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Abstract In this paper, we study a system of two
Rössler oscillators coupled througha time-varying link,
periodically switching between two values.We analyze
the system behavior with respect to the switching fre-
quency. By applying an averaging technique under the
hypothesis of high switching frequency, we find that,
although each value of the coupling is not suitable for
synchronization, switching between the two at a high
frequency makes synchronization possible. However,
we also find windows of synchronization below the
value predicted by this technique, and we develop a
master stability function to explain the appearance of
these windows. The spectral properties of the system
provide a useful tool for understanding the dynamics
and synchronization failure in some intervals of the
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switching frequency. An experimental setup based on
a digital/analog circuit is also presented showing exper-
imental results which are in good agreement with the
numerical analysis presented.
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1 Introduction

The interaction of two nonlinear (in particular, chaotic)
systems via coupling typically leads to a variety of sig-
nificant behaviors, one of the most intriguing of which
is synchronization, that is, the coordination of a partic-
ular dynamical property of their motion [1]. The type
of interaction, its strength, the variables involved in the
coupling, and the eventual presence of a delay, produce
different coordinated dynamical properties leading to
different types of synchronization. The most common
forms are complete synchronization in which the two
dynamical units evolve following exactly the same tra-
jectory, phase synchronization [2,3] when the coordi-
nated property is the phase, lag synchronization [4]
when both amplitudes and phases are locked but with
a permanent time lag, and generalized synchronization
[5] when a given function of the output of two systems
is synchronized. The phenomenon is even more varied
when more than two units interact according to a pat-
tern of connectivity through which they share informa-
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tion on their current state. Complete synchronization
[6], phase synchronization [7], cluster synchronization
[8], partial synchronization [9], chimera states [10,11],
relay synchronization [12], and remote synchronization
[13] are examples of the behaviors observed in a net-
work of coupled oscillators. For complete synchroniza-
tion of continuous-time identical systems under static
coupling, the necessary conditions for the onset of syn-
chronization are derived in [14]. These conditions in
many cases can be also considered sufficient for syn-
chronization. Other approaches for the study of the sta-
bility of synchronization are based on the definition of
Lyapunov functions to assess the sufficient conditions
for global synchronization [15]; from another perspec-
tive in [16] necessary and sufficient conditions on the
boundedness of the derivatives of the vector fields are
introduced leading to the design of a distributed control
law to obtain local exponential synchronization.

Although the connectivity among the dynamical
units is usually considered time-invariant, interaction
among dynamical systems may also occur in a discon-
tinuous way (for instance, when it is mediated by links
activated according to the relative distance of mobile
units [17–19]) orwhenweights vary in time as the result
of an adaptation law [20–22]. In such cases, a key fac-
tor in determining the global behavior of the system
is the interplay between the timescales, one related to
dynamics of the units, and the other defining the rate
of variation in the strength of the links. Another impor-
tant ingredient is the dynamical rule for the variation of
the coupling, which may be either a stochastic/periodic
activation/deactivation [23,24] or a deterministic law
[25]. Both possibilities were explored in early experi-
mental works on two coupled Chua’s circuits [26,27].
In particular, in [26] adaptive coupling was used to
design communication channels able to compensate for
parameter changes, while in [27] it was demonstrated
that in a synchronization schemewhere two Chua’s cir-
cuits are pulse coupled, the switching frequency has to
be larger than a threshold value to attain synchroniza-
tion.

This behavior is now grounded on recent theoretical
results in the framework of blinking networks [28,29],
proving that under the assumption (referred to as the
fast switching hypothesis, FSH), that the link changes
occur faster enough than the oscillator dynamics, the
time-varying coupling can be studied by means of the
time-average of the coupling matrix. However, estab-
lishing when the “fast enough” hypothesis holds is still

an open issue, so that procedures to determine explicit
bounds for the timescale of the process driving the cou-
plingmechanismare currently under investigation [25].
On the other hand, there is evidence that even below
the threshold given by the FSH, many interesting phe-
nomena may occur. For instance, a recent study on
synchronization of chaotic oscillators coupled via an
on–off stochastic network has unveiled the non-trivial
existence of windows of complete synchronization for
switching frequencies below the predicted lower bound
for which the FHS holds [30]. The effects of discontin-
uous coupling have been also considered in [31–33].
In [31] the role of the on–off rate on synchronization is
analyzed, while in [32] the cost of synchronization is
studied with respect to the on–off rate of the coupling
switching for a given period. A different strategy for
discontinuous coupling is addressed in [33], in which
coupling is activated only when the trajectory of the
considered system visits a specific region in the state-
space.

