have significantly different D2 values
(P = 0.423), which is consistent with results from Sprecher et al.’
A box plot of these results can be seen in Figure SE.

DISCUSSION

In this study, we define a new nonlinear, objective measure for
quantifying voice signals. The calculation for this measure uti-
lizes Wolf’s algorithm for calculating Lyapunov exponents, but
chooses to follow two close data points in only three dimen-
sions as they separate during the next three time points. This
method allows for the inclusion of voice samples with high di-
mensionality (type 4) and allows comparison across all voice
types based on the amount of disorder present in each signal.

Currently, the leading methods of classifying high-dimensional
voice types are spectrograms and perceptual analysis. These sub-
jective measures leave room for error in interpretation of voice
disorders that may affect treatment. Objective measures provide
insight into the nonlinear dynamics of type 3 and 4 voice dis-
orders as well as establish quantitative criteria for classifying
voice types. Differentiating between type 3 and 4 voice signals
is clinically relevant because it can provide insight into the
complex biomechanical interaction involved in these types of
phonations. The nature of the distinction between type 3 and type
4 signals is based on varying amounts of dimensionality, which
suggests that there are functional differences between the two.
Thus, if we can distinguish between these signals, it is possi-
ble to investigate the morphological or functional differences in
larynges that produce these different voice signals.
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TABLE 2.

Description of Variables, Comparisons, and Statistical Tests Used in Analysis

Measure Comparison Statistical Test P Value

Rate of divergence All groups Kruskal-Wallis one-way ANOVA on ranks P<0.001
Rate of divergence Type 1 vs. type 2 Dunn t test P<0.001
Rate of divergence Type 1 vs. type 3 Dunn t test P<0.001
Rate of divergence Type 1 vs. type 4 Dunn ttest P<0.001
Rate of divergence Type 2 vs. type 3 Dunn ttest P<0.001
Rate of divergence Type 2 vs. type 4 Dunn t test P<0.001
Rate of divergence Type 3 vs. type 4 Dunn ttest P<0.001
Jitter % Type 1 vs. type 2 Kruskal-Wallis one-way ANOVA on ranks P<0.001
Shimmer % Type 1 vs. type 2 Kruskal-Wallis one-way ANOVA on ranks P <0.001
Lyapunov exponent All groups Kruskal-Wallis one-way ANOVA on ranks P<0.001
Lyapunov exponent Type 1 vs. type 2 Dunn ttest P<0.001
Lyapunov exponent Type 1 vs. type 3 Dunn ttest P<0.001
Lyapunov exponent Type 2 vs. type 3 Dunn t test P<0.001
Correlation dimension All groups Kruskal-Wallis one-way ANOVA on ranks P<0.001
Correlation dimension Type 1 vs. type 2 Dunn ttest P=0.423
Correlation dimension Type 1 vs. type 3 Dunn ttest P<0.001
Correlation dimension Type 2 vs. type 3 Dunn ttest P=0.01

A significance level of o = 0.05 was used throughout.

Our calculations suggest that type 4 voice samples have sig-
nificantly higher divergence rates than any of the other voice types.
Additionally, type 3 voice samples exhibit significantly higher
divergence rates than both type 1 and type 2. The importance
of this calculation is that the rate of divergence provides infor-
mation about the amount of nonlinearity in a signal. A higher
divergence rate indicates that the sample has a higher amount
of disorder than a sample with a low divergence rate. Thus, our
hypothesis that the rate of divergence (along with amount of dis-
order) would increase with increasing voice type was confirmed.
This measure was effective in quantifying type 3 and type 4 voice
signals. Additionally, the rate of divergence was proven effec-
tive as currently available measures in differentiating between
voice types. This suggests that the rate of divergence should
replace perturbation or other nonlinear measures in analyzing
high level voice signals.

CONCLUSION

In this study, the rate of divergence was defined as an objec-
tive, nonlinear measure utilized to distinguish each of the four
voice types. One limitation of this study is that there appeared
to be an overlap at the transitions between each voice type. This
can be seen in Figure 4. However, this outcome was expected
for a several reasons. Because the voice samples were typed via
subjective spectrogram analysis, there is a risk that some types
were misclassified. There appear to be some outliers for each
of the voice types, which may be due to subjective rating error.
Furthermore, the only current analysis methods for voice typing
are subjective, so it is unsurprising that there will be a “gray area”
in which the labeling overlaps. The benefit of the rate of diver-
gence as an analysis tool is that it offers a continuous variable
capable of describing the amount of disorder present in a system.

Supplementing subjective analysis with this objective measure
could reduce the chance of incorrect voice typing. This would

help clinicians quickly and accurately evaluate voice type, which
could lead to superior treatment for individuals suffering from
voice disorders. Furthermore, using the rate of divergence cal-
culation will allow the future investigation of mechanisms that
underlie type 4 voice signals and help determine the critical tur-
bulent energy, or amount of turbulent energy required to produce
type 4 voice. A better understanding of the signal characteris-
tics of a voice will allow clinicians to better measure progress
in treatment and indicate when a treatment is not working. Lastly,
this measure may be used to investigate which disorders are most
likely to produce type 4 signals and which treatment interven-
tion is warranted.
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