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ABSTRACT: Campos, Méndez, and Fort (CMF) derived an approximate formula for the speed of reaction-diffusion
fronts in fractal media. By way of a continuation of their earlier studies, we perform numerical simulations of reaction-
diffusion equations with au(1−u)(1−αu) for 0¶ α¶ 1 as the reaction term on various generalized Sierpiński carpets
(including infinitely ramified and random ones). The CMF formula agrees well with the mean front speed as a function
of a obtained from our simulations for the classic Sierpiński carpet, a randomized version of the carpet, and some
finitely ramified carpets containing loops. In these cases the mean front speed also shows no significant dependence on
α, as predicted by the CMF formula. However, the agreement is not so good in the case of the other carpets tested and
this is probably a result of the mean distance of the front from the starting point against time behaving erratically in such
cases. We also propose some nomenclature for generalized Sierpiński carpets and introduce a compact formulation of
how to determine whether a point is on a generalized Sierpiński carpet lattice.

KEYWORDS: random walk dimension, generalized Sierpiński carpet, Fisher equation, subdiffusion

INTRODUCTION

Reaction-diffusion equations with stable travelling
wavefront solutions apply to such diverse systems
as autocatalytic reactions1 and a fairy ring of mush-
rooms2. Here we consider reaction-diffusion equa-
tions with one dependent (dimensionless) variable
u of the form

∂ u
∂ t
= D∇2u+uf (u),

f (1) = 0, max
0¶u¶1

f (u) = f (0),
(1)

where D is the diffusion coefficient. Eq. 1 with
f (u) = a(1− u), where a is a positive constant, is
known as the Fisher equation and was first proposed
to model the spread of advantageous genes3, but
is now more familiar as an equation governing a
population of organisms exhibiting logistic growth4.

As fractal media are widespread in nature5, how
reaction-diffusion fronts propagate on fractals is of
great interest. At the microscopic level, diffusion
arises from particles performing random walks and
these are governed by




r2
�

= C t2/dw , (2)

where



r2
�

is the mean squared displacement of
the particles from their starting positions after time
t, dw is the random walk dimension, and C is a
constant which depends on the size of the steps the
particles take and the geometry of the medium. A
description of diffusive processes on fractals should
also agree asymptotically with the following proba-
bility, obtained in Ref. 6 by considering an intrinsic
metric for fractals, of finding a particle at distance r
after time t:

P(r, t)∼ t−df/dw exp
�

−c
� r

t1/dw

�1/δ�

, (3)

where df is the fractal dimension, c is a constant,
δ ≡ d−1

min − d−1
w , and dmin is the minimum distance

dimension (see, e.g., Ref. 7). Campos, Méndez, and
Fort8 (CMF) were the first to derive a diffusion equa-
tion for fractals that is compatible with (3) as well
as (2). CMF also used their diffusion operator to
obtain a more general version of the Fisher equation
and hence an approximate expression for the speed
of Fisher equation fronts8, 9 which, following their
derivation and the condition on f given in Ref. 10,
is straightforward to generalize to the case of fronts
governed by (1) to arrive at what we will refer to as
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the CMF formula for front speed,

V =
1

dmin

�

4D0dmin f (0)
dw− dmin

�δ

td−1
min−1, (4)

where D0, the fractal diffusion coefficient, is related
to the proportionality constant in (2) via11

C =
Γ [(df+2)δ]
Γ [dfδ]

�

4D0

dwδ

�2δ

, (5)

where Γ (x) denotes the gamma function of x . For d-
dimensional Euclidean space, df = d, dw = 2, dmin =
1, and C = 2dD which leads to, in this case, D0 = D
and (4) reduces to V = 2

p

f (0)D, a result which is
well known for the Fisher equation3.