Here we investigate a case study of two Rössler sys-
tems interacting through switching coupling and show
the presence of interesting phenomena in a regime not
dominated by fast switching. We consider the case
where the two chaotic systems are coupled through
a link whose weight is time-varying, i.e., the weight
switches between two fixed values with a given switch-
ing frequency. We fix the values so that neither of them
can ensure synchronization in the case of static cou-
pling. Despite this, the switching between these two
values gives rise to a synchronous behavior. The stabil-
ity of the synchronization manifold is then studied with
respect to the switching frequency, spanning the slow to
fast switching regimes, unveiling the close relationship
between the two timescales. We remark that the frame-
work proposed in this paper sensibly differs from those
considered in [25,31,32]. In fact, instead of activating
stochastically each link with probability p as in [25],
links are here activated/deactivated with a determinis-
tic switching periodic signal. As concerns [31,32], both
papers address the case of an on–off switching inwhich
in the on phase a topology guaranteeing complete syn-
chronization in the static case is considered and discuss
the role of the duty cycle of the switching signal, i.e.,
the duration of the on phase with respect to the off
phase, for a fixed frequency. In our paper, instead we
consider either topologies for which synchronization in
the static case is possible or topologies not guarantee-
ing synchronization. Furthermore, in our paper the role
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Synchronization of two Rössler systems with switching coupling 675

of the switching frequency is investigated allowing us
to link the dynamical behaviors observed in the region
below fast switching with the intrinsic dynamical prop-
erties of the Rössler attractor of the single unit.

We also provide an experimental validation of the
observed results based on a hybrid platform where the
two analog circuits are coupled by digitally controlled
links. The use of circuit implementations allows to
experimentally verify the numerical evidences gained
on the effect of the switching frequency on the syn-
chronization in a more general scenario which includes
physical and realistic systems [34]. In realistic sys-
tems, in fact, system parameters are always subjected
to uncertainties which introduce sensible differences
with the corresponding ideal values. Under these con-
ditions, complete synchronization cannot be retrieved
andweaker forms of synchronization arise, such as par-
tial synchronization [35,36]. On the other hand, the
evaluation of partial synchronization can be exploited
in order to estimate unknown parameter values [37,38].

The rest of the paper is organized as follows: in
Sect. 2 the model analyzed is described; in Sect. 3
numerical results showing the effects of the switch-
ing frequency are reported, and in Sect. 4 the analysis
with respect to the switching frequency is presented,
while Sect. 5 deals with the experimental validation of
the results. Section 6 provides conclusions.

2 Model

The Rössler oscillator is described by the following
nonlinear dynamical equations [39]:

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

(1)

where a, b, and c are system parameters. We fix a =
b = 0.2 and c = 7 throughout the rest of the paper
so that a chaotic attractor is obtained in the range of
considered initial conditions.

We first consider two identical Rössler systems cou-
pled through a diffusive coupling constant in time and
acting between the x variables and briefly discuss the
behavior of this configuration in view of the application
of the fast switching approach. The equations govern-
ing the two coupled systems are written as

ẋ1 = −y1 − z1 + κ(x2 − x1)

ẏ1 = x1 + ay1

ż1 = b + z1(x1 − c)

ẋ2 = −y2 − z2 + κ(x1 − x2)

ẏ2 = x2 + ay2

ż2 = b + z2(x2 − c) (2)

where the subscripts indicate the two paired systems,
and κ is the coupling strength. We indicate the state
vectors of the two systems as x1 = [ x1 y1 z1 ]T and
x2 = [ x2 y2 z2 ]T, respectively, and rewrite Eq. (2) in
a compact form as

ẋ1 = f (x1) + κE(x2 − x1)

