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ABSTRACT
We relate progress in statistical mechanics, both at and far from equilibrium, to advances in the theory 
of dynamical systems. We consider computer simulations of time-reversible deterministic chaos in 
small systems with three- and four-dimensional phase spaces. These models provide us with a basis for 
understanding equilibration and thermodynamic irreversibility in terms of Lyapunov instability, fractal 
distributions and thermal constraints.

1. Introduction

Nonequilibrium Molecular Dynamics and Dynamical Systems 
!eory have been our main research interests for about 50 years, 
the same period over which Moore’s Law has described the 
growth of our primary tool, computation. In 1959, thermody-
namic information was mainly gleaned from series expansions 
of pressure in powers of the density and integral equations for 
the pair distribution function. !at was the year when Berni 
Alder and Tom Wainwright described a new simulation method 
[1] now called ‘molecular dynamics’ in their prescient Scienti"c 
American article ‘Molecular Motions’:

One of the aims of molecular physics is to account for the bulk 
properties of matter [pressure P, temperature T, energy E, ...] in 
terms of the behavior of its particles. High-speed computers are 
helping physicists realise this goal.

At that time simulating the motion of a few hundred particles 
presented a computational challenge. Today’s biomolecule simu-
lations model at least many thousand and perhaps a few million 
atomistic degrees of freedom. A#er several Nobel prizes [2] this 
molecular dynamics method is familiar textbook material, while 
the virial series for the pressure and the pair-distribution integral 
equations keep company with the dinosaurs.

During this same period, our understanding of dynamical 
systems ($ows described by a few nonlinear ordinary di%eren-
tial equations) has undergone explosive growth. Ed Lorenz’s 
three-equation Butter$y Attractor is a clear-cut demonstration 
of ‘chaos’, the exponential ‘Lyapunov instability’ o#en found in 
systems of three or more ordinary di%erential equations. !e 
Lyapunov spectrum of exponential growth and decay rates pro-
vides a topological description of evolving phase-space densities. 
!e discovery that time-reversible $ow equations can describe 
irreversibility through the formation of fractal strange attractors 
furnished a new geometric interpretation of the Second Law of 

!ermodynamics in terms of an underlying reversible mechan-
ics.[3]

!e correspondence between manybody molecular dynamics 
and the concepts developed in dynamical systems theory involves 
"ve key ideas:

(1)    Simulating nonequilibrium systems requires a new 
nonequilibrium molecular dynamics which, unlike 
Hamiltonian mechanics, includes thermodynamic 
control variables.

(2)    !ese control variables, such as thermostats or ergos-
tats, can provide ergodic equilibrium dynamics, rep-
licating Gibbs’ canonical distribution.

(3)    Away from equilibrium this same approach, while 
time reversible, can promote and maintain nonequi-
librium steady states.

(4)    Despite the time-reversible nature of the nonequi-
librium $ow equations, the resulting phase-space 
description is dissipative, on average, and generates 
multifractal attractors.

(5)    !e multifractal nature of nonequilibrium steady 
states con"rms their rarity and provides a mechanical 
explanation of the Second Law of !ermodynamics.

!e dynamical systems approach to irreversible processes 
continues to provide a new insight for both equilibrium and 
far-from-equilibrium $ows.[4,5] Our intent here is to illustrate 
this insight by the exploration of the simplest possible dynamical 
models for nonequilibrium steady states. We begin with the Gal-
ton Board problem,[5–7] a steady "eld-driven $ow with impul-
sive hard-disk collisions. We continue, and then conclude, with 
a variety of generalised harmonic oscillator problems.[8] !ese 
illustrate heat $ow and ergodic fractal formation with just three 
ordinary di%erential equations. !e hard-disk Galton Board and 
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this idea the "eld’s acceleration is moderated by a deterministic 
time-reversible ‘thermostat’ force acting parallel to the particle’s 
velocity. !e resulting trajectory is isokinetic and continuously 
dissipates "eld energy as heat. !e "eld is the source of energy. 
!e heat reservoir represented by a thermostat force is the com-
pensating heat sink. !e overall description of this ‘isothermal’ 
(in the isokinetic sense of a constant kinetic energy) Galton 
Board model system is the prototypical simplest mechanical 
example of a time-reversible nonequilibrium steady state. !e 
computation of its dynamics involves solving four coupled ordi-
nary di%erential equations for the (x, y) location of the falling 
particle and its velocity (px , py) and is punctuated by hard-disk 
scatterer collisions. For simplicity the falling particle has unit 
mass and speed. We choose the accelerating "eld parallel to the 
y axis, which is perpendicular to one set of rows of scatterer 
particles, as shown in Figure 1.

!e resulting di%usive motion through such a periodic array 
of scatterers is easy to program, particularly if the scatterers 
are motionless ‘hard disks’. One simply integrates the motion 
equations for (x, y, px , py) until the moving particle "nds itself 
‘inside’ a scatterer ( | r | < 1∕2). !en the dynamics is returned 
to the previous (x, y) coordinate set. !ere the sign of the radial 
velocity is changed from negative to positive, and the integration 
is continued. We have found that Runge–Kutta integration is 
the simplest useful method for generating trajectories between 
collisions. !e alternative analytic approach,[6] though feasible, 
is cumbersome.

In between collisions, the equations of motion, with the "eld 
−E in the y direction, are:

We choose the linear ‘frictional force’, −!p, to enforce an isoki-
netic constant-speed constraint. !is linear force is the simplest 
choice. It also follows directly from Gauss’ Principle of Least 

ẋ = px ; ẏ = py ; ṗx = −"px ; ṗy = −E − "py .

the generalised conducting-oscillator problems display all of the 
key ideas linking manybody mechanics to small-system analogs.

!e plan of this work is as follows. We "rst review the 
Galton Board problem and use that example to illustrate the 
fractal attractors generated by time-reversible nonequilib-
rium steady states. We visualise the interior of these attractors 
through two-dimensional cross sections of their three-dimen-
sional phase-space distributions. !e Galton Board is one of the 
simplest chaotic problems. It is deterministic and ergodic in its 
three-dimensional phase space. !e ergodicity is enabled by the 
(exponential) Lyapunov instability of its hard-disk collisions.

We then explore ergodicity (dynamical access to all phase-
space states) for smoothly-continuous harmonic-oscillator 
problems, at and away from thermal equilibrium. Many of 
the nonequilibrium versions of oscillator problems provide 
dissipative strange attractors in just three or four phase-space 
dimensions. We point out that phase-space cross sections are 
a particularly useful means to visualise the boundary between 
the chaotic sea and the regular toroidal regions which thread 
through it. We brie$y discuss the possibility of numerical imple-
mentations of Liouville’s phase-space $ow equations. Finally we 
tie together these simple microscopic example problems to their 
real-world analogs in macroscopic thermodynamics and com-
putational $uid mechanics.

2. The Galton board–ergodic, time-reversible, 
dissipative

Our goal throughout is to connect dynamics, statistical mechan-
ics and nonequilibrium systems with the simplest possible exam-
ples. !e Galton Board models Sir Francis Galton’s lecture table 
probability demonstration based on the chaotic motion of par-
ticles introduced at the top and in the centre of a "xed lattice of 
scatterers. In our idealised mechanical steady-state model this 
"eld-driven motion occurs at constant speed. To implement 

Figure 1. (Colour online) Description of collisions in the Galton Board in terms of the angles ! and !. At a collision the radial velocity, − cos(!), changes sign while the 
tangential velocity sin(!) is unchanged. The Galton Board at the right has been at the University of Wisconsin – Madison Physics Museum since 1917.
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Constraint,[9] where the constraint condition controls the 
kinetic energy, for which we choose

!e linear constraint force, −!p , is su'cient to satisfy the isoki-
netic condition:

A unit cell, within which the motion occurs, is pictured in Figure 
1. It is convenient to think of the moving particle as a mass point 
and the scatterers as "xed particles of unit diameter. At each 
collision (de"ned by the two angles ! and ! shown in Figure 
1), the radial component of the velocity [− cos(!)] is reversed 
from negative to positive and the motion is continued with the 
resulting post-collision values of {px , py}. By choosing a scat-
terer density of four-"#hs the maximum close-packed density 
we avoid the possibility of a ballistic collisionless trajectory. !e 
inevitable scatterer collisions make possible (and for moderate 
"eld strengths, inevitable) di%usive piecewise-continuous trajec-
tories punctuated by a series of scatterer collisions.