The only fractals for which it has so far been pos-
sible to determine dw analytically are finitely rami-
fied. A fractal is finitely ramified if any proper subset
of it can be separated from the rest by removing a
finite number of points. If a fractal is not finitely
ramified, it is referred to as being infinitely ramified.
In the case of finitely ramified loopless fractals with
a topological dimension larger than 1, dw = df+1 12.
For the simplest finitely ramified fractals with loops,
such as the Sierpiński gasket, a closed-form expres-
sion for dw can be obtained using a renormalization
procedure7. For more complicated finitely ramified
fractals with loops, a renormalization procedure can
be used to generate a set of equations from which dw
can be found numerically13. Owing to the current
lack of analytical approaches, numerical simulations
of random walkers14 or the exact enumeration of
their distribution15 on the lattice representation of
the fractal are required to find C in all cases and dw
for infinitely ramified fractals.

The speed of simulated Fisher equation fronts
on some finitely ramified fractals, namely, the Sier-
piński gasket, the Koch curve, and a random fractal
in the form of a percolation cluster near criticality,
have been shown to agree quite well with (4) both
in terms of time-dependence (the latter two fractals
have dmin > 1) and dependence on f (0) 8, 11. Here
we test the CMF formula for simulated fronts gov-
erned by (1) with f (u) = a(1−u)(1−αu) for 0¶α¶
1 on a number of finitely ramified generalizations
of the Sierpiński carpet along with the classic Sier-
piński carpet and its random version which are both
infinitely ramified. Such fractals are of interest since
some fractals in nature, such as porous rock with a
scale-invariant distribution of holes16, are infinitely
ramified.

Cubic reaction terms are used in a number of
simplified models of reaction-diffusion systems2, 4.

The particular form of f (u)was chosen as it reduces
to the Fisher equation when α = 0 and for all α ∈
[0,1], a long way ahead of (behind) the front u
tends to 0 (1). (The front is the set of points where
u= 1

2 .) The asymmetry of ue(x), the monotonically
decreasing stable equilibrium travelling waveform
in an infinite domain with a phase chosen so that
ue(0) =

1
2 , increases with α. The Fisher equation

waveform is symmetrical in the sense that ue(x)−
1
2

is an odd function of x . For α ∈ (0,1], ue(x)→ 0 for
x > 0 more rapidly than ue(x)→ 1 for x < 0, and
this becomes more pronounced as α increases. In
all cases, the width of the transition region around
the front scales as

p

D/a.
For all generalized Sierpiński carpets, dmin is

unity17, and so, for the form of f (u) we consider,
(4) reduces to

V = Kaδ (6)

where now δ ≡ 1−1/dw and

K ≡
√

√ CΓ [dfδ]
Γ [(df+2)δ]

. (7)

In the next section we review some properties
of generalized carpets and introduce a scheme for
naming them. We then describe the technique
used to obtain estimates of C and dw (where they
are not already known) and the simulation of the
reaction-diffusion equation on the fractal lattices. A
comparison of the speed of the simulated fronts with
that predicted by the CMF formula follows, along
with a discussion of the results.

GENERALIZED SIERPIŃSKI CARPETS

A non-random generalized N × N Sierpiński carpet
is constructed by starting from a filled square with
sides of length L which is divided into N2 equal
subsquares of length L/N , and then q of these
subsquares are removed. The remaining shape is
known as the generator. The process is applied
recursively: at the mth iteration each of the filled
squares (of length L/N m−1) is replaced by a copy of
the generator scaled down by a factor of N m−1 to
give what is sometimes referred to as the prefractal
of depth m. Thus the generator itself is the pre-
fractal of depth 1 and the fractal is the prefractal of
infinite depth. The fractal dimension of the resulting
carpet is logN (N

2− q).
We introduce the following convention for nam-

ing the non-random generalized N ×N carpets. We
represent each filled (empty) subsquare in the gen-
erator by the binary digit 1 (0). The N binary digits
making up the representation of each row of the
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117 171 272