ẋ2 = f (x2) + κE(x1 − x2) (3)

with E =
⎡
⎣
1 0 0
0 0 0
0 0 0

⎤
⎦. Complete synchronization is for-

mally defined as

‖x1 − x2‖ → 0, as t → ∞ (4)

where ‖ · ‖ stands for the Euclidean norm. To derive
the conditions on κ for complete synchronization, we
define the error as e(t) = x1 − x2 and calculate the
error dynamics from Eq. (3):

d(x1−x2)
dt = f (x1) − f (x2) − sκE(x1 − x2) (5)

By linearizing around the common solution x1 =
x2 = s, we obtain:

de
dt =

(
∂ f (x)
∂x

∣∣∣
x=s

− 2κE
)
e (6)

The maximum Lyapunov exponent Λmax(κ) for Eq.
(6) calculated as a function of κ indicates the region of
local stability of the error dynamics, and so of complete
synchronization. For this reason, following the termi-
nology of [14],we refer to it as themaster stability func-
tion (MSF) of the system. In particular, synchronization
requires that Λmax(κ) < 0. Figure 1 displays the MSF
for the static coupling case (Eq. (2)). Note thatΛmax(κ)

is negative only in the interval 0.1 < κ < 2.35. This
behavior, referred to as class-III MSF [40], is char-
acteristic of a class of systems including the Rössler
oscillator with coupling through the variable x .

123

Author's personal copy



676 A. Buscarino et al.

543210
−0.8

−0.6

−0.4

−0.2

0

0.2

κ

Λ
m
ax

Fig. 1 Master stability function for the system in Eq. (2) with
static coupling

We now consider themain object of our study,which
is a system formed by two units coupled with a time-
varying link given by

ẋ1 = −y1 − z1 + κ(t)(x2 − x1)

ẏ1 = x1 + ay1

ż1 = b + z1(x1 − c)

ẋ2 = −y2 − z2 + κ(t)(x1 − x2)

ẏ2 = x2 + ay2

ż2 = b + z2(x2 − c) (7)

where the coupling strength κ(t) is now a function of
time.We assume κ(t) = k1+ k2−k1

2 (sgn(cos(ωt))+1),
with sgn(x) = 1 if x > 0 and sgn(x) = −1 otherwise,
so that the effective coupling switches between two
constant values k1 and k2 at a frequency ω. We refer to
Eq. (7) as the switching system and analyze its behavior
with respect to the switching frequency ω, which is an
important bifurcation parameter.

In particular, we select k1 and k2 such that nei-
ther of the two falls within the synchronization range
for the static coupling case (MSF of Fig. 1), that is,
Λmax(k1) > 0 and Λmax(k2) > 0. Under these condi-
tions, the problem of synchronization of the switch-
ing system is not trivial since the system switches
between two configurations that are not synchroniz-
able. A recently developed approach for blinking sys-
tems [25] provides a useful tool for understanding the
behavior of the system under the hypothesis that the
switching occurs at a sufficiently high frequency. The
trajectory of the switching system approaches that of
the average system in which the coupling is static and
given in our case by k(t) = k̄ = k1+k2

2 . In the follow-
ing, we focus on the case in which k1 and k2 also satisfy

the conditionΛmax(k̄) < 0, that is, the prediction of the
fast switching approach is that the switching system at
high enough ω does synchronize. We will show that
the fast switching approach can be effectively used to
predict the behavior of the switching system, but syn-
chronization may also occur at lower frequencies in
particular windows of ω.

3 Numerical results

In our numerical simulations, we take k1 = 0 and k2 =
2.4. Both values fall outside the range of synchroniza-
tion identified by theMSF of Fig. 1, i.e.,Λmax(k1) > 0
and Λmax(k2) > 0, while the average value k̄ = 1.2
lies in the stable region with Λmax(k̄) < 0.

