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The nonlinear and dynamic accommodating capability of time domain models makes them a useful 
representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the 
modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive 
model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case 
studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems 
demonstrate that the proposed modeling methodology exhibits better prediction performance from 
different viewpoints (short term and long term) compared to some other existing methods.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Most familiar examples of low-dimensional chaotic flows occur 
in systems having one or more saddle points. Such saddle points 
allow homoclinic and heteroclinic orbits and the prospect of rigor-
ously proving the chaos when the Shilnikov condition is satisfied. 
Furthermore, such saddle points provide a means for locating any 
strange attractors by choosing an initial condition on the unstable 
manifold in the vicinity of the saddle point. Such attractors have 
been called “self-excited,” and they are overwhelmingly the most 
common type described in the literature.

Recently, many new chaotic flows have been discovered that 
are not associated with a saddle point, including ones without any 
equilibrium points, with only stable equilibria, or with a line con-
taining infinitely many equilibrium points [1–18]. The attractors 
for such systems have been called “hidden attractors” [19–30], and 
that accounts for the difficulty of discovering them since there is 
no systematic way to choose initial conditions except by extensive 
numerical search. Hidden attractors are important in engineering 
applications because they allow unexpected and potentially dis-
astrous responses to perturbations in a structure like a bridge or 
aircraft wing.
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In this work we propose a new method for predicting the global 
behavior of chaotic flows with hidden attractors. It is known that 
the long-term prediction of chaotic time series is not possible due 
to the sensitive dependence on initial conditions [31] and that 
their prediction is much more difficult than for static/algebraic sys-
tems [32]. However it is still useful to find a model which can 
provide short-term prediction or can reproduce the geometrical 
properties of a chaotic system, such as the shape of the strange 
attractor.

Different approaches have been used for chaotic signal predic-
tion. Fuzzy Function (FF) systems represent one of the recent inter-
esting soft computing approaches used in various applications such 
as modeling, classification, and prediction [33]. Turksen introduced 
this type of fuzzy structure [33–35] which is simpler compared to 
neuro-fuzzy rule-based systems. The multidimensional input space 
of FFs leads to an elimination problem due to the projection onto 
each axis. This is one of the main differences between multidi-
mensional structures and rule-based structures [36]. Consequently, 
the obtained membership values besides the input variables are 
used to estimate fuzzy functions. Different regression methods 
like Least Square Estimation (LSE) [35], Multi Adaptive Regression 
Spline (MARS) [37], and Support Vector Machine (SVM) [38] can 
be used to estimate these functions.

With the addition of recurrent structures to a model responding 
to memory information based on prior system states, a significant 
increase in addressing the temporal sequence capability can be 
achieved [39–44]. In this way, some literature exists on the combi-
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nation of recurrent structures and fuzzy systems in two categories 
of local and global feedback. Juang et al. [41] employed local-rule 
feedback and took advantage of a variable-dimension Kalman fil-
ter for learning. Lin et al. [40] introduced recurrent self-evolving 
neuro-fuzzy networks that have a local and global link in the ag-
gregation step. Ganjefar and Toghi placed a single neuron with a 
mother wavelet activation function and local feedback in each rule 
to achieve better results by modifying the learning algorithm es-
pecially in on-line applications [42]. Tellez et al. based on passivity 
theory and by the use of an online recurrent layer, introduced in-
verse optimal controllers which are trained by an extended Kalman 
filter [45]. Theocharis implemented recurrent structure with a con-
text node in the form of an FIR synaptic filter and achieved en-
hanced temporal capacity in a higher-order system for modeling 
a complex nonlinear temporal process [39]. This paper proposes 
Recurrent Fuzzy Functions (RFFs) which have the following salient 
characteristics:

(1) A novel FF structure that benefits both interactive rules and 
recurrent structures is proposed. Before this work, FF systems were 
used with weighted averages based on rule firing rates for aggre-
gation, but in this study interactively recurrent nodes are used to 
improve the learning capacity of the dynamical structures of a time 
series.