!ree distinct types of solution result, conservative, dis-
sipative and periodic, with the type determined by the initial 
condition and the "eld strength Ey. For zero "eld the motion is 
ergodic and conservative, obeying the equilibrium version of 
Liouville’s !eorem, ḟ (x, y, px , py) ≡ 0. We use the word ‘ergodic’ 
here to describe a dynamics that follows the Ehrenfests’ notion of 
‘quasiergodicity’, a dynamics which eventually comes arbitrarily 
close to all phase space states consistent with the system’s kinetic 
energy. In the equilibrium ergodic case all conceivable collision 
types do occur, and with a uniform probability when plotted in 

K ≡ (p2x + p2y)∕2 = (1∕2); K̇ ≡ 0.

K̇ ≡ 0 = pxṗx + pyṗy = −"p2x − Epy − "p2y ⟶ " = −Epy .

the [!, sin(")] plane. As the "eld is increased it becomes apparent 
that the distribution of collisions, though becoming nonuniform, 
remains ergodic, with nonzero probability everywhere for "eld 
strengths up to three and a bit more. At higher values of the 
accelerating "eld (E = 4, for example) trajectories can become 
trapped in stable periodic orbits, some conservative and some 
dissipative as can be seen in Figure 2.

Quantitative investigation of the two-dimensional phase-
space cross sections illustrated in Figure 2 reveals that the den-
sities of points in the vicinity of (1) a randomly-chosen [!, sin(")] 
point ∝ rD1 and of (2) a collisional [!, sin(")] point ∝ rD2 are dif-
ferent, with 2 ≥ D1 ≥ D2 ≥ 1. !ese power laws de"ne [4] (1) 
the ‘information dimension’ and (2) the ‘correlation dimension’ 
of the various fractal cross sections. Both of these two fractional 
dimensions vary with "eld strength.

Despite this singular fractal behaviour there is no problem 
computing the mean vertical current and the equivalent con-
ductivity. New phenomena appear at "eld strengths somewhat 
higher than E = 3: stable sequences of repeated collisions begin 
to occur. In the full three-dimensional phase space, which 
includes an additional time dimension for the free-$ight por-
tion of the trajectories, the stable sequences are described by 
regular conservative tori in [!, sin("), t] space or by dissipative 
limit cycles in which "eld energy is absorbed by the time-re-
versible friction force −!p. Examples of both types are shown 
in Figure 3. !e family of two-bounce horizontal orbits shown 
at the le# has no net current. In contrast, the ten-bounce orbit 
on the right is strongly dissipative with a net downward current. 
!is motion generates a one-dimensional limit-cycle orbit in the 
three-dimensional phase space and would be represented by "ve 
zero-dimensional dots in a collisional cross-sectional picture of 
the type shown in Figure 2.

Figure 2. Field dependence of Galton Board Collisions. Each collision corresponds to a single point: [0 < ! < "] is the abscissa with [−1 < sin(#) < +1] the ordinate. 
Each of these four sample phase-space cross sections illustrates 300,000 successive collisions. At zero field strength, E = 0, the distribution of points is completely uniform 
with a constant density of points.
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less than that of the phase spaces in which they are embedded.
[10] !ese attractors are ‘strange’ [fractal] and ‘chaotic’ [because 
any small phase-space perturbations to them grow exponentially 
fast], despite the continuous equations that generate them and 
despite their zero-volume attractive nature. !e dimensionality 
loss exhibited by attractors increases in an irregular manner with 
the "eld-induced departure from equilibrium.

!ese fractal distributions are fully consistent with the Second 
Law of !ermodynamics. !at Law declares that only the dissi-
pative forward-in-time versions of the nonequilibrium trajecto-
ries are observable. !e time-reversed versions of the dynamics 
– unphysical trajectories which convert heat-reservoir energy 
into work – are both mechanically unstable and computationally 
unobservable. Nonequilibrium dissipative trajectories seek out 
fractal attractors when followed forward in time. Reversed tra-
jectories make up an unstable unobservable phase-space repellor, 
a fractal phase-space object which repels rather than attracts 
nearby trajectories and is unstable to perturbations. Picturing 
such a repellor in [!, sin(")] space is easy. Simply re$ect the frac-
tal attractor objects of Figure 2 about their horizontal centre 
lines. !is changes the sign of the velocity at each collision and 
is equivalent to picturing the motion backward in time.

!e ubiquitous fractal nature of nonequilibrium steady 
states, singular everywhere, indicates the di'culty inherent in 
attempting their mathematical description. It also illustrates the 
extreme rarity of the nonequilibrium states. Because the proba-
bility density for fractals is singular (rather than smooth) every-
where Gibbs’ entropy for these structures diverges (to minus 
in"nity).[6] Although the motion of the hard-disk-scatterer 
Galton Board problem is ergodic for moderate "elds, with all 
states accessible, typically, for smoothly continuous potentials 
there are nonergodic situations for simple mechanical systems. 
!e mechanical treatment of theoretical models with smooth 
potential minima is complicated by the complex phase-space 
structure of Hamiltonian chaos – ‘islands’ (the two-dimensional 
cross sections of three-dimensional tori), chains of islands, ..., 
and the endless details of structure on all scales, from large to 
the microscopic and to the unobservably small.[11]

!is unsettling complex situation can be avoided, or simpli"ed, 
by the judicious use of thermostating forces. !e best problem 
area for such explorations is the one-dimensional harmonic oscil-
lator, the prototype of smooth Hamiltonian systems. We will see 
how a thermostated oscillator can be modelled so as to avoid the 
in"nitely many nonergodic solutions of Hamiltonian mechanics, 
while providing insight into irreversible processes described by 
simple phenomenological laws. Let us turn next to the thermo-
stating of that simplest case, a single harmonic oscillator with a 
speci"ed temperature T rather than a "xed Hamiltonian energy E.

3. Nosé seeks Gibbs’ canonical ensemble via chaos

Willard Gibbs invented his ‘canonical’ (in the sense of ‘simplest’ 
or ‘prototypical’) ensemble in order to link microscopic phase-
space dynamics to macroscopic temperature and thermodynam-
ics. His canonical ensemble collects together all the energy states 
accessible to a system in contact with a heat reservoir at a tem-
perature T. !e relative weight of each such state in the ensemble 
is the familiar Maxwell-Boltzmann weighting proportional to 
e−E∕kT. Here, k is Boltzmann’s constant.

Let us summarise our "ndings from this simple nonequilib-
rium steady-state problem. !e Galton Board is deterministic, 
time-reversible and dissipative. With the "eld ‘o% ’ the motion 
is ergodic – it comes arbitrarily close to any collision type from 
headon [sin(!) = 0] to glancing [sin(!) = ±1] and anywhere from 
the top (! = ") to the bottom (! = 0) of a scatterer. !is ergodic-
ity provides a direct connection between Newton’s dynamical and 
Gibbs’ statistical treatments of mechanical systems.

With the "eld ‘on’ the dynamics becomes fractal, though still 
ergodic for moderate "eld strengths. !e phase-space descrip-
tion becomes a fractional-dimensional representation of collisions 
which is singular, nonuniform and dissipative. !e dissipation 
re$ects the conversion of gravitational work into heat through 
the mechanism of a heat reservoir. Although the motion and the 
motion equations are perfectly time-reversible, the typical "eld-
driven case is at the same time dissipative. !e conversion of "eld 
energy Ey to extracted heat is imposed by the friction coe'cient !:

Dividing the dissipated heat !p2 by the temperature, T = (p2∕k) 
shows that the friction coe'cient is also equal to the instantaneous 
irreversible entropy production, ! = (Ṡ∕k) where k is Boltzmann’s 
constant. In our numerical work we set it equal to unity, k ≡ 1.

Because the Galton Board distributions are fractal, with zero-
area cross sections [having fractal dimensionalities less than two] 
the random-sampling probability of "nding a point [!, sin(")] on 
the strange attractor is precisely zero. If one attempts to de"ne 
a limiting probability density in the cross sections by counting 
points in small cells, he soon discovers that the density does not 
have a small-cell limiting value. Instead it diverges as a frac-
tional power of the cell size. !is "nding was both surprising 
and illuminating in 1987.[3,6] Since then it has turned out that 
such fractal attractors are typical representations of nonequilib-
rium steady states, and not just for small systems. Manybody 
simulations of time-reversible shear $ows and heat $ows like-
wise provide strange attractors with fractional dimensionalities 

⟨ !p2 ⟩ = ⟨ 2!K ⟩ = ⟨ ! ⟩ = ⟨ Ṡ∕k ⟩ > 0.