We investigate the effect of the switching frequency
by fixing all the other parameters and varying ω from 0
to 1.5 (the limiting case ω = 0 corresponds to uncou-
pled dynamics). For each value of ω, we integrate Eq.
(7) using a 4th order Runge–Kutta algorithm with an
adaptive step size for T = 107 and sample the result at
dt = 0.01, thus giving M = 109 samples. The normal-
ized average synchronization error E(ω) is then calcu-
lated from

E(ω)=
M∑
h=1

√
(x1(h)−x2(h))2+(y1(h)−y2(h))2+(z1(h)−z2(h))2√
x1(h)2+y1(h)2+z1(h)2+x2(h)2+y2(h)2+z2(h)2

(8)

The synchronization error E(ω) is normalized so
that E = 1 means that the two trajectories are com-
pletely uncorrelated, E > 1 indicates anti-correlation,
while E → 0 corresponds to the highest correlation.

The synchronization error E(ω) as shown in Fig. 2
is not a monotonic function of ω. For ω > 1.3, the

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω

E
(ω

)

Fig. 2 Average synchronization error E(ω) with respect to the
switching frequency ω
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Synchronization of two Rössler systems with switching coupling 677

system is synchronized. Therefore, we conclude that
ω � 1.3 represents the boundary between the region in
which the FSH holds, and that in which the frequency
of the switching is not “fast enough”. For ω > 1.3, the
effect of the time-varying connectivity, evolving with
a timescale high enough with respect to the Rössler
dynamics, is equivalent to driving the system with a
constant coupling coefficient, which is the average of
the two coupling strengths k1 and k2. The two oscil-
lators, in fact, are always synchronized and chaotic as
shown in Fig. 3.

The behavior at low frequencies (ω < 0.2) is some-
what expected from the choice of k1 and k2. In this
case, the system slowly alternates between two config-
urations, which are both not synchronizable, and the
global behavior is unsynchronized.

The most interesting frequencies are between the
regions of slow and fast switching, ω ∈ [0.2, 1.3],
where windows of synchronization and unsynchro-
nized behavior alternate. Even when the FSH does not
hold, i.e., when the dynamics of the link activation has
timescales comparable to those of the Rössler system,
there is the possibility of complete synchronization.

Starting from the boundary with the region where
FSH holds and decreasing the switching frequency, we
examine the behavior of the two Rössler oscillators
as a function of ω. Below ω = 1.3, a large window
(0.9 < ω < 1.3) of unsynchronized motion is found.
The system attractor is significantly different from the
attractor for a single Rössler oscillator. For example,
Fig. 4 shows the chaotic attractor corresponding to
ω = 1.0. We also observe two other dynamical behav-

Fig. 3 Complete synchronization of two Rössler oscillators coupled by a switching signal with ω = 1.5. Projection of the attractor on
the planes a x1 − y1, b x2 − y2, c x1 − x2

Fig. 4 Unsynchronized motion of two Rössler oscillators coupled by a switching signal with ω = 1. Projection of the attractor on the
planes a x1 − y1, b x2 − y2, c x1 − x2
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Fig. 5 Temporal evolution of the average synchronization error
E for ω = 1.13 showing intermittency

Fig. 6 Limit cycles in the two Rössler oscillators coupled by a
switching signal with ω = 0.9656. Projection of the two attrac-
tors on the plane x − y

iors. At ω ≈ 0.97 and ω ≈ 1.13, which correspond
to values immediately before and after the unsynchro-
nized window 0.9 < ω < 1.3, intermittency between
synchronous and unsynchronous motion occurs. The
intermittency is evident in the error E in Fig. 5. The
attractor for this case also alternates between the orig-
inal Rössler chaotic attractor (obtained when the syn-
chronization error is close to zero) and the one shown in
Fig. 4, obtained when the error is larger. Furthermore,
at ω ≈ 0.9656 two stable limit cycles coexist as shown
in Fig 6.

For a further decrease in the switching frequency,
a new window of synchronization occurs at 0.6 <

ω < 0.9. Below ω = 0.6 a series of unsynchro-
nized/synchronized windows are seen, whose widths
decrease with decreasing ω. Within all the windows,
including the main around ω = 1, a narrow range of
synchronization is observed.

0 0.5 1 1.5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

ω

λ 1
,2
,3
,4

Fig. 7 The four largest Lyapunov exponents for the system in
Eq. (7)

The observed behavior is confirmed by analysis of
the Lyapunov spectrum of system (7). The four largest
Lyapunov exponents are shown in Fig. 7. Regions of
synchronization have one positive Lyapunov exponent,
while the unsynchronized regions have two positive
Lyapunov exponents corresponding to hyperchaos in
the six-dimensional system. The sign of the second
largest nonzero Lyapunov exponent thus confirms the
windows of synchronous and unsynchronous motion
found from the synchronization error.