(2) One important task in designing recurrent systems is train-
ing of the feedback weights. In our proposed system nodes, 
weights are trained with steepest descent that automatically tune 
the learning rate with a line search based on the strong Wolf con-
dition because of its fast learning speed.

(3) The computation is more efficient, and structure is simpler 
than other considered fuzzy structures, and it is more generaliz-
able.

Also by use of RFFs as the nonlinear autoregressive with exoge-
nous input (NARX) model of the data, prediction of chaotic flows 
with a hidden attractor is investigated using two different strate-
gies: short-term (quantitative) and long-term (qualitative).

The rest of this paper is organized as follows: the preliminar-
ies of the NARX model are briefly reviewed in section 2. Then in 
section 3, the FCM method for clustering will be presented. MARS 
regression is described in section 4. Details of the proposed RFFs’ 
structure and parameter learning scheme are presented in sec-
tion 5. In section 6, we introduce some rare chaotic systems with a 
hidden attractor which will be examined in case studies. Sections 7
and 8 give results and conclusions.

2. NARX model and optimal parameter

Generally in statistical prediction, a stochastic model based on 
previous observation is constructed to predict current and future 
values. A popular type of such a model is the nonlinear autore-
gressive moving average model with exogenous inputs (NARMAX) 
which is given by [46]:

y(t) = F
[

y(t − 1), . . . , y(t − ny), e(t − 1), . . . , e(t − ne),

x(t − 1), . . . , x(t − nx)
] + e(t) (1)

where x, e and y are external input, noise (which can be seen as 
representing the prediction error), and output of the system, re-
spectively. F is an unknown nonlinear function, and nx , ne and ny

are the maximum lags of the input, noise, and output, respectively. 
A special case of the general model is the NARX (ny , nx) model:

y(t) = F
[

y(t − 1), . . . , y(t − ny), x(t − 1), . . . ,

x(t − nx)
] + e(t) (2)

where it is assumed that e(t) has zero mean and finite variance 
σ 2 and is independent and identically distributed. The predictor 
model in many problems can be designed without the use of ex-
ternal input. Here we just use the past time series values and the 
prediction error.

The method of making a NARX representation involves deter-
mining the structure and estimating the parameters of the un-
known nonlinear system from data. Here we use the proposed RFFs 
as the structure, and parameters are estimated that minimize the 
prediction error.

3. Fuzzy C-means clustering

The cost function of the basic FCM algorithm assuming a known 
number of clusters is as follows [47]:

Jq (V , U ) =
M∑

i=1

C∑
j=1

uq
ijd(xi, v j) (3)

subject to the constraints:

C∑
j=1

uij = 1, i = 1, . . . , M (4)

where

uij ∈ [0,1] , 0 <

M∑
i=1

uij < M i = 1, . . . , M, j = 1, . . . , C

and q > 1 is the fuzziness, and xi , v j , M , and C are the ith in-
put data, the center of the jth cluster, the number of data points, 
and the number of clusters, respectively. Also U is an M × m ma-
trix whose i jth element is the membership degree of xi in the jth 
cluster, and V is a C ×m matrix which contains the m-dimensional 
centers of the clusters, and d(xi, v j) is the distance between xi and 
the jth cluster center.

After minimization, a closed form for the degree of membership 
of the features in the clusters is as follows [47]:

uij = 1

∑C
k=1

(
d(xi ,v j)

d(xi ,vk)

) 1
q−1

(5)

and the cluster prototype is:

v j =
∑M

i=1 uq
ijxi∑M

i=1 uq
ij

(6)

Fuzzy partition is carried out through an iterative process consist-
ing of computing the degree of membership and center of the clus-
ters by use of Eqs. (5) and (6), respectively, with random initializa-
tion. Based on the global convergence theorem of Zangwill [48], 
when different distance measures that satisfy certain conditions 
discussed in [49] are employed, convergence of the sequence pro-
duced by the above algorithm in a finite number of iterations to a 
local minima, has been proved [50].

