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Using a systematic computer search, a simple four-dimensional chaotic flow was found that
has the unusual feature of having a plane of equilibria. Such a system belongs to a newly
introduced category of chaotic systems with hidden attractors that are important and potentially
problematic in engineering applications.
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1. Introduction

It is widely recognized that mathematically sim-
ple systems of nonlinear differential equations can
exhibit chaos. With the advent of fast computers,
it is now possible to explore the entire parame-
ter space of these systems with the goal of finding
parameters that result in some desired characteris-
tics of the system.

Recently, many new chaotic flows have been dis-
covered that are not associated with a saddle point,
including ones without any equilibrium points, with
only stable equilibria, or with a line containing
infinitely many equilibrium points [Jafari et al.,
2013; Molaie et al., 2013; Jafari & Sprott, 2013,
2015; Jafari et al., 2015; Jafari et al., 2014; Pham
et al., 2014a; Pham et al., 2015; Pham et al., 2014b;

Kingni et al., 2014; Shahzad et al., 2015; Sprott
et al., 2015; Pham et al., 2014c; Tahir et al., 2015;
Gotthans & Petržela, 2015; Wang & Chen, 2012,
2013; Wei, 2011; Pham et al., 2014d]. The attractors
for such systems have been called hidden attractors
[Kuznetsov & Leonov, 2011; Leonov et al., 2014;
Leonov & Kuznetsov, 2013; Leonov et al., 2015;
Leonov et al., 2011; Leonov et al., 2012; Leonov &
Kuznetsov, 2013; Bragin et al., 2011], and that
accounts for the difficulty of discovering them since
there is no systematic way to choose initial condi-
tions except by extensive numerical search. Hidden
attractors are important in engineering applications
because they allow unexpected and potentially dis-
astrous responses to perturbations in a structure
like a bridge or aircraft wing.
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In this paper, we introduce a new rare cate-
gory of chaotic systems (note that there is a specific
definition for rare attractors [Chudzik et al., 2011;
Klokov & Zakrzhevsky, 2011] which we do not mean
to imply) with hidden attractors: systems with sur-
faces of equilibria. Although in such systems the
basin of attraction may intersect the equilibrium
surface in some sections, there are usually uncount-
ably many points on the surface that lie outside the
basin of attraction of the chaotic attractor, and thus
it is impossible to identify the chaotic attractor for
sure by choosing an arbitrary initial condition in the
vicinity of the unstable equilibria. In other words,
from a computational point of view these attrac-
tors are hidden, and knowledge about the equilib-
ria does not help in their localization. On the other
hand, to the best of our knowledge, there are no
chaotic systems with surfaces of equilibria in the
literature. The goal of this paper is to describe a
new category of hidden attractor and expand the
list of known mathematically simple hidden chaotic
attractors. We will show that such systems should
be constructed in a dimension greater than three.
Thus, we perform a systematic computer search for
chaos in four-dimensional autonomous systems with
quadratic nonlinearities that have been designed so
that there will be equilibrium surfaces.

It should be noted that based on [Sprott, 2011]
any new proposed chaotic system should satisfy at
least one of the following three conditions:

(1) The system should credibly model some impor-
tant unsolved problem in nature and shed
insight on that problem.

(2) The system should exhibit some behavior pre-
viously unobserved.

(3) The system should be simpler than all
other known examples exhibiting the observed
behavior.

Our proposed system satisfies both the second and
third conditions.

2. Simple Chaotic Flows with
Surfaces of Equilibria

In the search for chaotic flows with surfaces of equi-
libria, we followed a simple procedure. Consider
the general parametric form of quadratic three-
dimensional flows:

ẋ = Q1(x, y, z), ẏ = Q2(x, y, z),

ż = Q3(x, y, z),
(1)

in which

Q1 = k1x + k2y + k3z + k4x
2 + k5y

2 + k6z
2

+ k7xy + k8xz + k9yz + k10,

Q2 = k11x + k12y + k13z + k14x
2 + k15y

2 + k16z
2

+ k17xy + k18xz + k19yz + k20,

Q3 = k21x + k22y + k23z + k24x
2 + k25y

2 + k26z
2

+ k27xy + k28xz + k29yz + k30.

(2)

In order to have a surface on which all the
points are an equilibrium, there should be a mul-
tiplying factor like f(x, y, z) in all the equations, so
that an equilibrium surface occurs whenever f(x,
y, z) = 0. Thus the equations to be examined are

ẋ = f(x, y, z)Q1, ẏ = f(x, y, z)Q2,

ż = f(x, y, z)Q3.
(3)

For almost all of the common chaotic flows,
such multiplying factors are easily found but are
observed to have little effect on the strange attrac-
tors other than to translate the attractor so that
it does not intersect the surface. Thus we consider
four-dimensional systems where nontrivial surfaces
of equilibria exist.

