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Gibbs’ thermodynamic entropy is given by the logarithm of the phase volume, which itself
responds to heat transfer to and from thermal reservoirs. We compare the thermodynamic
dissipation described by (i) phase-volume loss with (ii) heat-transfer entropy production. Their
equivalence is documented for computer simulations of the response of an ergodic harmonic
oscillator to thermostated temperature gradients. In the simulations one or two thermostat
variables control the kinetic energy or the kinetic energy and its fluctuation. All of the motion
equations are time-reversible. We consider both strong and weak control variables. In every case,
the time-averaged dissipative loss of phase-space volume coincides with the entropy produced by
heat transfer. Linear-response theory nicely reproduces the small-gradient results obtained by
computer simulation. The thermostats considered here are ergodic and provide simple dynamical
models, some of them with as few as three ordinary differential equations, while remaining
capable of reproducing Gibbs’ canonical phase-space distribution and are precisely consistent
with irreversible thermodynamics.

Keywords : Ergodicity; algorithms; entropy production; dissipation.

1. Introduction

We discuss the time-reversibility and thermody-
namic dissipation of several harmonic-oscillator
models, all of them extensions of the thermostated
canonical-ensemble dynamics pioneered by Shuichi
Nosé [1984a, 1984b]. All the resulting extended

models [Hoover, 1985, 1997; Martyna et al., 1992;
Ju & Bulgac, 1993; Hoover & Holian, 1996; Hoover
et al., 2015a; Bulgac & Kusnezov, 1990; Kusnezov
et al., 1990; Hoover et al., 2015b; Hoover et al., 2016;
Hoover et al., 2015c] studied here are chaotic and
ergodic. They generate phase-space distributions
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matching Gibbs’ canonical distribution, Gaussian in
the oscillator coordinate q and momentum p with
halfwidths of order

√
T corresponding to a heat

reservoir with kinetic temperature T .
Our nonequilibrium extensions of these equilib-

rium models result when the thermostat temper-
ature has a spatial gradient with T = T (q). All
such nonequilibrium models discussed here generate
time-averaged heat flows obeying the Second Law
of Thermodynamics. All these nonequilibrium mod-
els generate fractal rather than smooth phase-space
distributions. The fractals’ time dependence chron-
icles the penetration of the fractal character to
smaller and smaller length scales with passing time,
and is fully consistent with Gibbs’ phase-volume
definition of entropy.

We begin with a brief discussion of time
reversibility and ergodicity in Sec. 2. Section 3 pro-
vides a historical sketch of time-reversible ther-
mostat models from Nosé’s work to the present.
Section 4 illustrates the time-reversibility of the
models in nonequililbrium stationary flows and
demonstrates the consistency of all the thermo-
stat models with Gibbs’ statistical thermodynam-
ics. Section 5 illustrates the consistency of these
steady flows with Green and Kubo’s treatment of
near-equilibrium linear-response theory. We con-
sider the details of the linear-response approach
for two models [Hoover & Holian, 1996; Hoover
et al., 2015b]. Our summary and historical perspec-
tive in Sec. 6 includes our main conclusion from this
work: useful computational thermostats can be and
should be chosen so that the thermodynamic dissi-
pation away from equilibrium is consistent with the
Second Law of Thermodynamics where the entropy
corresponds to Gibbs’ phase-volume definition. We
relate this finding to the history of understand-
ing microscopic systems through the computational
study of small-system dynamics.

2. Time-Reversible Ergodicity at
and Away from Equilibrium

Thirty years ago, Nosé and Hoover developed two
new mechanics formally consistent with Gibbs’
canonical ensemble [Nosé, 1984a, 1984b; Hoover,
1985, 1997]. These modern mechanics share two
fundamental characteristics of their Hamiltonian
ancestor, being both deterministic and time-
reversible. Any sequence of successive frames of a
Nosé or Nosé–Hoover movie played “backward”,
with the frames in reversed order, shows a reversed

motion described by exactly the same motion
equations but with reversed velocities. Hamilto-
nian mechanics shares this same time-reversibility
property.