Figure 3. Conservative tori at E = 4 and a dissipative limit cycle at E = 6. The two-
bounce trajectories shown at the left occur in the prominent ‘hole’ seen in the E = 4 
collision plot of Figure 2. The ten-bounce periodic orbit at the right, with E = 6

, corresponds to five zero-area points in the [!, sin(")] representation of Figure 2.
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continuity equation to the oscillator equations of motion aug-
mented by the de"nition of a time-dependent friction coe'cient 
!:

!is friction coe'cient acts as a ‘thermostat’, steering the instan-
taneous temperature p2 toward the target thermostat temperature 
T. We can verify that this three-equation model is consistent with 
the canonical distribution for q and p augmented by a Gaussian 
distribution for !:

To show this we evaluate the time-rate-of-change of the probabil-
ity density f (q, p, !) at a "xed location (q, p, !) in the three-dimen-
sional phase space where the local $ow velocity is v = (q̇, ṗ, "̇ ):

Because (!f ∕!t) vanishes everywhere the Nosé–Hoover equa-
tions are consistent with Gibbs’ canonical distribution.

Although the smooth and simple three-dimensional Gaussian 
distribution is the exact stationary solution of the Nosé–Hoover 
motion equations, the new dynamics conceals an intricate 
complexity connected with ‘chaos’, the exponential sensitivity 
of calculated trajectories to perturbations of the initial condi-
tions. !e three [ NH ] motion equations included here are just 
the necessary minimum for chaos. But these necessary three are 
not necessarily su!cient, as is easily revealed by a numerical 
exploration of the oscillator’s phase space distribution f (q, p, !)
. Whether or not there is chaos depends, in a highly-complicated 
way, upon the initial conditions.

To outline the chaos’ pro"le, let us advance a trajectory 
beginning at a known chaotic initial condition such as (q, p, !) 
= (0, 5, 0) or (3, 3, 0). By plotting any two of the three varia-
bles {q, p, !} just as the third passes through zero, three sep-
arate cross sections of the chaotic sea are revealed. Figure 4 
shows the sequence of hundreds of thousands of such suc-
cessive crossing points following from the initial condition 
{q, p, !} = {0.00, 5.00, 0.00} using an adaptive Runge–Kutta 
integrator with dt ≃ 0.001. We see from Figure 4 that about six 
percent of the three-dimensional stationary Gaussian measure 
makes up the chaotic sea. Any trajectory started in the sea can-
not leave and eventually explores all of it.

!e remaining phase space is occupied privately by concen-
tric tori enclosing stable periodic orbits. !e simplest such orbit 
for the Nosé–Hoover oscillator is shown in Figure 5. !e repeat 
time for this orbit is 5.5781. It includes four symmetric turning 
points:

!is orbit is the central core of an in"nite family of nested tori. 
See Figure 6. !e tori are quasi-periodic regular structures trac-
ing out two-dimensional private regions where there is none of 
the chaos present which would make new three-dimensional 
regions accessible. Let us have a more detailed look at the mech-
anism enabling chaos by measuring the rates at which chaotic 
orbits separate on their exploratory journeys.

q̇ = p; ṗ = −q − "p; "̇ = [(p2∕T) − 1] ⟶ ⟨ p2 ⟩ = T . [NH]

f (q, p, !) × (2")3∕2T = e−q
2∕2Te−p

2∕2Te−!
2∕2.

(!f ∕!t) = −∇ ⋅ (fv) = −f (!ṗ∕!p) − (!f ∕!q)q̇ − (!f ∕!p)ṗ − (!f ∕!#)#̇ =

f ! + (qf ∕T)(p) + (pf ∕T)(−q − !p) + (! f )[(p2∕T) − 1] ≡ 0.

{q, p, !} = {0.0000,±1.5499, 0.0000} and {±1.2144, 0.0000, 0.0000}.

For simplicity we focus on the application of Gibbs’ ensembles 
to the one-dimensional harmonic oscillator. With the mass and 
force constant and Boltzmann’s constant all set equal to unity 
Gibbs’ canonical weighting of the oscillator states is the familiar 
Gaussian distribution, a product probability density Gaussian 
in both q and in p:

A common textbook rationalisation of the canonical distribution 
is to imagine that the members of an ensemble of systems are 
weakly coupled to one another. !e coupling permits energy 
to be exchanged among the systems, resulting in Gibbs’ maxi-
mum-entropy canonical distribution. Shuichi Nosé developed a 
much simpler picture in which a single system is coupled dynam-
ically to a computational heat reservoir in such a way that a 
long-time average of that system’s properties is identical to the 
canonical average. Let us describe this idea in the context of the 
one-dimensional harmonic oscillator.

3.1. Nosé’s canonical mechanics

By 1984 Shuichi Nosé had documented his modi"cation of 
Hamilton’s constant-energy dynamics in two ground-breaking 
papers.[12,13] His new dynamics was formally consistent with 
Gibbs’ constant-temperature canonical distribution. For the 
oscillator problem at the temperature T , the simplest form of 
Nosé’s novel Hamiltonian, now with two degrees of freedom, 
# = 2 , rather than one, has the form:

!e added thermostat degree of freedom, s and its conjugate 
momentum ! ≡ ps , along with the usual (q, p) pair describes 
the canonical oscillator problem with four ordinary di%erential 
equations rather than the usual two:

Nosé carried out the straightforward and tedious algebra nec-
essary to show that this approach can be made consistent with 
Gibbs’ canonical distribution. !ree steps were involved in his 
demonstration:

(1)    ‘Time Scaling’: (d∕dt) ≡ ⋅

⟶ s(d∕dt) ≡ s ⋅;
(2)    rede"ne momentum: (p∕s) ⟶ p;
(3)    rede"ne degrees of freedom: # ⟶ # − 1.More than a 

decade passed before Carl Dettmann simpli"ed this 
approach.[14,15] He showed that starting out with a 
scaled Hamiltonian and setting it equal to zero,

produces a dynamics identical to Nosé’s three-step approach 
without the need for an explicit time-scaling step.

3.2. Nosé–Hoover canonical mechanics

!e even simpler ‘Nosé–Hoover’ version of Nosé’s approach [16] 
eliminates all three of these steps as well as the extraneous var-
iable s. It is based on the application of Liouville’s phase-space 

f (q, p) = (2!T)−1e−q
2∕2Te−p

2∕2T .

2Nosé(q, p, s, ") = (p∕s)2 + q2 + #T ln(s2) + " 2.

q̇ = (p∕s2); ṗ = −q; ṡ = " ; "̇ = (p2∕s3) − (#T∕s). [Nosé]

D ≡ sNosé ≡ 0,
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(positive) Lyapunov exponent, !1. !is instantaneous separation 
rate, !1(t) = | ṙ1 − ṙ2 |∕| r1 − r2 | , is an observable which is easy 
to measure.

Giancarlo Benettin’s Lyapunov-exponent algorithm [17] fol-
lows the simultaneous dynamics of a ‘reference’ trajectory and 
a nearby ‘satellite’, rescaling their separation to maintain their 
closeness at the end of every timestep. Typically only the position 
of the satellite is adjusted to restore the length of the separation 

3.3. Characterising chaos through Lyapunov instability

Chaos is an important topic. Without it there would be no hope 
for correspondence between the microscopic and macroscopic 
descriptions of material behaviour. Chaotic trajectories exhibit 
‘Lyapunov instability’ – two nearby trajectories [a ‘reference’ and 
its ‘satellite’, as explained below] rapidly separate. When aver-
aged over the chaotic sea (that both of them inhabit) the mean 
value of this instantaneous separation rate de"nes the largest 

Figure 4. (Colour online) Trajectory intersections with the q = 0, p = 0, and ! = 0 planes are shown. The points in these cross sections all correspond to penetrations 
of the three planes by a single long chaotic trajectory with the initial conditions (q, p, ! ) = (0, 5, 0). The temperature is unity for these three equilibrium Nosé–Hoover 
oscillator cross sections. Red and blue indicate positive and negative local Lyapunov exponents, with green closer to zero. The two time-averaged nonzero Lyapunov 
exponents, !

1
 and !

3
, are ±0.0139.