376

137F 26F717F5 3AF5

137 273173

757

Fig. 1 Generators of various generalized Sierpiński car-
pets with the names of the corresponding fractal carpets.

generator are replaced by their base-2N equivalent
digit. This results in an N -digit base-2N number
of which the pth most significant digit represents
the pth row of the generator (counting from top
to bottom). Thus according to this convention the
classic 3×3 Sierpiński carpet is called 757. Rotating
or reflecting a generator will result in the same
fractal but in general a different N -digit code. To
avoid duplication, we use the code corresponding
to the orientation of the generator which gives the
code with the lowest numerical value. Examples are
given in Fig. 1.

A fractal carpet is finitely ramified if and only
if the first and the last row of the generator have
exactly one filled subsquare in the same position
in the row and similarly for the first and last col-
umn12. Thus all carpets produced from the gen-
erators shown in Fig. 1 are finitely ramified except
for the classic Sierpiński carpet, 757. Of the carpets
shown, only 117, 171, 272, and 3AF5 are loopless.

Random generalized Sierpiński carpets speci-
fied by the parameters N and q can be constructed in
a similar way to the non-random carpets except that
each time a filled square is replaced by a generator,
the generator used is picked uniformly at random
from the set of the

�N2

q

�

possible generators with
q empty squares. This results in a carpet with the
same df as for the non-random case7.

NUMERICAL METHODS

The random walk simulations used to find C and dw,
and those used for the reaction-diffusion equation,
are performed on a prefractal lattice. To obtain a
prefractal lattice for a carpet, we place the prefractal
whose smallest subsquares are unit squares on the
first quadrant of a square lattice with unit spacing

between lattice sites. In other words, the underlying
lattice is composed of the points (x , y) where x , y ∈
{0, 1,2, . . .}. The carpet is aligned so that the centres
of the smallest subsquares are lattice points. The
prefractal lattice is composed of all lattice points
that are inside the prefractal.

Before describing the simulations, we present a
way of finding whether a set of coordinates corre-
sponds to a point on a given non-random prefractal
carpet lattice. It is basically the same idea as the
infinite lattice method18 but we formulate it another
way.

Determining whether a point lies on the
prefractal lattice

By way of introduction, consider the classic middle-
third Cantor subset of the unit interval. It is well
known that this consists of all points which can
be written in base 3 in such a way that they do
not contain the digit 1. In practice this means
writing the end point 1 of the interval [0,1] as
0.2̇ and replacing a trailing 1 in a number by 02̇.
For example, the base-3 representation of 1

3 is 0.1
which has a trailing 1 and thus may also be written
as 0.02̇, hence implying that it is in the subset.
Similarly, the 757 carpet subset of the unit square
[0,1]× [0,1] consists of all points (x , y) such that,
when x and y are written using the no-trailing-1
base-3 representation, there is no m such that the
mth digits of x and y are both 1.

Now consider the generator of an N×N general-
ized carpet where each subsquare is labelled by inte-
ger coordinates (X , Y )where X , Y ∈ {0,1, . . . , N−1}
and the bottom left subsquare is taken as the origin
(0,0). Let Q be the set of coordinates of the empty
subsquares of the generator. Then the correspond-
ing generalized carpet subset of the unit square is
the set of points (x , y) such that when written in
base N , there is no m such that the ordered pair
formed from the mth digits of x and y is in the set
Q. In the case of the 757 carpet, Q = {(1, 1)}.