The harmonic oscillator provides the simplest
example of reversibility. If we choose a one-dimen-
sional harmonic oscillator with unit mass and spring
constant then any “forward” orbit (with −τ < t <
+τ) can be paired with a time-reversed backward
twin with the reversal occurring at time t = 0. For
instance:

{q = ± sin(t); p = ± cos(t)}
↔ {q = ∓ sin(t); p = ∓ cos(t)}.

Both orbits satisfy Hamilton’s equations: {q̇ = +p;
ṗ = −q}. In this simplest case the reversed version is
also a mirror image of the original, with both q and
p changed in sign. In both cases, forward and back-
ward, time increases. This corresponds to a positive
timestep dt > 0 in a numerical simulation. We dis-
tinguish this physical version of “time-reversibility”
with +p→ −p from its mathematical cousin where
dt changes sign while q and p do not.

Nosé sought out a dynamics which would
explore the (q, p) phase space with a probability
density approaching Gibbs’ canonical distribution,
f(q, p) ∝ e−H(q,p)/kT . Both the Nosé and the
simpler Nosé–Hoover thermostat algorithms lacked
the ergodicity required to reproduce all of Gibbs’
canonical distribution for the prototypical one-
dimensional harmonic oscillator [Hoover, 1985].

About a decade later, three more-complex algo-
rithms, doubly-thermostated with four motion equa-
tions rather than singly-thermostated with three,
were developed. All three have been shown to pro-
vide ergodicity for the oscillator [Martyna et al.,
1992; Ju & Bulgac, 1993; Hoover & Holian, 1996;
Hoover et al., 2015a]. How to demonstrate this
ergodicity? First of all, ergodic motion equations
necessarily satisfy the stationary version of Liou-
ville’s continuity equation:(

∂f

∂t

)
= −∇r · (fv) ≡ 0.

Abbreviate the Nosé–Hoover motion equations for
an oscillator by introducing a generalized velocity v
for the three-dimensional flow:

v = ṙ = (q̇, ṗ, ζ̇)

←
{

q̇ = +p; ṗ =−q− ζp; ζ̇ =
(

p2

T

)
− 1
}

[NH],
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where the stationary distribution f is propor-
tional to e−q2/2T e−p2/2T e−ζ2/2. The four nonvanish-
ing contributions to (∂f/∂t) are:

−q̇

(
∂f

∂q

)
= p
( q

T

)
f ;

−ṗ

(
∂f

∂p

)
= (−q − ζp)

( p

T

)
f ;

−ζ̇

(
∂f

∂ζ

)
=
[(

p2

T

)
− 1
]

(ζ)f ;

−f

(
∂ṗ

∂p

)
= fζ.

These four terms sum up to zero, showing that the
motion equations are consistent with the assumed
Gaussian distribution. The Nosé–Hoover equations
are not ergodic so that the vanishing of (∂f/∂t) is
not sufficient for ergodicity. In fact, numerical work
shows that only a bit less than 6% of the Gaus-
sian oscillator measure is mixing and chaotic. The
remaining 94% is made up of regular tori, showing
that the Nosé–Hoover distribution is not ergodic.
See Fig. 1 for a cross-sectional view of the Nosé–
Hoover oscillator’s chaotic sea. We use the term
“chaotic” in the usual sense here, to indicate that
the maximum Lyapunov exponent has a long-time
positive average value. Numerical methods for mea-
suring Lyapunov exponents so as to characterize
chaos make up a vast literature readily accessible
through Wikipedia.

Ergodic motion equations must necessarily
reproduce the canonical moments of the Maxwell–
Boltzmann velocity distribution. With mkT chosen
equal to unity to set the temperature scale, the val-
ues appropriate for Cartesian coordinates,

〈p2,4,6,...〉MB = 1, 3, 15, . . .

can readily be verified from numerical simulations.
But distributions which are “almost” ergodic (for
some specific æsthetic examples see Figs. 2–4 in
[Hoover et al., 2015c]) can exhibit deviations so
small as to be masked by thermal fluctuations.