4. Multi adaptive regression spline

MARS is one of the adaptive regression methods. This nonpara-
metric regression approach can be considered a generalization of 
stepwise linear regression and can efficiently represent the non-
linear relation and hidden patterns in data sets [51]. The sum of 
squares error for a general regression is as follows:

SSE =
n∑(

yi − β0 − β1b1 (xi) − · · · − βP bP (xi)
)2

(7)

i=1
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Fig. 1. Plot of spline functions [51] (a) h1, (b) h2.

where y is the dependent variable and x = (x1, . . . , xn) indicates 
the vector of explanatory variables in the observations where 
xi = (xi1, xi2, . . . , xim) ∈ Rm and b j (x) are basis functions. In this 
method, basis functions are formed by a pair of functions known 
as splines (h1, h2), given by [52]:

h1 = max {0, x − c} , h2 = max {0, c − x} (8)

where c is a constant called the knot. Fig. 1 shows the spline func-
tions.

If we have n independent observations for each of the explana-
tory variables x j , each observation can be considered as a knot, 
and subsequently 2n functions exist for each x j . Set B is defined 
so that it includes all functions h1 j, h2 j, j = 1, . . . , n and the prod-
uct of two or more of them. For the basis function of Eq. (8), each 
member of set B can be used [52]. MARS is run in the forward and 
backward phase as follows:

Forward phase: This step begins with the mean of the depen-
dent variable as b0. Then an iterative process adds basis functions 
to the model. Estimation of the coefficients β is performed in such 
a way as to give the greatest decrease in the SSE. For adding a new 
statement, the algorithm must check all of the following items:

a) Basis functions exist so far in the model.
b) Variables exist so far in the model (can select one for making 

a basis function).
c) Variable values exist so far in the model (for specifying the 

knot in a new h function).

Adding new statements ends once changes in SSE become negli-
gible or when a maximum number of statements is reached. At 
the end of this phase, a model with many statements is produced 
that has poor performance when generalized, and thus it needs a 
backward elimination phase.
Backward phase: Begin with the final model achieved in the 
previous phase, and at each iteration, remove the statement from 
the model that has the lowest contribution to an increased SSE. By 
pruning the model at each step, the result can be a candidate for 
the final model. “Generalized Cross Validation” is used for perfor-
mance evaluation, and this procedure continues until all the basis 
functions are removed. MARS selects an optimum model which has 
a minimum GCV. The GCV for the ith step is as follows [52]:

GCV = RSS

N ×
(

1 − effective number of parameters
N

)2
(9)

effective number of parameters

= number of MARS terms + λ
number of MARS terms − 1

2
(10)

where 2 < λ < 4 is the penalty value and N is the number of 
observations. Also number of MARS terms−1

2 is the number of knots of 
spline functions in the model.

5. Proposed method

The proposed RFFs is a modified version of FFs as shown in 
Fig. 2. The junctions between different rules give the system an 
interactively recurrent dynamical structure.

5.1. The structure formation

Suppose X = [x1 · · · xN ] is the one-dimensional input time se-
ries. In state space reconstruction, with dimension m and lag τ , 
the trajectory matrix is obtained as follows:

S =
⎡
⎢⎣

x1 · · · x1+(m−1)τ

...
. . .

...

xN−(m−1)τ · · · xN

⎤
⎥⎦ (11)

where N is the length of input time series. Each row of S is one 
point of the trajectory. So in the prediction task, the nth input 
data is s (n) = (x (n) , x (n + τ ) , . . . , x (n + (m − 1) τ )), and the cor-
responding object is y (n) = x(n + mτ ). RFFs model include the 
following steps:

Step 1: Trajectory points are clustered for determining the fuzzy 
rules (behaviors of the system). After termination of clustering, 
membership degrees of each state in each cluster is determined 
by Eq. (5).