Figure 5. (Colour online) This is the simplest [shortest period] periodic orbit for the Nosé–Hoover oscillator with T = 1. Red indicates a positive local Lyapunov exponent 
and blue a negative exponent. The motion equations are q̇ = +p; ṗ = −q − "p; "̇ = p2 − 1. The (q, p∕s, ! ) trajectory from the original Nosé equations with s initially equal 
to unity and with # reduced from 2 to 1 [so that the motion equations are q̇ = (p∕s2); ṗ = −q; "̇ = (p2∕s3) − (1∕s)] traces out exactly the same (q, p, ! ) trajectory pictured 
here, but with a period 7.1973 rather than 5.5781. The Nosé–Hoover Lyapunov exponent varies in the range ±0.6513 on this orbit.
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are ‘conservative’ whether or not the initial condition is chaotic. 
Accordingly, although the local Nosé–Hoover spectrum sums to 
−!(t) its time-averaged spectrum sums to zero:

In view of Hamiltonian mechanics’ time-reversibility both 
spectra are also symmetric, with the "rst and last time-aver-
aged exponents summing to zero. Within the chaotic sea the 
Lagrange-multiplier analyses of the equilibrium oscillators give:

In the quasi-periodic toroidal regions where chaos is absent all 
the time-averaged Lyapunov exponents are zero. Although the 
time averaging produces symmetric spectra the instantaneous 
spectra need not be symmetric. Let us demonstrate that some-
what surprising lack of forward-backward symmetry next.

3.4. The tricky time reversibility of the Nosé–Hoover 
Lyapunov spectrum

One might well expect that the local (instantaneous) oscillator 
Lyapunov spectra are time reversible too. A#er all, both the 
trajectories used to de"ne the largest Lyapunov exponent are 
reversible. Growing separation, forward in time, corresponds to 
diminishing separation when reversed, and vice versa. A simple 
way to test this idea of time-reversible Lyapunov exponents is to 
store a reference trajectory {q, p, !} going forward in time, with 
dt > 0. !en, analysing the instabilities forward and backward 
in time, as described by the tendency of an adjustable ‘satellite’ 
trajectory to $ee or approach a stored ‘reference’ is a fruitful 
approach.

Time reversibility can be imposed on a stored reference tra-
jectory {q, p, !} in either of two ways. !e stored data can be used 
‘as is’ for a reversed trajectory simply by changing the sign of the 
time increment dt. !en the stored data are obviously solutions 
of the three reversed motion equations:

⟨ (d ln⊗∕dt) ⟩ = ⟨ ("ṗ∕"p) ⟩ = ⟨ −$ ⟩ = %1 + %2 + %3 = 0.

{!} = {!1, !2, !3, !4} = {+0.001925, 0.000, 0.000,−0.001925}; [Nosé]

{!} = {!1, !2, !3} = {+0.0139, 0.000,−0.0139}. [Nosé −Hoover]

q̇ = −p; ṗ = +q + "p; "̇ = 1 − p2 for dt < 0.

vector | rs − rr |. Alternatively both of two neighbouring trajec-
tories r1 and r2 can be adjusted symmetrically. Evidently a theo-
retical treatment becomes complicated at the boundary where 
toroidal and chaotic trajectories meet, mix and coexist. A more 
elegant continuous version of Benettin’s step-by-step rescaling 
can be implemented by including a constraining Lagrange multi-
plier in the di%erential equations of motion.[18] In the symmet-
ric case, the multiplier is applied to both trajectories:

Here, v represents the unconstrained motion equations while 
ṙ = (q̇, ṗ, "̇ ) describes the actual constrained motion. !e 
Lagrange multiplier enforcing the constraint of "xed separation 
is just the local value of the largest Lyapunov exponent. Its long-
time average is the largest of the three global Lyapunov expo-
nents which together constitute the ‘Lyapunov spectrum’ of the 
three-equation Nosé–Hoover oscillator:

!2 and !3 are de"ned in terms of the comoving growth or decay 
rates of an area de"ned by three trajectories – the rate is !1 + !2

; and of an in"nitesimal volume ⊗ de"ned by four trajectories 
with rate:

For the isothermal Nosé–Hoover oscillator with all the param-
eters equal to unity, the time-averaged dissipation !, chaotic or 
not, vanishes. !is conservative behaviour is implied by and can 
be traced to its close relationship to the four oscillator equations 
of motion according to Nosé’s Hamiltonian formulation:

Whether # is chosen equal to 1 or to 2, the four Lyapunov expo-
nents describing Nosé’s oscillator sum to zero as a consequence 
of Liouville’s !eorem:

!e mean value of the friction coe'cient, ⟨ ! ⟩, vanishes in both 
cases [Nosé or Nosé–Hoover] because the motion equations 

ṙ1 = v1 + ("∕2) (r2 − r1); ṙ2 = v2 + ("∕2) (r1 − r2).

!1 = ⟨ !1(t) ⟩; !1(t) = (v1 − v2) ⋅ (r1 − r2)∕(r1 − r2)
2.

(!q̇∕!q) + (!ṗ∕!p) + (!#̇∕!#) = 0 − #(t) + 0 ≡ (⊗̇∕⊗)

= %
1
(t) + %

2
(t) + %

3
(t).

q̇ = (p∕s2); ṗ = −q; ṡ = " ; "̇ = (p2∕s3) − (#T∕s). [Nosé]

(!q̇∕!q) + (!ṗ∕!p) + (!ṡ∕!s) + (!#̇∕!#) ≡ (⊗̇∕⊗)

= %
1
(t) + %

2
(t) + %

3
(t) + %

4
(t) ≡ 0.

Figure 6. (Colour online) Cross sections with q = 0,p = 0, ! = 0, starting with the periodic orbit penetration at (±1.2144, 0, 0) and increasing or decreasing the initial 
coordinate value of ±1.2144 by 16 successive steps of ±0.1, ending with the initial q values ±2.7144. The resulting cross sections are shown. The 12th positive and negative 
initial conditions lie within the chaotic sea. All the rest generate tori which trace out individual points along the closed curves shown in this figure.
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depends qualitatively on the direction of time, even for equi-
librium systems.

In any case, the sums of all three exponents going forward and 
backward in time both must obey the instantaneous sum rule:

!e equilibrium oscillator considered here behaves like a dis-
sipative system with an asymmetry between the forward and 
backward directions of time, which can be traced to the varying 
comoving phase volume ⊗(t). With even a little thermostating 
the resulting heat transfer is enough to break the pairing symme-
try expected for Hamiltonian systems. In nonequilibrium steady 
states, we will see that this same symmetry breaking is unrelent-
ing and in fact prevents reversing the formally time-reversible 
trajectories by any means other than reusing stored trajectories.

4. Oscillator ergodicity via generalised friction

We have seen that numerical solutions of the three Nosé–Hoover 
oscillator equations (q̇, ṗ, "̇ ) are far from ergodic. !e same is true 
for the four Nosé equations (q̇, ṗ, ṡ, "̇ ) because the two trajectories 
are identical for the corresponding scaled variables:

Provided that the initial values of {q, p, !} correspond at 
tNH ≡ tN ≡ 0 with s(t = 0) ≡ 1 plots of !(q) are identical for the 
two sets of di%erential equations. !is equivalence is a useful 
demonstration of Nosé’s ‘scaling of time’ with the time-scaling 
variable s.

!ough ergodicity is lacking, the friction coe'cient equations 
for "̇ guarantee that the second velocity moments are equal to 
the speci"ed value of the temperature

!1(t) + !2(t) + !3(t) = (d ln⊗∕dt) = ∓# .

(d∕dt)NH ≡ s(d∕dt)N ⟶ {q, p, ! , t}NH ≡ {q, (p∕s), ! , t}N(scaled).

Alternatively one can simply change the signs of the stored {p} 
and {!} [and {!} if the Lagrange multiplier approach is used]. 
!en the modi"ed sequence of {q, p, !} satis"es the original 
motion equations when it is played backward. !ese two ways 
of exploring reversibility are precisely equivalent in computation. 
Only the signs of some of the numbers are changed. !e magni-
tudes forward and backward are identical.

If one were to follow this reversibility procedure for both the 
reference and the satellite trajectories, then increasing separation 
going forward in time would correspond to decreasing separation 
in the reversed trajectory, and hence to a negative Lyapunov expo-
nent rather than a positive one. Evidently, in the Nosé–Hoover 
oscillator case, with just three exponents, the largest exponent 
going forward would become the most negative going backward:

Although the Lagrange-multiplier equations using a stored ref-
erence trajectory with stored satellite trajectories are all of them 
time reversible, with both v(t) and !1(t) changing sign if dt < 0 
the reversed exponents are erroneous! !e correct approach 
storing a reference trajectory and then generating a new set of 
reversed-time satellite trajectories to go with the reference, using 
Lagrange multipliers or with Benettin’s rescaling algorithm, gives 
an instantaneous spectrum which is unrelated to its forward-in-
time twin. For us, this seems surprising, even though it is fairly 
well known, and suggests interesting research directions, perhaps 
leading to a better understanding of which spectra reverse and 
which do not. !e simplest explanation is probably the best: the 
tendency of two trajectories to separate can depend only on their 
past history, and not the future. On a particular time-reversible 
trajectory, {q(ndt)} , without knowing whether dt is positive or 
negative, the notions of past and future could be thought neb-
ulous. !e low-cost readily available cure for this uncertainty is 
straightforward computation and observation, "nding out what 
does happen.