Consider the following structure:

ẋ = y,

ẏ = z,

ż = a1y + a2z + a3xy + a4xz + a5yz

+ a6yw + a7zw + a8y
2 + a9z

2,

ẇ = a10y + a11z + a12xy + a13xz + a14yz

+ a15yw + a16zw + a17y
2 + a18z

2.

(4)

With the following conditions, this system will have
a plane of equilibrium in (x, 0, 0, w):

|a6| + |a7| �= 0,

|a3| + |a4| + |a12| + |a13| �= 0.
(5)

An exhaustive computer search was done consid-
ering thousands of combinations of coefficients a1

through a18 and initial conditions, seeking dissi-
pative cases for which the largest Lyapunov expo-
nent is greater than 0.001. For each case that was
found, the space of coefficients was searched for val-
ues that are deemed elegant [Sprott, 2010], by which
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we mean that as many coefficients as possible are
set to zero with the others set to ±1 if possible
or otherwise to a small integer or decimal fraction
with the fewest possible digits. The simplest case
we found in this way is:

ẋ = y,

ẏ = z,

ż = yw − azw,

ẇ = bxz − y2 + z2

(6)

for which a = 4 and b = 0.1 give chaotic solutions.
This system is symmetric under the transforma-
tion (x, y, z, w) → (−x,−y,−z,w) and dissipative
with a symmetric pair of attractors shown with
various projections in Fig. 1 for initial conditions
(∓30,±0.5,±0.1, 0).

The Jacobian matrix, eigenvalues of the equi-
libria, Lyapunov exponents, and Kaplan–Yorke
dimension are shown in Table 1. Two of the eigen-
values are zero everywhere, corresponding to direc-
tions tangent to the plane. In the perpendicular

directions, we can distinguish three regions of the
equilibrium plane, all unstable: For w < −1/4,
the equilibria are unstable nodes with two positive
eigenvalues. For −1/4 < w < 0, the equilibria are
unstable spirals with a complex conjugate pair of
eigenvalues and a positive real part. For w > 0, the
equilibria are saddle points with a positive and a
negative real eigenvalue. Thus the plane is nowhere
attracting.

In order to describe how the plane of equilibria
at y = z = 0 and the attractors manage to coexist,
we study the trajectory in the y–z plane and how
it approaches the plane at (y, z) = (0, 0).

As seen in Fig. 2, the trajectory goes near to (0,
0) but it does not reach it. In Fig. 3, the distance
of the trajectory from the equilibria plane (which is√

(y2 + z2)) is plotted versus time. It can be seen
that this distance can be very small but not zero.
In this time interval, the minimum of the distance
is 4.9 × 10−4. So we can say that the trajectory
does not intersect with the plane of equilibria, but
goes near it and maybe around it (note that it can
go around a plane in a four-dimensional space since

Fig. 1. Projections of the strange attractors onto various planes.
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Table 1. The Jacobian matrix, eigenvalues of the equilibria, Lyapunov
exponents, and Kaplan–Yorke dimension of the system (6) with a = 4
and b = 0.1.

Jacobian Matrix Eigenvalue LEs DKY

2
6664

0 1 0 0

0 0 1 0

0 w −4w 0

0 0 0.1x 0

3
7775

0

0

−2w ±√
4w2 + w

0.0066

0

−0.0321

−2.0991

2.2049

(a) (b)

Fig. 2. Two projections of the strange attractor onto the y–z plane which have been zoomed in around (y, z) = (0, 0).

Fig. 3. The distance of the trajectory from the equilibria plane (which is
p

(y2 + z2)) versus time.
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Fig. 4. Largest three Lyapunov exponents, Kaplan–Yorke
dimension, and local maximum of y versus b.

even an infinite plane does not divide the space into
two disjoint regions).

To illustrate the robustness of the chaos and
convergence of the Lyapunov exponents, Fig. 4
shows the three largest Lyapunov exponents, the
Kaplan–Yorke dimension, and the local maxima
of y for one of the attractors of this system for
0.05 < b < 0.3. Outside of that range, most of the
solutions are unbounded, and thus the attractor is
destroyed in a global bifurcation.

3. Conclusion

We introduced a simple four-dimensional chaotic
flow with the unusual feature of having a surface
of equilibria. From a computational point of view,
this system has a hidden attractor. It is interesting
that the trajectory in this system goes very close to
the surface of equilibria, but does not intersect with

it. We are now studying systems in which the sur-
face of equilibria is curved, including closed surfaces
such as spheres and ellipsoids.
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