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a b s t r a c t

Although Nosé’s thermostated mechanics is formally consistent with Gibbs’ canonical ensem-

ble, the thermostated Nosé–Hoover (harmonic) oscillator, with its mean kinetic temperature

controlled, is far from ergodic. Much of its phase space is occupied by regular conservative tori.

Oscillator ergodicity has previously been achieved by controlling two oscillator moments with

two thermostat variables. Here we use computerized searches in conjunction with visualiza-

tion to find singly-thermostated motion equations for the oscillator which are consistent with

Gibbs’ canonical distribution. Such models are the simplest able to bridge the gap between

Gibbs’ statistical ensembles and Newtonian single-particle dynamics.

© 2015 Elsevier B.V. All rights reserved.
1. Ergodicity of the equations of motion

Gibbs’ statistical mechanics is based on summing contributions from ensembles of similar systems. His microcanonical ensem-

ble includes all the states of a given system which have the same energy. These energy states are accessible to a single “ergodic”

system obeying Newtonian mechanics [1]. A periodic hard-disk or hard-sphere fluid is the usual example. Comparisons of Monte

Carlo microcanonical-ensemble averages with molecular dynamics dynamical averages have confirmed this equivalence, even

for small systems of just a few particles [2].

Certainly Boltzmann and Gibbs both realized that all states need to be accessible to the dynamics in order for the dynamical

and phase averages to correspond. The Ehrenfests had a practical definition of “quasiergodicity”. They used the word to indicate

that the dynamics eventually comes “arbitrarily close” to all states. Their idea expresses very well our own view of what we call

“ergodicity” in the present work.

Gibbs’ canonical ensemble sums Boltzmann-weighted contributions from all energy states. The underlying idea is that the

system of interest is weakly coupled to a heat reservoir with an ideal-gas density of states characteristic of a fixed kinetic tem-

perature T. Nosé [3,4] developed a dynamics consistent with the canonical distribution by including a “time-scaling” variable

s and its conjugate momentum ps in the equations of motion. The new momentum ps acts as a thermostat variable capable of

exchanging energy between the system and a heat reservoir at temperature T.

Hoover showed that a harmonic oscillator thermostated in this way is not at all ergodic [5]. That is, there is no initial condition

from which the oscillator is able to access all of its phase-space states. Instead, this thermostated oscillator has a nonergodic

highly-complicated multi-part phase-space structure [6]. There are infinitely-many regular nonchaotic orbits embedded in a
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Fig. 1. This Nosé–Hoover oscillator phase-space section corresponds to the plane ζ = 0. The coloring reflects the local value of the instantaneous Lyapunov

exponent at each (q, p, 0) point, with red least stable and blue most. The distributions of {q, p, ζ } in the chaotic sea are compared to Gibbs’ Gaussian distributions

at the right. The white space indicates nonchaotic regions filled with regular nested tori, some of which are shown. In the chaotic sea λ1 = 〈λ1(t)〉 = 0.0139. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
single chaotic sea. Where “chaos” controls the motion two closeby points, r1(t) and r2(t), tend to separate from one another

exponentially fast, either forward or backward in time. Such a motion is said to be “Lyapunov unstable”. The averaged separation

rate is described by the largest Lyapunov exponent, λ1:

δ ≡ |r2 − r1| � eλ1t ; λ1 ≡ 〈λ1(t)〉.
The time-averaged Lyapunov exponent λ1 is computed as an average of the instantaneous local Lyapunov exponent, λ1(t).

The local value is only rarely zero, even on conservative tori, where the long-time averages vanish. We illustrate λ1(t) for the

Nosé–Hoover oscillator in Fig. 1. We choose the simplest equations of motion,

{q̇ = p; ṗ = −q − ζ p; ζ̇ = p2 − 1} [NH].

They are time-reversible: any time-ordered sequence {+q,+p, +ζ } satisfying the motion equations has a time-reversed back-

ward twin, {+q, −p, −ζ } satisfying the same equations. The Nosé–Hoover oscillator in {q, p, ζ } space is an improved and simpli-

fied version of Nosé’s dynamics, which occupies a four-dimensional {q, p, s, ps} space [5,6].

For this Nosé–Hoover oscillator we have computed the local Lyapunov exponent on a grid of about a million points by the

simple expedient of integrating backward in time and then forward, for a time of 100 in both directions. The “reversed” trajectory

going forward in time can be compared to a nearby constrained “satellite” trajectory. We compute the instantaneous value of

the time-dependent Lyapunov exponent just as the ζ = 0 plane is crossed. In the figure red corresponds to the most positive

exponent value and blue to the most negative. Within the chaotic sea the largest (time-averaged) Lyapunov exponent is 0.0139.