Step 2: In this step, input data for regression in the next step 
are prepared. To this end, membership values and their transfor-
mations are appended to the primary inputs:
Fig. 2. The proposed RFFs framework.
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ϕi = [
s,Γ, f (Γ )

]
i = 1, . . . , M

where M = N − (m − 1)τ is the number of points in state space 
and f (Γ ) indicates the membership value transformation (more 
detail about this step is in [35]).

Step 3: MARS is applied to matrix φ in order to determine the 
Fuzzy Functions as follows:

φi =
⎡
⎢⎣

s1 Γ1 f (Γ1)
...

...
...

sK ΓK f (ΓK )

⎤
⎥⎦ i = 1, . . . , C (12)

where K is the number of the cluster’s point and for each row 
(explanatory variable) and its corresponding output is xn+mτ . Here, 
a NARX model for all clusters has been made which corresponds 
to the behavior of each cluster.

Step 4: Recurrent layer of RFFs are considered to form local and 
global feedback loops. The obtained weights of this step are used 
for aggregation between the different rules. These weights lead to 
a temporal memory and are computed as follows:

ψ t
k (u) = (1 − γk)ut

k +
C∑

i=1
i �=k

λikψ
t−1
i

k = 1, · · · , C, t = 1, · · · , M (13)

Here γk = ∑C
i=1 λik , ut

k , t , ψ , and λ are the membership values of 
the tth data in cluster k, the number of samples, the weight of ag-
gregation, and the coefficient of interactive and recurrent relations, 
respectively.

Step 6: Finally, by weighted averaging, the system output is cal-
culated as follows:

f (x j) =
∑C

i=1 ψi (u) .F Fi
(
ϕ j

)
∑C

i=1 ψi (u)
(14)

where F Fi
(
ϕ j

)
is the output of the ith rule for the jth input point.

5.2. Parameter learning

Here parameter learning of the proposed system is described. 
Parameters are recurrent layer coefficients matrix (λ) as follows:

λ =
⎡
⎢⎣

λ11 · · · λ1C
...

. . .
...

λC1 · · · λCC

⎤
⎥⎦ (15)

Here we have an essential assumption that the interactive weight 
is bidirectional, so λ is symmetric and elements on the main di-
agonal indicate recurrent weights, and other elements indicate in-
teractive weights. As mentioned in section 1, based on the error of 
the modeling parameter, learning is done in an iterative algorithm. 
The prediction error value is as follows:

E = 1

2

(
yt − f

(
xt))2

(16)

where f (xt) is the RFFs output value for the tth sample and yt

is the desired output value. Coefficients train using the gradient 
descent algorithm with a line search based on the strong Wolfe 
condition, and its main advantage is automatic determination of 
the learning rate. In the basic gradient descent algorithm without 
a line search, large η leads to divergence and to increased learning 
time and computation. In addition, accuracy of the result is never 
greater than η. If the ideal line search method is used, it might 
have further computation costs because a univariate optimization 
method (like the Golden Section Search) must be used to find the 
Fig. 3. (a) Lyapunov exponents, (b) Kaplan–Yorke dimension, and (c) bifurcation di-
agram of system (20) showing a period-doubling route to chaos.

optimal value of η. That is an iterative process like the original 
optimization method, and so it requires more computation. But if 
a line search based on the strong Wolfe condition used, it could 
determine an optimal value of η in a few iterations [53]. Results in 
the next section demonstrate this superiority. Coefficients update 
in the following form:

λt+1
i j = λt

i j + �λt
i j+ ∝ �λt−1

i j (17)

�λt
i j = −η

∂ E

∂λi j
i, j = 1, · · · , K (18)

where ∝ is the momentum weight (which is practically selected 
around 0.75) and 0 < η < 1 is the learning step. Developing the 
previous expressions gives:

∂ E

∂λi j
= −(

y − f (x)
) ∂ f

∂λi j
(19)

where

∂ f

∂λi j
=

⎧⎨
⎩

(ψi (t − 1) − ui (t)) F Fi (q) i = j(
ψ j (t − 1) − ui (t)

)
F Fi (q)

+ (
ψi (t − 1) − u j (t)

)
F F j (q) i �= j

(20)

6. Rare chaotic flows with hidden attractors

In this section, we introduce some new rare three-dimensional 
chaotic systems which are proposed by Jafari and Sprott [1], Jafari 
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Fig. 4. Four views of the strange attractor in Eq. (22) with initial conditions (0,0.5,0.5).
et al. [3], Sprott et al. [14], and Molaie et al. [7]. First we investigate 
in detail the simplest chaotic system with a line of equilibria, and 
then we mention three other chaotic flows with hidden attractors. 
Consider the following system [1]:

ẋ = y

ẏ = −x + yz

ż = −x − axy − bxz (21)

Choosing the most elegant set of parameters [54] gives the follow-
ing system:

Sys 1:
ẋ = y
ẏ = −x + yz
ż = −x − 15xy − xz

(22)

The equilibrium states of this system are E = (0,0, z), which ac-
tually constitutes a line. The eigenvalues of these equilibria are 
(0, (z ± √

z2 − 4)/2). The dynamical behavior of system (20) can 
be illustrated by numerical bifurcation diagrams, Lyapunov expo-
nents, phase portraits and time series. Fig. 3 shows the Lyapunov 
exponents, Kaplan–Yorke dimension, and the bifurcation diagram 
depicting maxima of z (t) versus the parameter a for b = 1.

The chaotic behavior shown in Fig. 3 is further detailed in Fig. 4
which shows the trajectory projected onto various planes using 
initial conditions (0,0.5,0.5) for a = 15 and b = 1. Lyapunov expo-
nents are (0.0717,0,−0.5232), and the Kaplan–Yorke dimension is 
DKY = 2.1371. Cross sections of the basin of attraction for the sys-
tem are shown in Fig. 5.

In addition, we consider three other rare systems with hidden 
attractors. System (2) [3] is a system with no equilibria, System (3) 
[7] is a system with one stable equilibrium, and System (4) [14] is 
a system with one unstable node:
Sys 2:
ẋ = −y
ẏ = x + z
ż = 2y2 + xz − 0.35

(23)

Sys 3:
ẋ = y
ẏ = z
ż = −x − 0.6y − 2z + z2 − 0.4xy

(24)

Sys 4:
ẋ = y
ẏ = −x + yz
ż = z + 8.888x2 − y2 − 4

(25)

7. Simulation results

The problem of time series prediction is considered as a mod-
eling problem containing three steps. First, past and present values 
of the time series are considered as inputs, and future values are 
considered as outputs of the prediction model. Next a model relat-
ing output to input is built. Finally, the created model is used to 
predict unseen future points [55]. As mentioned before, the goal 
of this paper is to examine the performance of the recurrent fuzzy 
functions structure for a chaotic time series with a hidden attrac-
tor in long term and short term prediction. In addition to the four 
new chaotic flows introduced in the previous section, we exam-
ine the method for two classical types of chaotic flows, the first of 
which is the Lorenz system given by [56]:

Sys 5:
ẋ = a(y − x)
ẏ = cx − xz − y
ż = xy − bz

(26)

where x, y, and z are state variables and a, b, and c are adjustable 
parameters. For a = 10, b = 8/3, and c = 28 the Lorenz equations 
will give chaotic behavior.

Another classical system is the Rössler system given by [57]:
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Fig. 5. Basin of attraction of system (22) (a) in the plane z = 0, (b) in the plane y = 0, and (c) in the plane x = 0. Initial conditions in the white region lead to unbounded 
orbits, those in the light blue region lead to the strange attractor, and those in the red region lead to the line equilibrium. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)
Sys 6:
ẋ = −z − y
ẏ = x + ay
ż = b + zx − cz

(27)

where typical values of a = 0.15, b = 0.20, and c = 10 give chaotic 
behavior.