What actually does happen is surprising, and is illustrated 
in Figure 7. !e largest Lyapunov exponent going forward in 
time and the largest going backward typically sum nearly to 
zero, indicating that the vectors joining the reference and sat-
ellite trajectories are almost parallel in the two time directions. 
!e stretching or shrinking observed for dt > 0 is replaced by 
its opposite, shrinking or stretching for dt < 0:

Of course this cannot be precisely true as the averaged values 
of both versions of !1 are positive. But the $uctuations in the 
exponent are two orders of magnitude larger than the relatively 
small time-averaged value of ±0.0139. !e $uctuations are of the 
order of the oscillator frequency, ! = 2"#, rather than the much 
smaller instability rate.

A trajectory fragment [50,000 timesteps forward and 
backward from near the centre of a much longer simulation, 
0 < t < 5000] and specially selected to show the reversibility 
phenomena, is analysed in Figure 7. Apart from the single strong 
maximum in !1(t)

dt>0 indicated by the arrow the sum of the 
two exponents is close to zero. !ere is no apparent correla-
tion between the values of the second or the third Lyapunov 
exponents in the two time directions. !us trajectory stability 

!
f

1
= ⟨ !1(t) ⟩dt>0 = − ⟨!3(t) ⟩dt<0.

+!dt>0
1 (t) ≃ −!dt<0

1 (t).

-3

-1

 1

 3 λ1λ

-3

-1

 1

 3 λ1λ q,pq,p

-3

-1

 1

 3

2500                        

λ2λ

-3

-1

 1

 3 λ2λ ζζ

<       Time< 2550

Figure 7.  The summed spectra, both forward and backward, and the negative 
value of ! all correspond to the same bold curve in the lower right panel. The 
left panels represent the first two Lyapunov exponents forward (thick lines) and 
backward (thin lines) in time. The summed exponents, forward and backward for 
the two methods of time reversal, satisfy similar sum rules: !

1
+ !

2
+ !

3
= ∓" . The 

coordinate q (thick line) and the momentum p (light line) versus time are shown in 
the upper right panel. Notice that a brief segment of time, just past 2520, during 
which the momentum is near zero corresponds to the only part of the plotted 
interval in which the first Lyapunov exponents have very different magnitudes in 
the forward and backward directions. The arrow points out the maximum in !f

1
 to 

which !b
1
 is unrelated.
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relative to linear ones. With cubic thermostats ergodic motion 
can occur even in the minimal case of a three-dimensional phase 
space. For maximum simplicity we assign any and all control 
variables to the momentum because the canonical momentum 
distribution is always the same, independent of the chosen poten-
tial energy.

Accordingly, let us assign the entire thermostating burden to 
the momentum through just three velocity moments, again using 
the harmonic oscillator to illustrate:

With this functional form of control, where n = 1 or 3, it is easy 
to show that the corresponding solution of Liouville’s continuity 
equation is again a Maxwell-Boltzmann Gaussian distribution 
in both q and p. For n = 3 the friction-coe'cient distribution is 
Gaussian in ! 2 rather than !:

Monte Carlo or grid-based exploration of (!, ", #) parameter 
space reveals many binary two-moment combinations of two 
types, (!, ", 0) and (!, 0, ") , which "ll out Gibbs’ distribution. 
Candidate models have good velocity and coordinate moments 
as well as phase-space cross sections without discernable ‘holes’. 
Figure 8 shows ! = 0 cross sections for two successful combina-
tions (!, ", #) = (0.05, 0.32, 0.00) and (1.50, 0.00,−0.50). Because 
motion equations involving the "#h and sixth powers of veloc-
ity are ‘sti% ’ we have mostly restricted our detailed explorations 
to combinations of the second-moment and fourth-moment 
controls.

How best to "nd such combinations? !ere are many ways. 
A purely visual approach is relatively e%ective. A hundred-frame 
movie is a convenient visualisation tool. !e frames result 
from choosing an arbitrary grid of 100 (!, ") values and plot-
ting 200,000 successive (q,  p) cross-section points for which 
! vanishes. Frames lacking apparent holes in the density, and 
also providing good second, fourth and sixth moments identify 
(!, ") choices as good candidates for ergodicity. !e most inter-
esting sections can be con"rmed ergodic with greater accuracy 
by zooming in, while using a few million section points rather 
than 200,000.

A more systematic approach, also useful, but not at all fool-
proof, can be based on Pearson’s !2 statistic. !2 comes in handy 
when it is desired to know if an observed distribution {o} (from 
a numerical simulation) is consistent with a predicted one (with 
expected values {e} from a theoretical analysis of the $ow equa-
tions). For a candidate (!, ") combination a coarse-grained prob-
ability can be de"ned and determined within N discrete sampling 
bins. !e mean-squared deviation of the bin probabilities from 
the expected theoretical value is divided by the expected bin 
population and averaged over bins. !e Central Limit !eorem 
suggests that the resulting sum:

q̇ = p; ṗ = −q − "n[#p + $(p3∕T) + %(p5∕T2)];

"̇ = #[(p2∕T) − 1] + $[(p4∕T2) − 3(p2∕T)]+

%[(p6∕T3) − 5(p4∕T2)].

f (q, p, !) = e−q
2∕2Te−p

2∕2Te−!
n+1∕(n+1).

!2
≡

N∑
⟨ (o − e)2∕e ⟩,

By controlling another moment the velocity distribution should 
come more closely to resemble the equilibrium Maxwell-
Boltzmann Gaussian. In fact, two moments can be enough.[19] 
Consider the simultaneous control of p2 and p4 , equivalent to 
controlling the kinetic energy and its $uctuation. For this gen-
eralised version of the Nosé–Hoover oscillator problem two fric-
tion coe'cients are involved, ! for p2 and ! for p4:

Solutions of these ‘Hoover–Holian’ [HH] equations, with all 
parameters equal to unity, appear to be ergodic, with the prob-
ability density and all of its moments converging to Gibbs’ 
Gaussian moments better and better as the sampling time is 
increased. At the same time careful examination of the two-mo-
ment $ows’ cross sections reveals that there are no ‘holes’ in the 
doubly-thermostated chaotic sea. !is is in marked contrast to the 
holy-sea sections seen in the singly-thermostated $ows illustrated 
in Figures 4 and 6. Comprehensive tests for ergodicity were for-
mulated and applied to the doubly-thermostated [HH] equations 
in connection with the 2014 Snook Prize.[20]

Evidently one can never achieve perfect agreement in numer-
ical tests as the probabilities of high-energy states are not only 
in"nitesimal, but would also require in"nitesimal timesteps for 
computational stability. !e four [ HH ] equations above, which 
control the second and fourth velocity moments, are only one of 
several methods for achieving ergodicity for the oscillator with 
the use of two friction coe'cients. In view of this success it is 
natural to wonder whether or not a single carefully chosen ther-
mostating variable could make the dynamics ergodic.

!ere are many di%erent approaches to the ergodicity prob-
lem. !e symmetry of the oscillator’s coordinate and momentum 
suggests that one could thermostat q2 just as well as p2 or per-
haps even both. By interpreting q2 as the $uctuation of the force 
these ideas can be, and have been, applied to more complicated 
systems. Extensions of this idea to the ‘weak’ (time-averaged) 
control of two or more di%erent moments, with forces propor-
tional to

have proved fruitful. Rather than describe all of these e%orts let 
us concentrate on the simplest of them, the simultaneous weak 
control of both (p2∕T) and (p4∕T2)using a single friction coe!-
cient. A useful tool in investigations of this sort is the !2 test, 
which makes it possible to estimate numerically which of two 
di%erent thermostat choices gives results closer to the Maxwell-
Boltzmann velocity distribution. We turn to that next.