To determine whether or not a point in the
underlying lattice is in the depth-M prefractal lattice
of an N ×N generalized carpet we use a procedure
analogous to the one for determining whether or
not a point in the unit square is in the generalized
carpet. Let S(N)m (x) be the mth digit of integer x
written in base N , counting the rightmost digit as
the first. A point (x , y) on the underlying lattice is
not on the prefractal lattice if and only if there is an
m where 1 ¶ m ¶ M such that (S(N)m (x), S(N)m (y)) ∈
Q. The method can clearly be generalized to three
(or more) dimensions.
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Finding C and dw

We used a Monte-Carlo approach based on that
in Ref. 19 to determine C and dw. We released
215 walkers distributed at random onto a depth-
M prefractal lattice. For the non-random carpets,
rather than have an array describing the lattice, we
used the algorithm described above to determine
whether a site is on the prefractal. This enabled
us to use M = 15 (the limit set by the size of the
largest integer possible for the variable type used
in the program). Having a large depth ensures
that only a small fraction of walkers feel the effect
of the boundary19. For the 3 × 3 random carpet
with q = 1 (which we will refer to as R), we used
M = 10. The walkers move according to the blind
ant algorithm whereby at each time step, one of the
walker’s four neighbouring sites on the underlying
lattice is chosen at random. The walker only moves
there if it coincides with the prefractal lattice.




r2
�

against t is plotted logarithmically for in-
teger values of t nearest to 2 j/8 for j = 56, . . . , jmax
with jmax generally at least 144. Values of C and dw
obtained from the best-fit line vary with jmax. For
carpets whose dw value is already known accurately,
we selected the jmax which gave the closest dw to the
known value and then used the corresponding value
of C .

Reaction-diffusion fronts on carpets

Our numerical scheme for solving (1) with D =
1/2d on a prefractal carpet lattice is based on the
method given in Ref. 20. The following system of
equations was solved using the 4th-order Runge-
Kutta method:

dui

dt
=

�

∑pi
j=1 ui j

�

− piui

2d
+ui f (ui), (8)

where ui and ui j are the values of u at the ith
node and at the jth nearest neighbour of the ith
node, respectively, and pi is the number of nearest
neighbours of the ith node. A time step of 1 was
used. The prefractal lattices used were of depths 6
and 5 for the 3×3 and 4×4 carpets, respectively.

We employed two types of boundary conditions.
In type O, a single node is held fixed at a value of 1
for all time. Except for the 272 carpet in which case
the fixed node is at the centre of the prefractal, the
fixed node was the origin. The prefractal lattice thus
had to be oriented so that its corner node coincided
with the origin. In type L, all the nodes in the pre-
fractal lattice along the y-axis had u= 1 for all time.
At all other points, the initial value of u is set equal to

0. Note that at the edge of the lattice, the scheme (8)
naturally results in free boundary conditions. On a
2-d Euclidean lattice using boundary conditions of
type O (L), a circular (planar) wave (of the form
ue(r − V t − r0) where r is the distance measured
in the direction of propagation and r0 is a phase
constant) develops after some time.

The front itself was taken as the set of points
with u ¶ 1

2 which had at least one neighbouring
node with u ¾ 1

2 . For type O boundary conditions,
the mean front distance F was found from the mean
distance of the front points from the fixed-valued
node. For type L boundary conditions, F was taken
to be the mean x coordinate of the front points. The
distance of the front points furthest from the origin
or y-axis was also monitored. When this reached
0.8 of the width of the prefractal, the simulation
was halted to avoid the wavefront feeling the effects
of the boundary. The mean front speed Vsim was
obtained from a best-fit line of F plotted against
t, discarding the points before the waveforms have
had time to fully develop.

The scheme gives fronts with a speed within 3%
of the theoretical value for 0.0025 < a < 0.16 on
a 1-d lattice. This, in addition to the fact that no
oscillations were seen in any of the simulations, sug-
gests that the scheme was not subject to numerical
instabilities. Simulations were carried out for a =
0.16/2s with s = 0,1, . . . , 7 and α = 0,0.9, 1 on the
carpets whose generators are given in Fig. 1 along
with the random carpet R. Boundary conditions of
type O were used for all carpets. For 757 and R we
also ran simulations with the type L boundary.