4 Analysis

From the previous numerical results, it appears that the
switching frequency provides a bifurcation parameter,
especially when the FSH does not hold, that is, when
the switching rate is comparable to the dynamics of
the Rössler system. The switching frequency affects
not only the synchronization, but also the dynamics of
the attractors. In this section, we investigate the power
spectra of the Rössler state variables and correlate them
with the windows observed in Figs. 2 and 7, and then
we develop a MSF for the case of two oscillators with
time-varying coupling.

We begin by observing that the power spectral den-
sity of an uncoupled Rössler system (1) as shown in
Fig. 8 is characterized by a strong dominant compo-
nent, corresponding to the large oscillations in the x−y
plane, and located at a frequencyωs � 1.067. The large
window of unsynchronized behavior in Fig. 2 at the
boundary with the fast switching region is around this
frequency. A closer inspection of the spectrum of the
switching systemshows that in thiswindowa resonance
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Fig. 8 Power spectral density for the x variable of the Rössler
system in Eq (1)

effect occurs as shown in the spectrogram in Fig. 9. The
figure shows the power spectral density (color coded)
for the spectrum components, indicated asωs , between
0.9 and 1.2 and for different values of the switching fre-
quency ω ∈ [0.5, 1.5]. In the two windows where the
two systems are synchronized (one is the fast switch-
ing region for higher values of ω, and the other is the
window 0.6 < ω < 0.9), the dominant frequency is
ωR , the same as for the uncoupled Rössler system, that
is, when the two systems synchronize, they evolve fol-
lowing the chaotic trajectory s of the uncoupled system.
On the contrary, when the coupling strength switches
at a frequency ω comparable to ωR , in particular in the
window 0.95 < ω < 1.15, the dominant frequency
is locked to the switching frequency, thus resulting in
a strong modification of the dominant frequency with
respect to the uncoupled case. This explains the differ-
ent shape of the attractor in this range (Fig. 4). Further-
more, a similar effect is observed at the first subhar-
monic of the dominant frequency around ω = 0.5335
superposed on the window of unsynchronized behav-
ior. Presumably, the same locking occurs in narrower
ranges around all the other subharmonics.

From a different perspective, a similar conclusion
can be derived starting from the Lur’e form of the
Rössler system [41]. A nonlinear dynamical system
can be represented in Lur’e form if it is possible
to decompose it in two parts: a linear system and a
feedback nonlinear part. In [41] the Lur’e representa-
tion of the Rössler is given, leading to a linear part
G(s) = 1

s3+(c−a)s2+(1−ca)s+c
= 1

s3+6.8s2−0.4s+7
. The

two unstable poles of G(s) are a complex conjugate
pair yielding a resonance peak located at 1rad/s. Since
the coupling term acts as an external input provided to

ω

ω
s

0.5 0.7 0.9 1.1 1.3 1.5
0.9

1

1.1

1.2

Fig. 9 Power spectral density for the x variable of the Rössler
system in Eq (7), for different values of ω. Red indicates higher
power. (Color figure online)

the linear part of the system, if it contains a strong
component around the resonance peak, it is going to
be strongly amplified: this corresponds to increase the
effective coupling strength outside the allowed range
and may qualitatively explain the loss of synchroniza-
tion obtained for ω ≈ 1.

We now derive a MSF for the time-varying cou-
pling. To do this, we consider system (7) and calculate
the error dynamics and linearize around the common
solution x1 = x2 = s to obtain

d(e)
dt =

(
∂ f (x)
∂x

∣∣∣
x=s

− 2κ(t)E
)
e (9)

with κ(t) = k1 + k2−k1
2 (sgn(cos(ωt)) + 1). Figure

10 shows the maximum Lyapunov exponent Λmax(ω)

as a function of ω for Eq. (9). Values of ω such that
Λmax(ω) < 0 synchronize the pair of Rössler oscilla-
tors, while Λmax(ω) > 0 indicates that the error does
not decay to zero for that value of the switching fre-
quency. The curveΛmax(ω) versusω perfectly explains
the presence of severalwindowsof synchronization and
unsynchronized motion for system (7).

