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Perpetual Points (PPs) have been introduced as an interesting new topic in nonlinear dynamics,
and there is a hypothesis that these points can determine whether a system is dissipative or
not. This paper demonstrates that this hypothesis is not true since there are counterexamples.
Furthermore, we explain that it is impossible to determine dissipation of a system based only
on the structure of the system and its equations.
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1. Introduction

Recently, many new chaotic flows have been dis-
covered that are not associated with a saddle point,
including ones without any equilibrium points, with
only stable equilibria, or with a line containing
infinitely many equilibrium points [Jafari & Sprott,
2013; Jafari et al., 2013; Kingni et al., 2014; Lao
et al., 2014; Molaie et al., 2013; Pham et al.,
2014a; Wang & Chen, 2012, 2013; Wei, 2011; Pham
et al., 2014b]. The attractors for such systems have
been called hidden attractors [Leonov & Kuznetsov,
2010, 2013a, 2013b, 2013c, 2014; Leonov et al.,
2011a; Leonov et al., 2011b, 2012; Leonov et al.,
2014; Leonov et al., 2015; Bragin et al., 2011;
Kuznetsov et al., 2010; Kuznetsov et al., 2011],

and that accounts for the difficulty of discover-
ing them since there is no systematic way to
choose initial conditions except by extensive numer-
ical search. Hidden attractors are important in
engineering applications because they allow unex-
pected and potentially disastrous responses to per-
turbations in a structure like a bridge or aircraft
wing. Another topic that has attracted increasing
attention is multistability and coexisting attrac-
tors [Angeli et al., 2004; Pisarchik & Feudel, 2014;
Blazejczyk-Okolewska & Kapitaniak, 1996, 1998;
Kapitaniak, 1985; Maistrenko et al., 1997; Silchenko
et al., 1999].

On the other hand, Perpetual Points (PPs)
have been introduced as an interesting new topic
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in nonlinear dynamics [Prasad, 2015; Dudkowski
et al., 2015]. It has been shown that these points can
be used to locate hidden attractors and to find coex-
isting attractors in multistable systems [Prasad,
2015]. It has also been claimed that PPs can be
used to determine whether a system is dissipative
or not. Many examples were investigated that sup-
ported this conjecture [Prasad, 2015].

In this note we show that this hypothesis is not
true for all cases. Moreover, we believe that it is
impossible in general to determine dissipation based
only on the structure of the system and its equa-
tions. In the next part we describe PPs in a simple
way (for more details readers can see the original
paper [Prasad, 2015]). In Sec. 3, we use examples to
prove that this hypothesis is not true for all cases.
In Sec. 4, we claim that it is impossible to deter-
mine if a system is dissipative based only on the
structure of the system and its equations. Finally,
Sec. 5 gives the conclusions.

2. Perpetual Points

Consider a general dynamical system

v1 = ẋ1 = f1(x1, x2, . . . , xn)

v2 = ẋ2 = f2(x1, x2, . . . , xn)
...

vn = ẋn = fn(x1, x2, . . . , xn)

(1)

where x1, x2, . . . , xn are dynamical variables
(states), v1, v2, . . . , vn are the time derivatives of
the states (velocities) and f1(X), f2(X), . . . , fn(X)
are the evolution equations (velocity vectors). It
is well known that the fixed points (FPs) of the
above system are points (x∗

1, x
∗
2, . . . , x

∗
n) at which

the velocities of all states are zero. We know that
analysis of the FPs plays an essential role in dynam-
ical systems [Prasad, 2015; Ott, 2002; Strogatz,
2014]. Since acceleration is the time derivative of
velocity, we obtain

a1 = ẍ1 = ẋ1
∂f1

∂x1
+ ẋ2

∂f1

∂x2
+ · · · + ẋn

∂f1

∂xn

a2 = ẍ2 = ẋ1
∂f2

∂x1
+ ẋ2

∂f2

∂x2
+ · · · + ẋn

∂f2

∂xn
...

an = ẍn = ẋ1
∂fn

∂xn
+ ẋ2

∂fn

∂xn
+ · · · + ẋn

∂fn

∂xn

(2)

where a1, a2, . . . , an are the second derivatives
of the states (accelerations). It is obvious that

for all the FPs, all the accelerations are zero,
since v1, v2, . . . , vn are zero. By definition [Prasad,
2015], Perpetual Points (PPs) are points like
(x∗

1, x
∗
2, . . . , x

∗
n) at which all the accelerations are

zero but the velocities are not. For more details,
readers can see the original paper [Prasad, 2015].

3. Perpetual Points Cannot
Determine Whether a System
is Dissipative or Not

There is a hypothesis (although without mathemat-
ical proof) in [Prasad, 2015], which suggests that if a
system has a PP, then it is dissipative, and if not, it
is conservative. We investigate this hypothesis using
two examples:

3.1. Example one

Consider the Sprott Case A system [Silchenko et al.,
1999], which is one of the oldest examples of a
chaotic flow with no equilibria:

ẋ = y

ẏ = −x + yz

ż = 1 − y2.

(3)

Lyapunov exponents of this system are (0.0139,
0,−0.0139) and the Kaplan–Yorke dimension is 3.0.
This system is a special case of the Nose–Hoover
oscillator [Hoover, 1995] and describes many natu-
ral phenomena [Posch et al., 1986]. This is a conser-
vative system, and thus it does not have attractors,
but there is a chaotic sea coexisting with a set of
nested tori as shown in Fig. 1.