RESULTS AND DISCUSSION

The values of C we obtained are given in Table 1.
We have not managed to find any other values of this
parameter in the literature to compare them with.
From the variations in the values of C obtained from
the best-fit lines as jmax is varied, we estimate that
the uncertainty in C is less than 1%. Hence the
uncertainty in K is less than 0.5% for the carpets
whose dw is known accurately.

For the 757 carpet, dw = 2.10 is in line with
the result of 2.101±0.022 reported in Ref. 21. Our
error bounds would be no more than ±0.01. For the
particular instance of the random carpet we used
(Fig. 2), the dw value of 2.175 we obtain is a little
outside the range of 2.13±0.03 suggested in Ref. 22.
There were problems with finding C for 3AF5 as the
dw value quickly converged to 2.72 with increasing
jmax. This is 0.06 larger than the theoretical value
and it is interesting that this is close to the central
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Table 1 Parameters for the carpets studied and a comparison of the simulation results with the CMF formula. [ρα]
denotes the range of values of ρ obtained for the various values of a used for a particular value of α. Thus [ρ0] gives
the range of relative discrepancy for Fisher equation fronts. µs ≡ Vsim(0.16/2s, 1)/Vsim(0.16/2s, 0)−1.

carpet C dw K δ [ρ0] [ρ0.9] [ρ1] µ7 µ0

757 0.792 2.10 0.885 0.524 [−0.03,0.02]e [−0.04,0.02]e [−0.04,0.02]e 0.00 0.00
[−0.03,0.02]e [−0.03,0.03]e [−0.03,0.03]e 0.00 0.00

117 0.636 2.4650a 0.823 0.594 [0.14,0.16] [0.14,0.16] [0.14,0.16] 0.00 0.00
171 0.615 2.4650a 0.809 0.594 [0.14,0.19]e [0.14,0.17] [0.14,0.18] −0.01 −0.03
272 0.598 2.4650a 0.798 0.594 [0.07,0.10] [−0.01,0.13] [0.00,0.13] 0.02 0.00
137 0.704 2.5448(9)b 0.801 0.607 [0.04,0.08] [0.00,0.10] [0.03,0.06] 0.00 −0.01
173 0.698 2.5448(4)b 0.797 0.607 [0.09,0.14] [0.09,0.12]e [0.09,0.12]e 0.00 0.00
273 0.689 2.5448(4)b 0.792 0.607 [−0.22,−0.18]e [−0.22,−0.18] [−0.22,−0.20] 0.07 0.00
376 0.740 2.5427(7)b 0.784 0.607 [−0.25,−0.19]e [−0.25,−0.21]e [−0.25,−0.21]e 0.00 −0.02
137F 0.765 2.5094(3)b 0.833 0.601 [−0.03,0.04] [−0.01,0.04] [−0.02,0.02] 0.00 −0.03
17F5 0.746 2.5758(7)b 0.810 0.612 [0.02,0.09] [0.01,0.08] [0.01,0.08] −0.01 0.00
26F7 0.740 2.4915(5)b 0.823 0.599 [−0.04,−0.01] [−0.04,−0.02] [−0.04,−0.02] 0.00 0.00
3AF5 0.566 2.6609a 0.693 0.624 [−0.37,−0.33]e [−0.33,−0.37]e [−0.33,−0.37]e 0.00 0.00
R 0.849 2.175 0.894 0.540 [−0.05,−0.03]e [−0.05,−0.02]e [−0.05,−0.02]e 0.00 0.00

[−0.02,0.00]e [−0.02,0.00]e [−0.02,0.00]e 0.00 0.00

Where two intervals for ρ are given, the first and second are for boundary conditions of type O and L, respectively.
a From dw = 1+ df for loopless carpets.
b Values from resistance scaling calculation in Ref. 13. The number in brackets indicates the uncertainty in the final

decimal place.
e [A,B]e denotes that ρα(0.16/27) = A, ρα(0.16) = B, and ρα(a) ∈ [A, B] for 0.16/27 < a < 0.16.