Simulation results for the six systems are presented in two 
subsections depending on the prediction time. In addition, perfor-
mance of the proposed method is compared with other methods, 
including fuzzy functions with least square error (FF-LSE) [35], 
fuzzy functions with multi-adaptive regression spline (FF-MARS) 
[37] and multi-adaptive regression spline (MARS) [52]. The per-
cent root mean squared difference (PRD) is taken as the quality 
criteria:

PRD% =
√√√√

∑N
i=1(y(i) − ŷ(i))2

∑N
i=1(y(i))2

× 100% (28)

where ŷ is the predicted output. Choosing optimal parameters 
and a time step of 0.05 and sampling from 0 to 100 second 
with appropriate initialization of the variables gives a 2000-point 
chaotic time series x(t), y(t), and z(t) as seen in Fig. 6 for 
Sys 1 (Eq. (22)) which is discussed in detail. In the rest of this 
section, we used the x of each system with state space recon-
struction (SSR). In the simulation we used the first 80 seconds 
(1600 points) as training data and the remaining 400 points 
for testing (in the interest of brevity, we only show results for 
Sys 1).

7.1. One step ahead (short-term) prediction

Two time series prediction problems are: short-term (one step 
ahead) and long term (many steps ahead). In the first type, we test 
the proposed method using two different approaches:
Fig. 6. Time series of system (22).

7.1.1. Without state space reconstruction
In this subsection we predict future results with a delay equal 

to 1. Here we make a 3rd order NARX model. Table 1 shows the 
results and a graphical performance comparison of the different 
methods for all the systems provided in Fig. 7.

Table 1 and Fig. 7 show that simpler methods like FF-LSE, al-
though having weaker results in the training part, do not have a 
large reduction in the test part unlike the FF-MARS. Table 1 also 
indicates that by the addition of a recurrent layer and interactive 
structure in the RFFs, better PRDs than those of other fuzzy struc-
tures are achieved. Although in RFFs, the number of parameters 
increased, despite expectations, generalization of the system in the 
Table 1
Results of short-term prediction without SSR.

Performance Method

FF-LSE FF-MARS MARS RFFs

Train Test Train Test Train Test Train Test

PRD Sys 1 0.996 0.023 0.028 0.030 2.544 2.782 0.021 0.017
Sys 2 0.406 0.018 0.064 0.07 1.573 1.539 0.058 0.064
Sys 3 0.256 0.027 0.585 0.834 1.936 1.864 0.584 0.832
Sys 4 1.048 0.631 0.719 0.655 1.689 1.738 0.710 0.645
Sys 5 0.59 0.324 0.961 0.774 1.118 1.943 0.73 0.376
Sys 6 0.328 0.176 0.846 0.362 1.004 1.871 0.409 0.206
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Fig. 7. Comparison of different methods for all the systems in short-term prediction 
without SSR.

test part do not decrease. To corroborate this point, it should be 
said that interactive and recurrent weights learn the time pattern 
of a sequence (memory information), and so it is effective at ob-
taining better test results.

7.1.2. With state space reconstruction
In most practical processes, all of the dynamical/state variables 

are not accessible, and only a single time series of observation is 
available. In such a case, additional variables can be generated us-
ing state space reconstruction as introduced in the literature many 
times [58,59], and thus will not be repeated here. However, it is 
necessary to choose an embedding dimension and a time step. 
The embedding dimension is determined using the method of false 
nearest neighbors (FNN) [60] from which we conclude that a value 
of 3 is sufficient (for all systems). For determining an optimal time 
step, we used the first local minimum of the mutual information 
function [61] which gives a value of 24 (for system 1). State space 
plots of the system projected onto the xy-plane in the original 
case and achieved through state space reconstruction are shown 
in Fig. 8.