Two better checks of ergodicity have been
implemented. Cross-sections (such as the (q, p, 0)
points shown in Fig. 1), where ζ = 0 or where ζ =
ξ = 0 if two thermostat variables are used can be
inspected visually for the tell-tale holes indicating
regular toroidal solutions within the chaotic sea.

Additionally, the mean value of the largest Lya-
punov exponent λ1 (the long-time averaged rate of

Fig. 1. Penetrations of the (q, p, 0) plane for the chaotic
Nosé–Hoover oscillator with initial condition (0, 5, 0), using
points from an adaptive fourth-order Runge–Kutta integra-
tion with a timestep dt � 0.001. Red and blue correspond
to the most positive and most negative Lyapunov exponents.
Notice the lack of symmetry about the horizontal axis despite
the time-reversibility of the equations of motion, showing that
the Lyapunov exponents’ dependence on past history differs
from their relation to the unforseeable future. This cross-
section of the chaotic sea corresponds to about 6% of the
Nosé–Hoover oscillator’s Gaussian measure. Note the mirror-
image inversion symmetry.

separation of two nearby trajectories, positive for
chaos and zero for tori) can be estimated for simu-
lations using millions or billions of randomly chosen
initial conditions. For an ergodic system the results
cluster around a unique positive long-time average,
〈λ1(t)〉 � λ1. For a toroidal system the averaged
results instead cluster about zero.

The three criteria (moments, tell-tale holes,
Lyapunov exponent) have been applied to the ther-
mostats described in the following section leading to
the conclusion that many different one-thermostat
and two-thermostat systems are ergodic. Let us
detail four such systems next.

3. Deterministic Time-Reversible
Thermostats (1984–2015)

As recently as early 2015 it was thought that four or
more ordinary differential equations were required
for oscillator ergodicity. [Hoover et al., 2015a] deals
with techniques for demonstrating ergodicity as
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applied to the Martyna–Klein–Tuckerman [1992],
Ju–Bulgac [1993], and Hoover–Holian [1996] ther-
mostated oscillators. For a more comprehensive
treatment see [Bulgac & Kusnezov, 1990; Kusne-
zov et al., 1990]. The three thermostat types, MKT,
JB, and HH, produce chaotic dynamics (q̇, ṗ, ζ̇ , ξ̇)
which pass visual ergodicity tests. All three of
them also closely reproduce the Cartesian veloc-
ity moments 〈p2,4,6〉 characterizing the equilibrium
Maxwell–Boltzmann distribution. Let us begin by
reviewing the structure of these three thermostat
types.

3.1. The Martyna–Klein–Tuckerman
“Chain” thermostat (1992 )

The Martyna–Klein–Tuckerman thermostat uses
two control variables, ζ and ξ, with ζ controlling
〈p2〉 and ξ controlling 〈ζ2〉:{

q̇ = p; ṗ = −q − ζp;

ζ̇ =
(

p2

T

)
− 1− ξζ; ξ̇ = ζ2 − 1

}
[MKT].

The steady-state distribution corresponding to
these oscillator motion equations is an extension of
Gibbs’ canonical one:

fMKT(q, p, ζ, ξ)

∝ e−q2/2T e−p2/2T e−ζ2/2e−ξ2/2 →
(

∂f

∂t

)

= −∇r · (fv)

≡ 0 where v = ṙ ≡ (q̇, ṗ, ζ̇ , ξ̇).

The stationarity test from the continuity equation,
(∂f/∂t) = 0, provides a necessary, but not neces-
sarily sufficient, condition that any set of motion
equations must satisfy for ergodicity. Martyna et al.
[1992] emphasized that any number of additional
control variables can be added to form a “chain” of
thermostats.