4.1. Ergodicity with one thermostat variable – the !2 test

A#er 30 years of failed attempts involving dozens of investiga-
tors we recently discovered that ergodic control of a harmonic 
oscillator appears to be possible with just a single thermostat var-
iable. An important clue, from the investigations of Bulgac et al. 
[21,22], was that cubic thermostats provide enhanced ergodicity 

⟨ p2 ⟩NH ≡ ⟨ (p∕s)2 ⟩N ≡ T .

q̇ = +p; ṗ = −q − "p − #(p3∕T); "̇ ∝ (p2∕T)

−1; #̇ ∝ (p4∕T2) − 3(p2∕T). [HH]

[(q2∕T) − 1], [(q4∕T2) − 3(q2∕T)], [(p2∕T) − 1],

[(p4∕T2) − 3(p2∕T)], . . .
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can provide ergodicity for the harmonic oscillator. !e equations 
are particularly sti% when the sixth moment is included so that 
(!, ") = (0.05, 0.32) is the most promising of the combinations 
we have tried to date. We have also included sample sections 
using a two-parameter (!, ") model controlling the second and 
sixth velocity moments. Because these equations are sti%er, 
requiring timesteps of order 0.0001 rather than 0.001, the sec-
ond and fourth-moment control is the better choice. With this 
model the $uctuations of the largest local Lyapunov exponent 
correspond to a standard deviation of about 27, two orders of 
magnitude larger than its long-time-averaged value so that the 
exploration of phase space is relatively rapid.
Because the equilibrium Maxwell-Boltzmann momentum 
distribution e−p2∕2T is the same for any potential, this "nding 
suggests that it may well be possible to thermostat any small 
Hamiltonian system in this way. Let us check this idea for the 
simple pendulum.

4.2. Thermostating the Nosé–Hoover pendulum problem

We have seen that the Nosé–Hoover oscillator can be thermo-
stated in a wide variety of ways using either one, two (or possibly 
even three !) control variables, though the sti%ness suggests that 
using three controls is unwise. In each case the consistency of the 

"̇ = #[(p2∕T) − 1] + $[(p4∕T2) − 3(p2∕T)]

+%[(p6∕T3) − 5(p4∕T2)],

where the angle-bracket average is over the points in each of the 
bins, will approach the number of bins N if the ‘expected’ already-
known distribution {e} , is a match to the ‘observed’ one, {o}. For 
a detailed discussion of the !2 statistic the interested reader can 
consult the corresponding Wikipedia article or the description 
in Numerical Recipes.

!e simplest special case of this idea results if a uniformly $at 
distribution of random numbers {0 <  < 1} is divided into N 
equal sampling bins. With just two bins the large-sample limit 
is !2 = 1; with four bins 3; with six bins 5, and so on. !e lim-
iting value of !2 with N bins is just N − 1. With data gathered 
from dynamical simulations where the distribution is not $at the 
dependence on the sample size is irregular and the convergence 
is slowed due to the inevitable serial correlation of sampled tra-
jectory data.

Knowing that Gibbs’ canonical oscillator distribution is 
Gaussian in all the variables makes it possible to test bins in q or 
p or !, or combinations of these variables, using the !2 goodness-
of-"t criterion. With 100 bins and a billion data points values of 
!2 within 10 per cent of the number of bins, !2 ≃ 100 ± 10 , are 
typical when the distribution being observed really is Gaussian. 
It is possible to debug such a program using a good random 
number generator such as Press’ ‘ran2’ generator from Numerical 
Recipes.

Our investigations suggested that control variables based on 
the di%erential equations:

q̇ = p; ṗ = −q − "n[#p + $(p3∕T) + %(p5∕T2)];

Figure 8. (Colour online) Cross sections for (!, " , #) = (+0.05,+0.32, 0.00) [at the left, with nonzero Lyapunov exponents ±0.1441 ] and (1.50, 0.00,−0.50) [at the right, 
with nonzero Lyapunov exponents ±0.3575]. All of these sections are for equilibrium oscillators [T = 1] and use cubic control, ṗ ∝ −" 3 , with n = 3. The white lines 
correspond to ‘nullclines’, where the velocity normal to the cross section vanishes. The scales all range from −5.0 to + 5.0. The upper panels are the ! = 0.0 sections. The 
lower panels are the q = 0.0 sections.
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Although the equations of motion,

are still time reversible [ with (+t,+q,+p,+!) → (−t,+q,−p,−!)  ]  
the dynamics can turn out to be dissipative and irreversible. How 
can this be? What does it mean? To address these questions, 
which are good ones, we must look at time reversibility in more 
detail.

!e concept of time reversibility [24] can be made unneces-
sarily complex by introducing the concept of phase-space invo-
lutions. A straightforward de"nition is the wiser choice: "rst, 
imagine a movie of the motion in question (this presupposes a 
connection between the dynamical system of di%erential equa-
tions and objects capable of visual representation); second, play 
the movie backwards, (but now the clock on the wall is record-
ing a steady decrease in the ‘time’) just reversing the order of 
the frames. In the backward movie velocities {q̇} change sign, 
but coordinates do not. If the backward movie obeys the same 
equations as the forward one the dynamical system describing 
the motion is time reversible. If not, then not. Variables odd in 
the time, such as velocity and the microscopic heat $ux, change 
sign in the reversed motion, but parameters, like gravity, are held 
"xed. In every case that we study here our microscopic di%er-
ential equations of motion satisfy this criterion. In the simplest 
example, the Nosé–Hoover oscillator,

reversing the sign of p and the variable ! is equivalent to reversing 
the sign of the time so that this system is time reversible, even in 
the case where the temperature T depends on the coordinate q. 
In the simplest nonexample,

where ! is now a "xed parameter, not a variable, changing the 
sign of p corresponds to reversing the q̇ equation, but not the ṗ 
one so that the constant-friction system is not time reversible. 
!e same is true of continuum solutions of viscous $uid $ows 
and Fourier heat $ow. !e continuum constitutive relations for 
the shear stress of a Newtonian $uid with a velocity gradient and 
the heat current in a Fourier heat conductor with a temperature 
gradient:

are especially interesting. Here, ! is the shear viscosity and ! is 
the thermal conductivity. From the virial theorem and the heat 
theorem, we know that shear stress ! is an even (time-reversible) 
function of the velocities, while the heat $ux vector Q is odd. 
Both these observations contradict the phenomenological mac-
roscopic constitutive relations laid down by Newton and Fourier.

From thermodynamics we are well aware that ‘!e entropy of 
the Universe increases’. Entropy is associated with heat reservoirs. 
When a reservoir absorbs heat !Q its entropy increases by !Q∕T.  
Likewise, when it releases heat the reservoir entropy decreases. 
Let us get back to the main question, ‘How do time-reversible 
motion equations produce irreversible behavior?’

It is a curious and hard-to-grasp fact that reversible mathe-
matical equations can lead to irreversible behaviour in the pres-
ence of Lyapunov instability, when the separation between two 
nearby trajectories increases. !ere would seem to be no reason 

q̇ = p; ṗ = −q − "p; "̇ = "̇ (p2, p4, p6,T),

q̇ = +p; ṗ = −q − "p; "̇ ∝ [(p2∕T) − 1];

q̇ = +p; ṗ = −q − "p,

!xy = "[(#ux∕#y) + (#uy∕#x)]; Qx = −$(#T∕#x),

solutions can be checked using Liouville’s !eorem to con"rm that 
the stationary $ow leaves Gibbs’ probability density unchanged:

To apply similar ideas to the pendulum problem [23] using a 
single friction coe'cient we need only to replace the potential 
energy: (q2∕2) → − cos(q) so that Gibbs’ canonical distribution 
becomes:

We can make the friction coe'cient ! consistent with the 
Gaussian momentum distribution using an arbitrary collection 
of moments, for instance:

!e cross sections for (!, ") = (0.300, 0.300) [found visually] and 
(0.088, 0.188) [found using Pearson’s !2 test] are shown in the 
Figure 9 and, at least from the visual standpoint, both distribu-
tions appear to be ergodic. !e colour indicates the magnitude 
of the local Lyapunov exponent, !1(t).

Our oscillator and pendulum examples both suggest that 
there is a dynamics, deterministic and time reversible, which 
closely follows Gibbs’ canonical distribution. Because many of 
the problems addressed with molecular dynamics involve iso-
thermal rather than isoenergetic processes this makes isothermal 
molecular dynamics a particularly useful tool.