This system has no FPs. The PPs for this
system can be obtained by solving the following
equations:

ẍ = ẏ = 0 → −x + yz = 0

ÿ = −ẋ + ẏz + yż

= 0 → −y3 − xz + yz2

= −y3 + z(−x + yz) = 0

z̈ = −2yẏ = 0 → −2y(−x + yz) = 0.

(4)

The solution is (0, 0, z), which means there is
an infinite line of PPs along the z-axis. Thus the
hypothesis would predict that it is dissipative, but
in fact it is conservative as can be shown by numer-
ically averaging the trace of the Jacobian matrix
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(a) (b) (c)

Fig. 1. The system in Eq. (3) with initial conditions (0, 5, 0) gives a chaotic sea (Red) and (0, 1, 0) gives a conservative torus
(Green).

along the orbit (TR(J) = 〈z〉 = 0) to verify that it
is accurately zero.

3.2. Example two

Consider the following 2-D system:

ẋ = f(y), ẏ = g(x). (5)

This system is obviously conservative since the
trace of the Jacobian matrix is zero. This system
has a Hamiltonian of the following form:

H = F (y) − G(x) = const (6)

where F (y) =
∫
f(y)dy and G(x) =

∫
g(x)dy.

Proof. ∂H
∂t = Ḣ = Ḟ − Ġ = ẏ ∂F

∂y − ẋ∂F
∂x = g(x) ×

f(y) − f(y)g(x) = 0. �

It is easy to make system (5) have PPs:

ẍ = ẏ
∂f

∂y
= g(x)

∂f

∂y
, ÿ = ẋ

∂g

∂x
= f(y)

∂g

∂x
. (7)

For system (5), FPs are the points for which
f(y) = g(x) = 0. Equations (7) will be zero for
these points. However, the equations are also satis-
fied and thus have PPs provided

∂f

∂y
=

∂g

∂x
= 0 and g(x) �= 0 and f(y) �= 0.

(8)

For example, consider the system

ẋ = y2 − 1

ẏ = x2 − 1

FPs = (±1,±1)

(9)

ẍ = 2yẏ = 2y(x2 − 1)

ÿ = 2xẋ = 2x(y2 − 1)

PP = (0, 0).

(10)

This means that a conservative system has PPs,
which contradicts the hypothesis in [Prasad, 2015].

4. Can We Determine Whether a
System is Dissipative or Not?

There are some systems of ODEs that have conser-
vative solutions for some initial conditions and dis-
sipative solutions for others even for all the parame-
ters fixed. Thus, in general, it is impossible to deter-
mine whether a system is dissipative or not based
only on the structure of the system and its equa-
tions, since there are cases [Sprott & Li, 2014] in
which the initial conditions play an important role
in the dynamics. To clarify the issue, we show some
examples of systems with coexisting behaviors.
Recently, Sprott, in a numerical search for chaotic
systems that have no equilibrium points, discovered
a simple three-dimensional time-reversible system
of ODEs with quadratic nonlinearities and the prop-
erty that it exhibits conservative behavior for some
initial conditions and dissipative behavior for others
[Sprott, 2014; Sprott et al., 2014] as given by

ẋ = y + 2xy + xz

ẏ = 1 − 2x2 + yz

ż = x − x2 − y2.

(11)

The dissipation is given by Tr(J) = 2(y + z)
and the time average of 〈y + z〉 is negative for
some initial conditions such as (x0, y0, z0) = (2, 0, 0)
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(a) (b) (c)

Fig. 2. The Eq. (11) system with initial conditions (2, 0, 0) gives a dissipative strange attractor (Red) and (1, 0, 0) gives a
conservative torus (Green).

(a) (b) (c)

Fig. 3. The Eq. (12) system with initial conditions (−2.3, 0, 0) and (3.5, 0, 0) gives interlinked conservative tori (Red and
Green) and (−2.7, 0, 0) gives a dissipative limit cycle (Blue).

and zero for others such as (x0, y0, z0) = (1, 0, 0).
The first initial condition gives a strange attractor
with Lyapunov exponents (0.0540, 0,−0.1575) and
a Kaplan–Yorke dimension of 2.3429, and the sec-
ond initial condition gives a torus with Lyapunov
exponents (0, 0, 0) and a dimension of 2.0. Thus the
conservative regime has quasiperiodic orbits, while
the dissipative regime is chaotic. These two behav-
iors are shown in Fig. 2.

Another example of a system with coexisting
behaviors is the thermostated harmonic oscillator
where the imposed temperature field is a function
of the oscillator coordinate x [Sprott, 2014; Sprott
et al., 2014] given by

ẋ = y

ẏ = −x − yz

ż = y2 − 1 − 0.42 tanh(x).

(12)

This system shows interlocked phase-space
behaviors, two conservative invariant tori and a

dissipative limit cycle as shown in Fig. 3. The
tori are produced using the initial conditions
(x0, y0, z0) = (−2.3, 0, 0) and (3.5, 0, 0) with Lya-
punov exponents (0, 0, 0). The limit cycle is pro-
duced using the initial conditions (−2.7, 0, 0) with
Lyapunov exponents (0,−0.0256,−0.0788).

As these examples show, one system can have
conservative and dissipative behavior for the same
parameters and different initial conditions. Thus
features based on the structure of the system cannot
indicate (in general) whether a system is dissipative
or not, although sometimes it can.

5. Conclusion

The hypothesis of the relation between PPs and dis-
sipation of systems (which suggests that if a system
has a PP then it is dissipative, and otherwise it
is conservative) is not true for all cases. Further-
more, we explain that in general, it is impossible
to determine dissipation of systems based only on
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their structure and equations, and we clarify the
issue with examples.
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