3.2. The Ju–Bulgac cubic
thermostat (1993 )

The Ju–Bulgac thermostat [1993] likewise uses two
control variables but includes cubic dependences fol-
lowing the observation of Bauer, Bulgac, and Kus-
nezov that cubic terms enhance chaos and ergodic-
ity [Ju & Bulgac, 1993; Bulgac & Kusnezov, 1990;
Kusnezov et al., 1990]:

{
q̇ = p; ṗ = −q − ζ3p− ξ

(
p3

T

)
; ζ̇ =

(
p2

T

)
− 1;

ξ̇ =
(

p4

T 2

)
− 3

(
p2

T

)}
[JB].

The steady-state distribution here is Gaussian in ζ2

rather than ζ:

fJB(q, p, ζ, ξ) ∝ e−q2/2T e−p2/2T e−ζ4/4e−ξ2/2

→
(

∂f

∂t

)
≡ 0.

At unit temperature T = 1 the rms rate
√〈ṗ2〉

at which the Ju–Bulgac momentum moves through
phase space is about three times faster than that
of the simpler Martyna–Klein–Tuckerman momen-
tum:√

〈q2 + p2ζ6 + p6ξ2〉
�
√

18.028 versus
√
〈q2 + p2ζ2〉 =

√
2.

From the numerical standpoint cubic thermostat
variables enhance chaos and mixing without incur-
ring the considerable stiffness associated with quin-
tic controls.

3.3. The Hoover–Holian thermostat
(1996 )

Like the two preceding, the Hoover–Holian ther-
mostat [1996] uses two control variables. The first
one is allocated to fixing the oscillator temperature
ζ → 〈p2〉 while the second fixes the fluctuation of
the temperature ξ → 〈p4〉:{

q̇ = p; ṗ = −q − ζp− ξ

(
p3

T

)
;

ζ̇ =
(

p2

T

)
− 1; ξ̇ =

(
p4

T 2

)
− 3

(
p2

T

)}
[HH].

At unit temperature the rms rate at which the
Hoover–Holian momentum moves,√

〈q2 + p2ζ2 + ξ2p6〉 =
√

17,

is nearly the same as the Ju–Bulgac speed. The
Hoover–Holian thermostat variables ζ and ξ exert
what we term “strong” control of the tempera-
ture and its fluctuation, in that long-time aver-
ages of the thermostat motion equations constrain
moments proportional to the kinetic energy and its
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fluctuation:

〈ζ̇〉 = 0→
〈(

p2

T

)〉
≡ 1;

〈ξ̇〉 = 0→
〈(

p4

T 2

)〉
≡
〈

3
(

p2

T

)〉
.

These strong constraints can be applied equally well
in nonequilibrium situations. Nonequilibrium appli-
cations of the MKT thermostat typically lead to
nonzero correlated values of the thermostat vari-
ables, 〈ζξ〉 so that the definition of the kinetic tem-
perature 〈(p2/T )〉 ≡ 1 is violated.

At equilibrium the steady-state distribution
corresponding to the HH motion equations is
exactly the same as the Martyna–Klein–Tuckerman
four-dimensional Gaussian:

fHH(q, p, ζ, ξ) = fMKT(q, p, ζ, ξ)

∝ e−q2/2T e−p2/2T e−ζ2/2e−ξ2/2

→
(

∂f

∂t

)
≡ 0.

3.4. The ergodic single-thermostat
0532 Model (2015 )

Very recently [Hoover et al., 2015b; Hoover et al.,
2016; Hoover et al., 2015c] a variety, both novel and
wide, of singly-thermostated ergodic algorithms has
been developed and applied to the one-dimensional
harmonic oscillator. The simplest of them, the
“0532 Model”, consists of only three ordinary dif-
ferential equations for the oscillator coordinate q,
velocity p, and friction coefficient ζ at a thermostat
temperature T :

q̇ = p;

ṗ = −q − ζ

[
0.05p + 0.32

(
p3

T

)]
;

ζ̇ = 0.05
[(

p2

T

)
− 1
]

+ 0.32
[(

p4

T 2

)
− 3

(
p2

T

)]
;

[0532 Model].