With weak polynomial control of the momentum it appears 
that we have completed Nosé’s search for a deterministic time-re-
versible dynamics generating Gibbs’ canonical distribution. With 
equilibrium thermostats under control let us go on to consider 
the extension of this dynamics to nonequilibrium systems in 
which the temperature varies with location.[8] We demonstrate 
the possibilities by including a temperature gradient in the har-
monic oscillator problem, allowing the dynamics to become dis-
sipative by transferring heat from ‘hot’ to ‘cold’. !ese problems 
have an intrinsic pedagogical interest because they are simulta-
neously time reversible and dissipative. !ey generate multifrac-
tal attractor-repellor pairs, o#en with a considerable æsthetic 
interest, as in Figures 10–12.

5. Nonequilibrium time-reversible dissipative 
oscillators

Gibbs’ equilibrium canonical distribution depends upon the 
temperature T = ⟨ p2∕mk ⟩, where p is a Cartesian momentum 
component for a particle with mass m. For simplicity we con-
tinue to choose both k and m equal to unity. We can introduce a 
nonequilibrium temperature gradient, ∇T, by choosing a coordi-
nate-dependent temperature T(q). !is opens up the possibility 
for heat transfer leading to a quantitative treatment of nonequiv-
alent problems. We choose a smooth pro"le with a maximum 
temperature gradient !:

(!f ∕!t) = −∇ ⋅ (fv) = 0.

 = − cos(q) + (p2∕2) → f (q, p, !)

∝ ecos(q)∕Te−p
2∕2Te−!

n+1∕(n+1) with − " < q < +".

q̇ = p; ṗ = − sin(q) − "n[#p + $(p3∕T) + %(p5∕T2)];

"̇ = #[(p2∕T) − 1]

+$[(p4∕T2) − 3(p2∕T)] + %[(p6∕T3) − 5(p4∕T2)].

T(−∞) = 1 − ! < T(q) ≡ 1 + ! tanh(q) < 1 + ! = T(+∞).
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subject to the "xed-length constraint "̇q"q + "̇p"p ≡ 0. !e max-
imum value, for equal perturbations in the two directions, gives 
a growth rate of (15 / 8). On the other hand, the unperturbed 
growth rate in a general direction, is [4(!p∕!),−(1∕4)(!q∕!)] , 
which has its maximum value of 4 for a perturbation parallel to 
the p direction. Maximum and minimum growth rates are time 
reversible, but the dependence of the Lyapunov growth and decay 
rates are not. !e latter rates depend upon past history, and not 
future destiny.

5.1. Nonequilibrium examples with weak but sti! control 
of P2 and P6

A speci"c ergodic system,

exerts a weak control over the second and sixth velocity moments. 
Weak in that the equations are necessarily consistent with the 
Gaussian distribution, but are not necessarily su!cient for that 

"̇q = +4"p − #"q; "̇p = −(1∕4)"q − #"p → # = (15∕4)"q"p∕| " |
2,

q̇ = p; ṗ = −q − "[1.5p − 0.5(p5∕T2)];

"̇ = 1.5[(p2∕T) − 1] − 0.5[(p6∕T3) − 5(p4∕T2)],

why an increasing separation would win out over a decreasing 
one, particularly in the case where phase volume is conserved. 
But a positive Lyapunov exponent signals the system’s seeking 
out the direction of increased phase-space states. !ink again 
of computing the largest Lyapunov exponent by rescaling the 
separation of two nearby trajectories. !at is, consider the linear 
variation of a coordinate perturbation backward and forward 
in time, !, paralleling the direction characterised by the local 
Lyapunov exponent !(t):

which gets bigger, indicating more phase volume, when averaged 
over the two possible time directions. In dynamical systems the-
ory directions with growth are referred to as the ‘unstable’ mani-
fold while the decay directions are the ‘stable’ one. If the direction 
of ! is allowed to develop ‘naturally’, with only its length, but not 
its direction constrained, it soon comes to point in the direction 
associated with the largest Lyapunov exponent !1.

But this is not at all the direction of maximum growth. To 
see this consider a simple example,[23] a harmonic oscillator’s 
orbit where the mass and the force constant are both equal to 
1/4, and with an orbit perturbation (!q, !p) having a "xed length 
| ! |. If we choose a displacement parallel to the direction of the 
perturbation (as in Benettin’s rescaling algorithm used to deter-
mine the maximum Lyapunov exponent) we need to solve two 
coupled evolution equations:

"̇∕" = #(t) → ⟨ "(t)∕"(0) ⟩ = (1∕2)[e+#dt + e−#dt] = cosh(#dt),

Figure 9.  (Colour online) Ergodicity of the isothermal simple pendulum with T = 1 and cubic control [ n = 3 and ṗ ∝ −" 3 ]. These cross sections correspond to 
(!, ") = (0.300, 0.300) to the left with nonzero Lyapunov exponents ±0.1916 and (0.088, 0.188) to the right with nonzero Lyapunov exponents ±0.1035. ! = 0 in both 
cases. The vertical scales range from −4.0 to +4.0 and the horizontal scales range from −5.0 to +5.0 at the top and −4.0 to +4.0 at the bottom. Note that the range of the 
pendulum coordinate (where q is an angle) is periodic: −! < q < +!. Red and blue correspond to positive and negative local Lyapunov exponents with green close to 
zero.
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while the motion remains ergodic. Just as in the Galton Board 
examples the reduced dimensionality of the resulting fractals 
signals the rarity of nonequilibrium states.

Because the two-parameter motion equations are time revers-
ible there exists a symmetric set of ! = 0 cross-section states with 
reversed momenta ±p ⟷ ∓p, reversed heat current, reversed 
dissipation, as well as phase-volume growth rather than col-
lapse, all of these characteristics violating the Second Law of 
!ermodynamics. But all those states are unstable, with a reversed 
(when time-averaged) Lyapunov spectrum having a positive sum. 
!ey make up the unobservable and illegal repellor states. !e 
repellor acts as a source and the attractor a sink for these time-re-
versible heat-$ow problems. Despite their symmetry the repellor 
and attractor measures are di%erent, zero and one, respectively.

!e implication of Figure 11 is relatively simple. Starting 
out with an equilibrium dynamics which follows Gibbs’ canon-
ical distribution (without holes) relatively simple multifractal 
attractors respond to a thermal gradient. Increasing the tem-
perature gradient leads to a reduced attractor dimensionality 
and increased dissipation. !e general approach of perturbing 
an ergodic equilibrium Gibbs’ ensemble evidently leads to rel-
atively simple nonequilibrium steady states. In an e%ort to see 
whether or not this simplicity has a counterpart in nonergodic 
Hamiltonian mechanics we return to the Nosé–Hoover oscillator 
and expose it to a thermal gradient next.

5.3. Nonequilibrium Nosé–Hoover oscillator dynamics

Although the equilibrium Nosé–Hoover oscillator has all the 
complexity of Hamiltonian mechanics – chains of islands and 
their elaborations, it is worth exploring whether or not any sim-
pli"cation results away from equilibrium. Our previous work 
[25] indicated a crude boundary between small-gradient and 
large-gradient behaviour around ! = 0.40. In Figure 12 we con-
sider strange-attractor solutions corresponding to three values 
of !, 0.10, 0.20, 0.30 in addition to the equilibrium case. We 
use nonequilibrium versions of the Nosé–Hoover oscillator with 
"̇ = [(p2∕T) − 1] rather than "̇ = [p2 − T] because the multimo-
ment models are much simpler to formulate when the distribu-
tion of the friction coe'cient(s) is not explicitly temperature 
dependent.

We considered relatively long runs (1012 timesteps) in an e%ort 
to assure convergence. A bit more than halfway through the 
! = 0.10 simulation, with a fourth-order Runge–Kutta timestep 
of 0.01, the chaotic strange attractor suddenly began to generate a 
torus which then gradually shrunk with time. Was this real, or an 
artefact? A check calculation with "#h-order Runge–Kutta, also 
using a timestep of 0.01 revealed no such behaviour, exhibiting 
instead a chaotic solution. !is problem illustrates the virtue of 
comparing results from two or more integrators, particularly 
when longer runs are desirable. A careful investigation shows 
that the single-step fourth-order and "#h-order errors:

are in opposite directions, with the "#h-order still noticeable 
with a timestep dt = 0.01 in double-precision calculations. With 
dt = 0.001 both the fourth-order and "#h-order errors are neg-
ligible in double-precision work. For the reader interested in 

RK4 error ≃ −dt5∕120; RK5 error ≃ +dt6∕720,

distribution to be realised. When the target temperature T(q) 
varies with coordinate,

the problem can become dissipative, with the comoving 
phase-volume rate-of-change negative,

Sample cross sections of the corresponding chaotic sea appear 
in Figure 10. At equilibrium, not shown in the Figure, a (q, p, 0) 
plot would show inversion symmetry, equivalent to noting that 
viewing the thermostated oscillator in a mirror would change 
the signs of (q, p) without changing the friction coe'cient !. 
Changing the signs of the friction coe'cient and both parame-
ters (±! ,±1.5,∓0.5) leaves the equations of motion unchanged 
when +dt → −dt.