See Reference 6 for details.

Outside the chaotic sea lie an infinite number of regular orbits. All have a largest time-averaged Lyapunov exponent (and also

a smallest) of zero. Because the oscillator is prototypical of systems with smooth minima in their energy surfaces a considerable

effort has been made to find motion equations providing Gibbs’ canonical distribution for it [7–18].

2. Feedback control of oscillator moments

For simplicity we choose units of force, mass, time, and temperature corresponding to choosing the oscillator force constant,

mass, angular velocity, and Boltzmann’s constant all equal to unity. In these units and without any thermostating the oscillator

motion equation is q̈ = ṗ = −q. Because distribution functions for the oscillator’s displacement and momentum can be described

in terms of their moments 〈q2mp2n〉, it was natural to control oscillator force and velocity moments with feedback variables such

as ζ and ξ :

{q̇ = p − ξq; ṗ = −q − ζ p}.
The time dependence of the friction coefficients ζ (t) and ξ (t) can be arranged so as to control one or more of the oscillator

moments:

ζ̇ = (p2/T) − 1 → 〈p2〉 ≡ T ; ξ̇ = (q4/T 2) − 3(q2/T) → 〈q4〉 ≡ 3T〈q2〉 . . . .

Bulgac and Kusnezov, along with their coworkers Bauer and Ju [15,16], considered a variety of simple systems and concluded

that cubic contributions to the control equations, such as those in the [ HH ] and [ JB ] equations below, were especially useful in

promoting chaos and ergodicity.
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Over thirty years dozens of investigators explored the ergodicity of thermostated oscillators [7–18]. Three successful mod-

els, the Hoover–Holian [13], Ju–Bulgac [15], and Martyna–Klein–Tuckerman models [17] resulted. With all of the thermostat

relaxation times set equal to unity, these models have the following forms:

q̇ = p; ṗ = −q − ζ p − (ξ p3/T); ζ̇ = (p2/T) − 1; ξ̇ = (p4/T 2) − 3(p2/T); [HH]

q̇ = p; ṗ = −q − ζ 3 p − (ξ p3/T); ζ̇ = (p2/T) − 1; ξ̇ = (p4/T 2) − 3(p2/T); [JB]

q̇ = p; ṗ = −q − ζ p; ζ̇ = (p2/T) − 1 − ξζ ; ξ̇ = ζ 2 − 1. [MKT]

In all three cases the phase-space continuity equation,

(∂ f/∂t) = −(∂ f q̇/∂q) − (∂ f ṗ/∂ p) − (∂ f ζ̇ /∂ζ ) − (∂ f ξ̇ /∂ξ).

shows that the motion equations are consistent with Gibbs’ canonical distribution for the (q, p) coordinate-momentum pair:

f (q, p) = e−q2/2T e−p2/2T /(2πT).

The distributions of the control variables ζ and ξ are likewise Gaussians:

fHH = fMKT ∝ e−ζ 2/2e−ξ 2/2; fJB ∝ e−ζ 4/4e−ξ 2/2.

If the dynamics is ergodic, filling out the full distributions, these models reproduce Gibbs’ canonical distribution.

Although there are no theoretical proofs that these dynamics obey the phase-space distributions and relationships there

is by now abundant numerical evidence that the three two-thermostat approaches given above are ergodic [19]. Recent work,

particularly that of Patra and Bhattacharya [20,21], led us to search for even simpler models, with three equations rather than

four, for thermostated oscillators. We describe our own quite novel and successful findings next.

3. Singly-thermostated ergodic oscillator models

A first look at the possibility of thermostating an oscillator with a single friction coefficient corresponds to a variety of separate

models. We consider two of them here. Both include cubic functions as suggested by Bulgac, Kusnezov, Ju, and Bauer. The first

oscillator model controls the fluctuation of the kinetic energy:

q̇ = +p; ṗ = −q − α(ζ 3 p3/T); ζ̇ = α[(p2/T)2 − 3(p2/T)].

The second controls the fluctuation of the force:

q̇ = +p − βζ 3q; ṗ = −q; ζ̇ = β[(q2/T) − 1].

Neither of these approaches is successful. In Figs. 2 and 3 we show the chaotic seas corresponding to these two models with

first α and then β equal to unity. In both cases we choose unit temperature, T = 1. We plot (q, p) points whenever the friction

coefficient ζ changes sign. These models both contain holes in the sea filled with regular toroidal regions. The one-dimensional

distribution functions shown at the right of these figures give an alternative view of the models’ inability to describe Gibbs’

canonical distribution. Both of these single-thermostat models are failures. In addition to plotting cross sections and probability
Fig. 2. Single-thermostat cubic control enforcing the fourth-moment condition, 〈p4〉 = 3〈p2〉 with α and T both equal to unity and β = 0. These choices show

large gaps in the cross section where the time-averaged Lyapunov exponent vanishes. The probability densities within the chaotic sea are shown at the right.