We term this simultaneous control of the second
and fourth moments, 〈p2 and 4〉, “weak” because a
linear combination of the moments is controlled
rather than enforcing the separate control of both
moments, as in the earlier work in [Martyna et al.,
1992; Ju & Bulgac, 1993; Hoover & Holian, 1996;
Hoover et al., 2015a; Bulgac & Kusnezov, 1990].

Numerical solutions of the 0532 oscillator model
indicate that it is ergodic and corresponds to Gibbs’
canonical ensemble multiplied by a Gaussian distri-
bution for the thermostat control variable ζ:

f0532(q, p, ζ, ξ) = ∝ e−q2/2T e−p2/2T e−ζ2/2

→
(

∂f

∂t

)
≡ 0.

Because the 0532 Model motion occurs in just three
dimensions rather than four, it is well-suited to
analysis. This model, like its three predecessors in
this section, is time-reversible, even in the nonequi-
librium case where the temperature varies in space,
T = T (q). Let us review the reversibility property
in that specific nonequilibrium case.

4. Time-Reversibility Away from
Equilibrium — 0532 Model

At equilibrium the forward and backward trajec-
tories for canonical oscillators, using any of the
four ergodic sets of motion equations, are qualita-
tively much the same. No holes in the cross-sections,
good values for the even velocity moments, long-
time averaged Lyapunov exponent being the same
for any initial condition. In short — deterministic,
time-reversible, ergodic.

Away from equilibrium, thermodynamic dissi-
pation can be investigated, still time-reversibly, by
adding a localized temperature gradient (dT/dq) =
[ε/ cosh2(q)] enabling heat transfer through a
nonzero average current (p3/2):

1− ε < T < 1 + ε = T (q) = 1 + ε tanh(q)

→
〈(

p3

2

)〉
< 0↔

〈(
Ṡ

k

)〉
< 0.

Here ε is the maximum value of the temperature
gradient, T ′(0). The negative entropy change, caus-
ing the phase volume to shrink onto a strange
attractor is due to the net heat loss from the oscil-
lator to the coordinate-dependent 0532 thermostat
temperature T (q). From the standpoint of steady-
state irreversible thermodynamics the overall heat
loss is offset by an internal “entropy production”
so that the net change of oscillator “entropy” van-
ishes. We remind the reader that Gibbs’ entropy
is actually minus infinity for fractal attractors so
that the irreversible-thermodynamics concept of
nonequilibrium entropy is problematic. The arti-
ficial entropy change could also be viewed as the
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result of ongoing coarse-graining (which would arti-
ficially increase Gibbs’ entropy) at the level of the
computational roundoff error (in the 16th or 17th
digit).

The temperature gradient destroys the “global
(overall) reversibility” of the motion equations.
Although in principle reversible everywhere, the
chaotic instability of the dynamics, evidenced by
a positive Lyapunov exponent, makes this “irre-
versibility” possible. This irreversibility is evidenced
by a Lyapunov spectrum with a negative sum so
that the long-time averaged distribution is a frac-
tal strange attractor with a reduced information
dimension rather than a smooth three-dimensional
Gibbsian distribution.

Among the thermostats we have considered
only the Nosé–Hoover equations show that a frac-
tal attractor is not inevitable. In the Nosé–Hoover
case, a majority of initial conditions give rise to
phase-space tori, orbits with no long-time tendency
toward dissipation. All of the ergodic thermostats
invariably produce small-gradient dissipation rather
than tori so that their orbits exhibit what we call
“global irreversibility”.