Fig. 8 confirms the Takens theory [59] and shows the homol-
ogy of the original and reconstructed attractor. Table 2 shows the 
results achieved for prediction based on SSR. Fig. 9 which contains 
the bar plot of Table 2, shows that when the behavior of the sys-
tem is recovered by SSR, the MARS method has better performance 
than the FF-LSE method because of the greater power of the MARS 
method compared to LSE in regression. Combing the two things: 
a) fuzzy ability in extracting different behaviors in a dynamical 
systems and b) MARS ability in function approximation, provides 
Fig. 8. State space plots projected onto the xy-plane.

Fig. 9. Performance comparison for all the systems in short term prediction with SSR.

a powerful tool for our goal. Finally, by adding recurrent structure 
(as memory) to this system, we get the best result.

As seen in Tables 1 and 2, future points predicted without SSR 
give better results (lower error), but its generalization to long-term 
prediction fails. In fact, an advantage of SSR is that a time series 
with random features can appear deterministic in a reconstructed 
state space [62]. Based on this point, we use SSR for long-term 
prediction.
Table 2
Results of short-term prediction with SSR.

Performance Method

FF-LSE FF-MARS MARS RFFs

Train Test Train Test Train Test Train Test

PRD Sys 1 9.8838 10.462 3.7398 3.7913 7.7630 8.1901 2.8227 2.9568
Sys 2 14.3531 12.812 8.955 6.27 10.402 8.147 7.393 7.658
Sys 3 2.984 4.044 3.521 4.771 4.747 6.276 3.127 3.984
Sys 4 15.459 16.429 8.209 8.503 18.587 19.861 6.394 6.567
Sys 5 6.859 7.793 6.993 7.245 8.815 9.005 3.962 4.259
Sys 6 4.925 5.471 3.195 4.89 7.391 8.11 3.18 3.667
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Table 3
Results of long-term prediction using recursion.

Performance Method

FF-LSE FF-MARS MARS RFFs

Test Test Test Test

PRD Sys 1 14.7806 19.7680 11.7276 7.8321
Sys 2 21.432 33.1435 20.009 16.4192
Sys 3 16.1917 24.661 16.321 10.7359
Sys 4 20.4325 29.19 17.012 15.0184
Sys 5 21.1462 23.0145 14.2695 9.0241
Sys 6 18.3461 22.486 13.674 8.5364

Fig. 10. Long-term prediction results for the X time series using the recursive approach (system 1).
7.2. Multi-step (long-term) prediction

The problem of long-term prediction is challenging. Results 
of long-term prediction are inaccurate and unreliable due to un-
certainties and error propagation. Long-term forecasting meth-
ods usually extend short-term prediction models by two different 
strategies: recursive prediction [63] and direct prediction (multi-
model) [64].

7.2.1. Recursive prediction
Here after making a model in the training part, we use it re-

cursively in the test section. In this way, to predict several steps 
ahead we use the predicted values as known data to predict the 
next value in the sample. In more detail, the procedure can be 
constructed by first making one-step ahead prediction based on 
SSR [55]:

x̂ (n + mτ ) = f
(
x(n), x(n + τ ), . . . , x

(
n + (m − 1)τ

))
(29)

where m denotes the dimension. To predict the next value, the 
approximator of Eq. (14) is defined as the vector of inputs which 
contain x̂ (n + mτ ) instead of the true values, and similarly for all 
future points. Fig. 11 compares achieved results by the different 
methods. Table 3 shows achieved results for 400 points ahead in 
the recursive long-term approach. As seen in Fig. 10, the error 
gradually increases in time due to error propagation, and this con-
tinues until complete divergence of the modeled signal occurs [63]. 
In this way, based on initial error of the model and the degree of 
trajectory divergence (Largest Lyapunov Exponent), the maximum 
prediction horizon can be calculated [65].