We next calculate the maximum Lyapunov expo-
nent Λmax(ω, k2) for the system in Eq. (9) with time-
varying coupling as a function of the two parameters
ω and k2. In Fig. 11 the regions of the parameter space
k2 − ω in which Λmax(ω, k2) ≤ 0 (Λmax(ω, k2) > 0)
are reported in light blue (red). It clearly appears that
different windows of unsynchronized behavior fixing
k2 and varying ω can be observed for a large range
of k2. Furthermore, a novel behavior is enlightened
when ω is fixed and k2 varied. The static MSF of the x-
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Fig. 10 Maximum Lyapunov exponent Λmax(ω) for the system
in Eq. (9) with time-varying coupling. k1 = 0, k2 = 2.2

κ

ω

0 2 4 6 8 10
10−1

100

101

Fig. 11 Regions in the parameter space ω versus κ where
the maximum Lyapunov exponent Λmax(ω, k2) is positive (red
region) or negative (blue region) for the system in Eq. (9) with
time-varying coupling. (Color figure online)

coupled Rössler oscillator, as it can be seen from Fig. 1,
is classified as class-III, i.e., synchronization mani-
fold is stable only in a given interval of the coupling
factor. This behavior can be retrieved when switch-
ing is fast with respect to the system dynamics, i.e.,
ω ≥ 10rad/s. However, when switching frequency is
below this threshold, the MSF appears as class-II, i.e.,
synchronization is preserved for all values of the cou-
pling factor above a single threshold. This behavior is
found several times decreasing ω between two subse-
quent resonance peaks.

Wemention here that other chaotic dynamics can be
considered. When coupling two Lorenz systems with
an on–off coupling through the z variable, in fact, the
synchronization range in terms of the coupling strength
is widenedwith respect to the static case, but, unlike the
Rössler systems, remains limited between two values.

5 Experimental investigation

In this section, the system of two Rössler oscillators
with switching coupling is investigated experimentally
using an electronic circuit governed by Eq. (7). Each
Rössler oscillator was implemented using the electrical
scheme [42]. The timescale of the circuit was rescaled
by a factor K ≈ 2100 so that the circuit waveforms
exactly correspond to those of the Rössler system (1).

Unlike static coupling, which can be realized by
means of a single resistor between the capacitors asso-
ciated with the corresponding state variables, cou-
pling in the experimental setup used a pulse-width-
modulated (PWM) analog switch in series with a cou-
pling resistor. This strategy facilitates extending the
setup to a network of switched connections. We also
explored solutions based on a digital resistor, but the
resolution provided by off-the-shelf digital resistors
both in terms of values and switching time was found
inadequate for our purpose.

The coupling scheme was implemented using two
components: the analog switch ADG452 and the ST
microcontroller unit (MCU) STM32F303VCT6 for
the generation and control of the PWM signal. The
ADG452 embeds four independently selectable bi-
directional switches, has a low on-resistance (on the
order of 5Ω), fast switching times (tON = 70ns,
tOFF = 60ns), and is TTL-/CMOS-compatible. The
microcontroller STM32F303VCT6 is an ARM-based
Cortex-M4, 32bit microcontroller with an embedded
floating point unit. It has a core clock up to 72MHz, a
256kB Flash memory, 48kB SRAM, and a wide range
of peripherals such as analog-to-digital and digital-to-
analog converters, timers, and direct memory access. It
requires a voltage supply in the range of 2.0 to 3.6V.

The value of the coupling resistor is controlled by
the duty cycle (DC) of the PWM signal driving the
analog switch. Turning the switch on and off has the
effect of multiplying the fixed coupling resistor by a
factor inversely proportional to the DC according to
the relationship

Req = 100

DC
Rc (10)

The ADG452 was controlled with a 40-kHz PWM,
which is adequate since the frequency range of the
Rössler system is below 5kHz. Although this solu-
tion can switch between two nonzero values of the
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Fig. 12 Average
normalized error E(ω)

calculated on a data
acquired from the
experimental system and b
data obtained from
numerical integration of the
identified model of the
implemented circuit. The
frequency axis in (a) is
rescaled by a factor K to
allow comparison with
numerical results
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coupling resistance, it allows low values of the cou-
pling (k1 = 0.02), which adequately approximate two
disconnected circuits.