The equilibrium (ε = 0 and unit temperature
T = 1) Lyapunov spectrum for the 0532 Model,

{+0.144, 0,−0.144} sums to zero corresponding to
the three-dimensional Gaussian distribution, f ∝
e−q2/2e−p2/2e−ζ2/2. The time-averaged growth rates
of infinitesimal one-, two-, and three-dimensional
phase-space volumes are given by

{λ1, λ1 + λ2, λ1 + λ2 + λ3}.
In the nonequilibrium case with ε = 0.50 the time-
averaged spectrum becomes asymmetric, {+0.1135,
0,−0.1454}, corresponding to the time-averaged
growth of a length or an area in phase space �
e+0.1135t but to shrinkage of an infinitesimal three-
dimensional phase-volume ⊗:(⊗̇

⊗
)

= 0.1135 − 0.1454 = −0.0319

→ DKY = 2 +
(

0.1135
0.1454

)
= 2.78.

Kaplan and Yorke’s linear interpolation pre-
dicts a strange-attractor dimension of 2.78. Cross-
sections of the equilibrium and nonequilibrium
0532 dynamics are shown in Fig. 2. Just as at
equilibrium, the nonequilibrium strange-attractor’s
motion equations are time-reversible. Any forward-
in-time sequence {+q,+p,+ζ} corresponds to a

Fig. 2. Penetrations of the (q, p, 0) plane for the chaotic and ergodic 0532 Model using adaptive fourth-order Runge–Kutta
integration with a timestep dt � 0.001. The red and blue points correspond to maximum and minimum values of the local
Lyapunov exponent. The equilibrium ζ = 0 cross-section at the left shows inversion symmetry, corresponding to viewing the
oscillator in a mirror. The lack of symmetry about the horizonal p = 0 axis shows that the exponents depend upon the past
rather than the future. The nonequilibrium section (ε = 0.50) shown to the right displays no symmetry and is multifractal.
The black-and-white inset shows the cross-sectional density in the 2 × 2 central region of the phase-plane section.
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twin sequence {+q,−p,−ζ} with the order of
(q, p, ζ) points reversed. Locally this reversed
sequence satisfies the same equations of motion with
errors of order (dt5/120) for fourth-order Runge–
Kutta integration [Hoover & Hoover, 2015]. But
any attempt to generate such a reversed sequence
numerically fails because the Lyapunov spectrum
of the reversed sequence would correspond to
{+0.1454, 0,−0.1135}. The positive exponent sum
indicates an unstable repellor with a diverging phase
volume, (⊗̇/⊗) � +0.0319. Any attempt to follow
the repellor numerically will instead seek out the
nearby attractor (both are still ergodic, at least if ε
is small) which, though chaotic with λ1 = 〈λ1(t)〉 >
0, is less so than the repellor. The repellor prop-
erties can (only) be observed by the expedient of
storing and reversing a trajectory. The cross-section
associated with a stored ten-billion-point attractor
trajectory is illustrated in Fig. 3. Note the lack of
both ±p and inversion symmetry in the sign of the
local Lyapunov exponent, λ1(t).

This instructive problem illustrates two general
principles: (i) the phase-volume of the steady-state

attractor is zero and singular everywhere despite
the time-reversibility of the motion equations; (ii)
a typical three-dimensional phase-volume ⊗ first
expands or contracts according to the sign of ζ ≡∑

λ. Presently with 〈⊗̇/⊗〉 � −0.0139 the dis-
torted volume leaves the vicinity of the (ergodic)
fractal repellor and then shrinks in order to join its
mirror-image (and likewise ergodic) fractal attrac-
tor with a perpetually decreasing phase-volume of
order e−0.0139t. Both these features correspond to
the paucity of nonequilibrium states and to the irre-
versibility described by the Second Law of Thermo-
dynamics.

There is more. Consider two additional equally-
significant observations. First, the comoving shrink-
age rate in phase space corresponds precisely and
instantaneously to the loss of Gibbs’ entropy for
the system. To illustrate consider the 0532 Model,

q̇ = p; ṗ = −q − ζ

[
0.05p + 0.32

(
p3

T

)]
;

ζ̇ = 0.05
[(

p2

T

)
− 1
]

+ 0.32
[(

p4

T 2

)
− 3

(
p2

T

)]
.