7.2.2. Multiple model approach
In contrast to the last subsection which used just one model for 

long-term prediction, here inspired by [66], we train 50 models for 
Fig. 11. Comparison of different methods for all the systems using the recursive ap-
proach.

long-term prediction. In this way, each model trains for predicting 
independent points ahead, while having the same inputs as bellow:

x̂ (n + P ) = f P
(
x (n) , x (n + τ ) , . . . , x

(
n + (m − 1) τ

))
(30)

Using a number of models equal to the prediction horizon, 
we used all models together for prediction points after the pre-
diction horizon in the recursive mode. Using a further model, 
we prevent divergence and accumulation of error. As can be seen 
in Fig. 12, in contrast to Fig. 10, the prediction error for all points 
remains at a certain level, and by increasing the number of models, 
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Fig. 12. Long-term prediction result for X time series by multiple model approach (system 1).

Fig. 13. Long-term prediction error reduction based on increasing the number of models in multiple model approach.

Table 4
Results of long-term prediction using multiple model prediction.

Performance Method

FF-LSE FF-MARS MARS RFFs

Test Test Test Test

PRD Sys 1 16.006 10.4123 8.106 4.7854
Sys 2 29.132 26.864 14.367 11.961
Sys 3 21.741 15.356 11.005 6.846
Sys 4 24.132 19.174 13.112 9.058
Sys 5 21.639 16.376 10.837 7.527
Sys 6 19.485 13.81 9.0142 5.3192
the prediction performance can be improved. Fig. 13 shows the ob-
tained PRD measure as a function of the number of models. Based 
on Eq. (30), as P increases, the distance between input samples 
and the object of the model increases and this leads to an increase 
in error, and for this reason, the error is not reduced from a cer-
tain amount, and also it can be said that unlimited increase in the 
number of models could not lead to zero error, and however we 
have a certain degree of error because of further parameters. Ta-
ble 4 shows achieved performance measure, and Fig. 14 compares 
achieved results by the different methods using 50 models.

As seen in Tables 3 and 4, the proposed RFFs method has the 
best results compared to other approaches for long-term predic-
tion. As can be seen, the results of prediction using FF-MARS and 
RFF are similar for short-term prediction, but RFF has the best re-
sults in long-term prediction. To explain this achieved result, it can 
be said that by adding recurrent layer, the model extracts memory 
information and so has a powerful capability of learning the dy-
namical behavior of the system. This leads to a better tracking and 
prevents divergence in the long term.

One of the important issues that must be investigated is com-
putational cost of the different methods. Based on our analysis, 
different methods have various learning times in the training part, 
but no appreciable difference exists in the test part. As seen in 
Fig. 15, the best method is FF-LSE in which fuzzy functions are 
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Fig. 14. Comparison of different methods for all the systems in the multiple model ap-
proach.

Fig. 15. Average computational cost of different methods for all prediction scenarios 
and systems.

trained in a closed form matrix computation. However, as can be 
seen in the results, this low computational cost leads to lower 
performance. The other three methods do not have appreciable dif-
ferences.

8. Conclusion

In this paper, a global approach called Recurrent Fuzzy Func-
tions (RFFs) for nonlinear modeling of a time series is proposed. Its 
performance is tested and compared on some new chaotic flows, 
especially newly introduced chaotic systems with hidden attrac-
tors. The proposed RFF works as a nonlinear autoregressive with 
exogenous inputs (NARX) model. It provides a kind of step by step 
model generation. Finally, by tuning the interactive weights, the 
relation between each subspace (clusters) of state space is deter-
mined. On the other hand, by tuning recurrent weights, the model 
can learn the dynamics of the original system (which is reflected 
in the observed time series). Experiments and comparative stud-
ies demonstrate better performance of the proposed approach over 
some other existing methods, in both short-term and long-term 
prediction. The simulations indicate that multiple models show a 
better prediction accuracy in the long term. However even when 
the accuracy fails in the time domain (due to the butterfly ef-
fect), the shape of the strange attractor obtained from the model 
matches the original strange attractor of the system. This can help 
in extracting some qualitative information related to the geometry 
of the attractors.
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