The waveforms corresponding to the six state vari-
ables were acquired using an NI-USB6255 data acqui-
sition board at a sampling frequency of fs = 80kHz
and post-processed to compute the average normalized
error E(Ω) as in Eq. (8), whereΩ = Kω is the switch-
ing frequency in the rescaled circuit.

Figure 12a shows the trend of E(Ω). To facilitate
comparison with numerical results, the frequency axis
has been rescaled in terms of the variable ω. The pre-
dicted peak of desynchronization around ω = 1.00
is confirmed in the experiment. Due to component
tolerances, complete synchronization (E = 0) is not
obtained, but practical synchronization [43,44] (E <

0.2) is observed. To better compare the experimen-
tal results with numerical simulations, these have to
explicitly take into account in themodel the component
tolerances. To this aim, the parameters actually imple-
mented in the circuit were identified using a symbolic
regression algorithm [45]. The results obtained from
the model including tolerances are shown in Fig. 12(b).
The results are in agreement with those discussed in
[36] in which an error bound is derived in presence
of differences between coupled circuits as a function
of largest transverse Lyapunov exponent. For our case,
taking into account an uncertainty in parameter values
of the 1% and, applying the methods for error bound
evaluation presented in [36], we obtain a predicted
bound for the error of 0.56, which is above the effective
error retrieved in the experiment. Thewindows of prac-
tical synchronization are in good agreement with those
predicted by the model, demonstrating the robustness
of the observed phenomena.

6 Conclusions

In this paper, two Rössler oscillators coupled through
a time-varying link were investigated. In particular, the
coupling strength is periodically switched between two
values. The observed behavior is significantly richer
than the case of other chaotic circuits such as two
coupled Chua’s circuits, for which there is only a sin-
gle transition frequency between synchronization and
unsynchronous motion [27].

Although each of the two coupling values precludes
synchronization when statically applied to the system,
switching between them may result in stabilizing the
synchronization manifold. This occurs not only at high
switching frequencies as predicted by fast switching
theory, but also in several windows at lower values of
the frequency.

We have shown that the alternation of windows of
synchronization and unsynchronized motion can be
explained in terms of a MSF illustrating the behavior
of the maximum Lyapunov exponent transverse to the
synchronizationmanifold as a function of the switching
frequency. Windows of synchronization correspond to
negative values of the maximum transverse Lyapunov
exponent, while unsynchronized behavior is obtained
when this quantity is positive.

The study of time-varying coupling is motivated by
real-life examples of complex systems in which the
topology of connections between units evolves follow-
ing its own dynamics. In particular, the on–off mech-
anism of the coupling allows to obtain a non-trivial
behavior, i.e., the range of the coupling coefficient in
which synchronization is achieved becomes infinite for
a large set of the switching frequency. This allows to
design adaptive strategies through which the switching
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frequency can be set according to specific constraints
on the coupling strength.

Although the phenomenon of the appearance ofwin-
dows of synchronization beyond the regime of fast
switching has been recently reported in other works
[30–32], in this paper we have linked it to the effects
of the coupling on the dynamical properties of the
unit. We have, in fact, highlighted a strong effect of
the switching coupling on the spectral properties of
the two oscillators, since, for a switching frequency
close to the dominant component of the spectrum of
the isolated Rössler oscillators, the dominant compo-
nent locks to the switching frequency, resulting in a
significant change of the chaotic dynamics and a fail-
ure of synchronization.

Hence the spectral properties of the system and anal-
ysis of the MSF derived for the time-varying coupling
allow one to predict the regions of synchronizability
beyond that expected from fast switching analysis. An
interesting behavior occurs for switching frequencies
below the fast switching, where the synchronization
interval, typical of class-III MSF, is enlarged toward
infinity. These regions agree well with the results of
numerical and experimental analysis.

Acknowledgements We acknowledge Fabrizio La Rosa for
help in realizing the experimental setup.
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