The initial condition used here and in all succeeding figures to access the chaotic sea is (q, p, ζ ) = (0, 5, 0). The three horizontal nullclines at {p = −√
3, 0,+√

3}
reflect the vanishing of the phase-space velocity component normal to the ζ = 0 plane. λ1 = 0.1108 in the chaotic sea.
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Fig. 3. Single-thermostat cubic control enforcing the second moment condition 〈q2〉 = 1 with β and T set equal to unity and α = 0. These choices show the

presence of at least twenty gaps (or “holes”) in the cross section where the friction coefficient ζ vanishes. The one-dimensional probability densities within the

chaotic sea are shown at the right along with the Gibbs’ distributions from the canonical ensemble. λ1 = 0.0905 in the chaotic sea.
densities one can evaluate the likelihood of deviations from Gibbs’ values as measured by the χ2 statistic described in Wikipedia,

Numerical Recipes, and many other texts.

At least in retrospect it is natural to consider the possibility that a single friction coefficient ζ might somehow control two

moments simultaneously, rather than just one. For example, consider simultaneous control of fluctuations in both the force �
〈q2〉 and the kinetic energy � 〈p4 − 3p2T〉:

q̇ = +p − βζ 3q; ṗ = −q − α(ζ 3 p3/T);
ζ̇ = β[(q2/T) − 1] + α[(p2/T)2 − 3(p2/T)] [HS].

Our numerical work indicates that this [HS] (Hoover–Sprott) idea has merit. With two free parameters (α, β) there are an infinite

number of models which could be tested against the predictions of Gibbs’ canonical ensemble. This variety could be extended

further by including one or more relaxation times. To choose among the combinations of {α, β} it is convenient to use computer-

ized searches, either seeking minimum deviations with Monte Carlo searches [22] or by choosing minima from grid-based arrays

of (α, β) results.

We use standard Runge–Kutta integration methods throughout this work, fourth-order and fifth-order as well as two types

of “adaptive” integrators. In the adaptive cases the timestep dt is doubled if the error is “small” (typically 10−16) and halved if the

error is “large” (typically 10−12). The error estimate compares either fourth-order and fifth-order results with the same timestep

dt or two fourth-order results with dt and dt/2. There are no significant differences in the conclusions reached with any of these

several methods. We carried out independent calculations in Nevada and in Wisconsin.

With either two-parameter approach, the computation of moments is straightforward. Optimizing the dynamics so as to seek

out the Gibbs distribution can be accomplished by evaluating either [1] moments of the distribution f(q, p) or [2] values of the

distribution itself. To follow the first approach we minimized the summed-up squared deviations of the first five nonvanishing

Gibbsian moments:

σ 2 ≡ [(q4/T 2) − 3] + [(q2 p2/T 2) − 1] + [(p4/T 2) − 3] + [(q2/T) − 1] + [(p2/T) − 1].

We evaluated σ 2 for thousands of runs. Each used 100 million timesteps for a particular pair of candidate values (α, β). Time-

averaged values of σ 2 suggest the range 0.25 < α < 0.65 with 1 < α + β < 1.1. Figs. 4–6 show three typical cross-sectional plots

of {q, p} sections selected in this way. Fig. 4, with (α,β) = (0.411, 0.689), shows 26 noticeable “holes” with a total measure near

one percent of the total. The figure also illustrates the figure-eight-shaped nullcline where trajectories move parallel to the ζ = 0

plane with ζ̇ ≡ 0;

β[(q2/T) − 1] + α[(p2/T)2 − 3(p2/T)] ≡ 0.

Despite all the holes indicating nested tori the distribution functions and their first several moments are close to the Gibbsian

ergodic values. Evidently there is no real substitute for looking at the sections themselves.

Fig. 5, with (α,β) = (0.354, 0.746), likewise provides “reasonable” distributions and moments, but has four holes where

nested tori penetrate the cross section. Figs. 4 and 5 hint at the extensive zoo of topologies hidden in the (α, β) plane. There are

in addition patches of values which evidently correspond to ergodicity. Two examples which we think are likely ergodic are:

(0.273, 0.827) and (0.274, 0.826).
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Fig. 4. (α,β) = (0.411, 0.689). A close inspection shows 26 prominent “holes” with a total measure less than one-half percent of the total. The figure also illus-

trates the typical figure-eight-shaped nullcline where the trajectory motion is parallel to the ζ = 0 plane. Because the deviations of the various one-dimensional

probability densities are visually indistinguishable from Gibbs’ canonical distributions none of them is shown in Figs. 4–6. Here λ1 = 0.1621 in the chaotic sea.