An analytic calculation of the largest Lyapunov exponent 
for the (!, "). If p = 0 we have problems illustrated in Figure 10 
requires the solution of the three coupled linearised equations of 
motion for the reference-to-satellite vector ! = (!q, !p, !" ):

!e constraint of constant length imposed by !1 in its role as a 
Lagrange multiplier, when applied in the p = 0 plane, makes it 
possible to relate the sign of !1 to that of the friction coe'cient !:

With ! = 0.05 or 1.50 the upper half plane of the lower panels 
of Figures 10 and 11, with ! > 0 has no red, signifying a negative 
Lyapunov exponent. Positive values of !1 indicated by red in the 
Figures, are all found to correspond to negative values of ! in 
the p = 0 plane. As would be expected for a ‘friction’ coe'cient 
negative values promote growth and positive ones decay. As the 
temperature gradient increases the dissipation grows. Because 
the time-averaged dissipation is necessarily positive a comoving 
volume element dqdpd! vanishes: time, exponentially fast.

5.2. Nonequilibrium example with weak control of P2  
and P4

Because the equations of motion for control of the sixth moment 
are sti%, requiring a Runge–Kutta timestep of order 0.0001 or 
0.0002, we consider the simpler case of weak control of the sec-
ond and fourth velocity moments:

Like those controlling ⟨ p2, p6 ⟩ these equations controlling 
⟨ p2, p4 ⟩ are ergodic at equilibrium, and are consistent with 
Gibbs’ distribution f (q, p, !) ∝ e−q

2∕2Te−p
2∕2Te−!

2∕2.
Away from equilibrium, with T = 1 + ! tanh(q) and where 

tori are absent, these same equations generate dissipative fractal 
attractors. For small temperature gradients the dimensions of the 
cross sections in Figure 11 and the dissipation vary smoothly, 

T(q) = 1 + ! tanh(q); 0 < ! < 1 ⟷ 0 < T(q) < 2,

⟨ (⊗̇∕⊗) ⟩ ≡ (#q̇∕#q) + (#ṗ∕#p) + (#$̇∕#$)

= ⟨ −1.5$ + 2.5$(p4∕T2) ⟩ < 0.

{"̇q = "p − #1"q; "̇p = −1.5$"p − #1"p; "̇$ = −#1"$}.

(d∕dt)[!2q + !2p + !2" ] ≡ 0 ⟶ #1 = −$"!2p .

q̇ = p; ṗ = −q − "[0.05p + 0.32(p3∕T)]

"̇ = +0.05[(p2∕T) − 1] + 0.32[(p4∕T2) − 3(p2∕T)].



MOLECULAR SIMULATION  1313

use this same tool. Because the Galton Board as well as all of the 
thermostated oscillator problems we have considered involve 
three-dimensional $ows it is natural to consider their analysis 
and display from the standpoint of Liouville’s phase-space con-
tinuity equation:

also in three dimensions. !e corresponding motion equations 
are represented by v ≡ (q̇, ṗ, "̇ ) in the oscillator problems.

It is tempting to imagine solving the $ow equation directly, 
replacing the derivatives (q̇, ṗ, "̇ ) by "nite di%erences. Our col-
league John Ramshaw made us the welcome present of his 
‘upwind-di%erencing’ computer program, which transfers den-
sity across all six faces of each cubic computational cell according 
to the velocities evaluated at the cell boundaries, determining 
which of any two adjacent cells is the donor of probability, and 
which is the ‘acceptor’. !e $ow is taken to be proportional to the 
donor probability though it would appear that an average proba-
bility is nearly as plausible. Using the average, however, leads to 
exponential instability.[27] At equilibrium, or in a steady state, 
the six $ows into and out of every cell must balance. Evidently the 
algorithm conserves probability exactly, but not time-reversibly. 
Liouville’s continuity equation is time reversible. But it is easy to 
see that in a reversed implementation of the $ow algorithm the 
cells furnishing the probability forward in time will not have it 
returned exactly in the ‘reversed’ step.

(!f ∕!t) = −∇ ⋅ (fv) ⟷ ḟ = (!f ∕!t) + v ⋅ ∇f ≡ −f ⋅ ∇v,

exploring these small e%ects [26] an initial condition very close 
to the border between chaos and tori is (q, p, !) = (", ", 3) with 
! small. A small nonzero value of ! (such as 10−12) is necessary 
to avoid the analogue of a (q, p) "xed point in the (q, p, ! = 0) 
cross section.

Figure 12 shows the sign of the local Lyapunov exponent !1(t) 
in colour, both at and away from equilibrium (! = 0.0 to 0.3). 
Notice that the near inversion symmetry in the (q, p, 0) plane 
for ! = 0.10 , gives way to predominating Lyapunov instability 
far from equilibrium, at ! = 0.30. Below, the (q, 0, !) plane shows 
that the sign of the local Lyapunov exponent is a perfect match 
of the sign of the local friction coe'cient. Simply reversing the 
direction of the $ow in the three nonequilibrium panels, corre-
sponding to re$ection of p about the q axis, might be expected 
to change the signs of the Lyapunov exponents, but even close to 
equilibrium this does not happen. !is is because that exponent 
depends upon the past so that there is a fundamental lack of 
symmetry in the local exponents.

6. Liouville’s theorem applied to nonequilibium !ows

We have seen that the continuity equation is an invaluable tool 
in "nding constrained dynamical systems consistent with Gibbs’ 
canonical ensemble. !is idea was used by Green and Kubo to 
express transport coe'cients in terms of equilibrium $uctua-
tions. Nonequilibrium simulations, even far from equilibrium, 

Figure 10. (Colour online) Cross sections of the dissipative oscillator with (!, ") = (1.5,−0.5). For all of the plots the abscissa ranges from −5.0to + 5.0, while the ordinate 
ranges from −4.0to + 4.0. The penetrations of the ! = 0 plane (top panels) corresponding to a positive largest Lyapunov exponent are in red, with negative values in blue. 
The penetrations of the p = 0 plane (shown in the lower panels) are coloured in the same way and confirm that negative values of the friction coefficient correspond 
to phase-volume growth. At the left with ! = 0.10 the (time-averaged) nonzero Lyapunov exponents are +0.03670 and −0.3695. At the right with ! = 0.50 the nonzero 
Lyapunov exponents are +0.4188 and −0.4456.
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Figure 11. (Colour online) Cross sections of the dissipative oscillator with (!, ") = (0.05, 0.32) and a friction linear in !(n = 1). For all of the plots the scales range from 
−5.0 to + 5.0. The nonzero Lyapunov exponents are +0.1411 and −0.1442 at the left and +0.1134 and −0.1444 at the right.

Figure 12. (Colour online) The effect of dissipation on phase-space cross sections for the chaotic, but nonergodic, Nosé–Hoover oscillator. Sections with vanishing momentum are 
shown for four values of !: 0.00, 0.10, 0.20, 0.30. The respective nonzero Lyapunov exponents are (±0.0139), (+0.0102,−0.0102), (+0.0097,−0.0100), (+0.0082,−0.0084)
. The equations of motion are q̇ = p; ṗ = −q − "p; "̇ = [(p2∕T ) − 1] , where T = 1 + ! tanh(q). All the scales range from −5 to +5.
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fractal, representing a $ow from a strange repellor, with a pos-
itive summed Lyapunov spectrum, to a strange attractor, with 
a negative Lyapunov sum. Although the fundamentals are no 
more complicated than the examples detailed in this paper, the 
possibilities for more complex applications are and will continue 
unlimited.
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Figure 13.  (Colour online) The Nosé–Hoover periodic orbit with T = 1

, as in Figure 5, is shown in red, with a bullet indicating the initial condition, 
(q, p, ! ) = (0.00, 1.55, 0.00). The finite-difference Liouville continuity equation 
solution for ⟨ p(⟨ q ⟩) ⟩ is shown for a time of 55.78, ten oscillation periods, in 
black, using a 40 × 40 × 40 mesh with a mesh spacing of 0.1. Solutions with the 
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