Fig. 2 Reaction-diffusion equation simulation on a ran-
dom carpet for α = 1, a = 0.0025 at time t = 14000.
Type O boundary. Red: u = 1; yellow: u = 0.5; blue:
u= 0.

value of 2.71±0.05 arrived at via exact enumeration
in Ref. 14. We ended up using a jmax of just 25 in
order to obtain a value of dw reasonably close to

10-2 10-1

10-1

a

V

10-2 10-1

10-1

a

V

Fig. 3 Simulation results for 757 (top) and 117 (bottom)
carpets with α = 0. Circles: type O boundary; crosses:
type L boundary; solid line: CMF formula.

the theoretical value. The corresponding estimate
of C therefore has a greater uncertainty than for the
other carpets.

We use ρα(a) ≡ Vsim(a,α)/Kaδ − 1 to measure
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Fig. 4 (t, F) plots for 757, 117, 376, 3AF5 (from top to
bottom) with a = 0.0025 and α = 0. The best-fit line
(which does not use the points for t < 5000) is used to
calculate the mean front speed.

the sign and magnitude of the discrepancy be-
tween the simulation result of the mean front speed
Vsim(a,α) and that predicted by the CMF formula
(6). Based on the estimated errors of the front
velocity in a homogeneous medium and the values
of K , we take values of |ρ| of less than around 0.04
as agreeing well with the CMF formula. Table 1
(and Fig. 3 for 757) show that there is agreement
with the CMF formula for the infinitely ramified
carpets (757 and R) and some of the 4× 4 carpets
with loops, namely, 137F and 26F7. There was no

Fig. 5 Reaction-diffusion equation simulation on the 376
carpet for α= 0, a = 0.0025 at time t = 32000.

significant difference between the results found for
the type O and L boundary conditions.

The agreement is less good for the loopless
carpets along with some of the others (Table 1,
Fig. 3). This is perhaps due to the more erratic
behaviour of the mean front distance F against t
in such cases when compared to infinitely ramified
fractals (Fig. 4). For loopless carpets, a sudden jump
in F will occur when the front disappears when it
reaches the end of a branch. Loopless fractals are
not the only type of fractal that have dead ends, as
is illustrated in Fig. 5. It can be seen that the drop
in F around t = 32000 (Fig. 4) results from some
fronts propagating towards the origin. Shortly after,
all fronts disappear except for the one right at the
centre which marks the only link from one half of the
fractal to the other. And occurring on a fractal, this
phenomenon is found on all scales at various other
times. In spite of the irregular nature of the (t, F)
plots, the points in Fig. 3 for 117 lie in a straight
line (as is also the case for the other carpets) which
indicates that our calculation of Vsim is consistent. It
is interesting to note that the carpet with the largest
|ρα|, namely, 3AF5, is the one for which finding dw
was problematic.

The CMF formula does not involve α. However,
in some cases, there is an indication that α has an
effect on the mean front speed (see [ρα] and µs
values in Table 1). As this only occurs for some
of the carpets which have erratic (t, F) plots and
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generally show poorer agreement with the CMF
formula, it seems probable that this discrepancy has
the same root cause. Note also that the precise
nature of the (t, F) plots varies with α. This results
from the shape of the wave ue(x) depending on α
and so the time where the wavefront disappears in
one part of the fractal (resulting in a jump in F) will
be also affected byα even if the overall average front
speed remains unchanged.

In summary, as the predictive tool CMF pro-
posed their formula to be11, it generally works
quite well, although the cases where it fails to work
so well are worthy of further investigation. It is
pleasing that the fractals for which it gives the best
agreement are the less obscure ones, such as the
classic Sierpiński and random carpets, which are
more reminiscent of the fractals found in nature.
The results presented here give further credence to
the formula being of use to experimentalists, as CMF
suggested in the conclusion of Ref. 11.
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