Fig. 5. (α,β) = (0.354, 0.746) likewise provides “reasonable” distributions and moments, but has four holes where nested tori penetrate the cross section. The

tenfold “zoom” of one hole shows their roughly triangular shape. Here λ1 = 0.1525 in the chaotic sea.
The first of these is plotted in Fig. 6. It has no noticeable “holes”, indicating ergodicity within an accuracy of about one part per

hundred thousand. Again the Figure-Eight-Shaped white space indicates the nullcline, which depends weakly on the precise

value of the ratio (α/β).

One can only search for “holes” in sections visually. An example, which we thought to be ergodic after a cursory inspec-

tion, is the combination (α,β) = (0.495, 0.555), not shown here because visualizing the holes requires magnification. A close

inspection of the ζ = 0 section reveals 36 tiny holes (!) corresponding to a single thin set of nested tori, including two near

(q, p) = (±1.5, 0.0). These tori cross the ζ = 0 plane in 36 separate places.

Because the numerical value of the summed squared-moment errors depends upon both the initial conditions and the length

of the trajectories a reasonable procedure is to investigate visually, as second and third criteria for ergodicity, the distributions

themselves as well as their (q, p) cross sections. Such inspections reveal the (α, β) pairs most promising from the standpoint of

ergodicity. The distributions found for the cross sections of the Figs. 1–3 are included in those figures. From the visual standpoint

such histograms show no significant deviations from the ergodic distribution in the data displayed for Figs. 4 and 5, despite

the clear nonergodicity seen in the cross sections. Our results suggest overall that a visual inspection of two-dimensional cross

sections is the most reliable way to identify ergodicity in these three-dimensional dynamical systems.

An alternative method for evaluating ergodicity is to compute the probability that a measured distribution of data points,

such as {qi} or {pi} or {ζ i} comes from the expected Gaussian distribution of such points. Comparing the probabilities for the

three choices demonstrates the accuracy of such a test. So long as the sampling bins contain many points the mean-squared
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Fig. 6. (α,β) = (0.273, 0.827) is just one of an infinite number of combinations that is apparently ergodic. λ1 = 0.1450.
deviation of the bin populations should be approximately equal to Gibbs’ value. Such tests implementing χ2 criteria can serve as

useful indicators for deviations from ergodicity. In any doubtful case visual inspection is the only reliable criterion.

4. Phase-space density flows

An apparent alternative to solving the motion equations {q̇, ṗ, ζ̇ } = v for a specimen oscillator is the solution of Liouville’s

continuity equation, ḟ/ f = −∇ · v, so as to study the details of the convergence (or lack of it) to Gibbs’ canonical distribution. We

briefly considered this approach and developed a straightforward finite-difference program simulating the three-dimensional

flow of the probability density f(q, p, ζ , t). This program quickly led to negative densities. A conservative approach, passing prob-

abilities between adjacent cells, can be implemented with a swarm of N moving particles, all of equal probability. The instan-

taneous summed-up density of these particles at any point in phase space can be made continuous and twice-differentiable by

defining and computing a smooth-particle density. This idea is simplest to implement using Lucy’s weight function [23] w(r < h)
with a range h of order two or three times the nearest-neighbor particle spacing:

f (q, p, ζ ) ≡
N∑

i

w(r − ri); w(z = r/h < 1) ∝ (1 + 3z)(1 − z)3.

We explored this idea using an initial condition f(0 < q, p, ζ < 1) ≡ 1 and noticed that such a localized initial value requires

several Lyapunov times to smooth out. The particulate basis of the density guarantees that there is no tendency for this solution

of the Liouville flow to stabilize. The time-reversible nature of the flow guarantees that a smooth stationary solution can only

be obtained by adding in a time-averaging step. A detailed investigation of these ideas is likely worthwhile in that the compact

three-dimensional nature of these flows makes visualization easy.

5. Summary

It appears highly likely that a single thermostat variable is enough to provide Gibbs’ canonical distribution for a thermostated

harmonic oscillator. This question has stimulated a relatively complex and varied literature over a 30-year period. The mathe-

maticians are content to prove nonergodicity [24]. The computational physicists, ourselves included, have been prone to give up

on the possibility of ergodicity with a single thermostat variable [25]. Thus our finding that one thermostat is enough was a pleas-

ant surprise. The (α, β) model detailed here seems likely to be the simplest smoothly deterministic, ergodic, time-reversible, and

chaotic system for which the phase-space distribution is exactly known.
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