Fig. 3. Penetrations of the (q, p, 0) plane for the chaotic and ergodic 0532 Model using a ten-billion-point attractor refer-
ence trajectory (denoted A) and classic fourth-order Runge–Kutta integration with a timestep dt = 0.001 for the satellite
trajectory. This chaotic trajectory crosses the ζ = 0 plane 1836 934 times. The signs of the largest Lyapunov exponent at
each crossing are indicated for both the attractor and the repellor (denoted R). By plotting the positive and negative points
separately, the lack of any symmetry is clear. The repellor points are identical to those of the attractor but are traced out
in the opposite direction. For both the attractor and the repellor the separatiom of the reference and satellite trajectories isp

(qs − qr)2 + (ps − pr)2 + (ζs − ζr)2 = 0.000001. The p(q) region shown is |q| < 4; |p| < 6.
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(
Ṡ

k

)
=
(⊗̇
⊗
)
≡
(

∂q̇

∂q

)
+
(

∂ṗ

∂p

)
+

(
∂ζ̇

∂ζ

)

= 0− ζ

[
0.05 + 0.96

(
p2

T

)]
+ 0.

Second, this loss rate also corresponds precisely,
when time-averaged, to the kinetic energy (or heat
Q) extracted by the thermostat forces, divided by
the thermostat temperature T :〈(

Q̇

T

)〉
= −

〈
ζ

[
0.05

(
p2

T

)
+ 0.32

(
p4

T 2

)]〉

=

〈(
Ṡ

k

)〉
.

The time-averaged value 〈ζ[0.05+0.96(p2/T )]〉, fol-
lows from the time-averaged evolution equation for
the squared thermostat variable (ζ2/2):〈

ζζ̇ = 0 = 0.05ζ
[(

p2

T

)
− 1
]

+ 0.32ζ
[(

p4

T 2

)
− 3

(
p2

T

)]〉
.

The time-averaged phase-volume loss, equiva-
lent to the dissipation seen in the heat Q lost to
thermal reservoirs divided by the reservoir temper-
ature T , 〈(

Q̇

T

)〉
=
〈

k

(⊗̇
⊗
)〉

= 〈Ṡ〉,

holds generally for all the thermostat models dis-
cussed here. This identity holds even for the Nosé–
Hoover model, which is not ergodic. It holds for
other power laws. Suppose for instance that the
thermostat force is proportional to odd powers of
ζ and p:

−Amnζ2m+1

(
p2n+1

T n

)
so that the equilibrium distribution is proportional
to

f ∝ e−p2/2T e−ζ2m+2/(2m+2).

Gibbs’ phase-space dissipation, from −(∂ṗ/∂p)
gives a contribution to the system entropy:(

Ṡ

k

)
= −(2n + 1)Amnζ2m+1

(
p2n

T n

)
.

The entropy change from the contribution of the
same dissipative term to heat transfer is:(

Q̇

T

)
= −Amnζ2m+1

(
p2n+2

T n+1

)
.

A look at the equation of motion for the friction
coefficient, multiplied by ζ2m+1 and time averaged
shows that (Ṡ/k) and (Q̇/T ) are equivalent:

〈ζ2m+1ζ̇〉

=
〈

ζ2m+1Amn

[(
p2n+2

T n+1

)
− (2n + 1)

(
p2n

T n

)]〉

= 0.

This is a consequence of the vanishing of the long-
time averaged value of a bounded quantity, in this
case (d/dt)[ζ2m+2/(2m + 2)]. Generalized models,
like the 0532 Model, can use two or more power-
law contributions to thermostat forces. This equiv-
alence of Gibbs’ entropy production with that from
irreversible thermodynamics points the way forward
toward consistent theories of nonequilibrium steady
states either near to or far from equilibrium.

In the past it has been pointed out that it
is possible to develop thermostats for which the
phase-volume and heat-transfer rates are not closely
related [Daems & Nicolis, 1999; van Beijeren &
Dorfman, 2000; Cohen & Rondoni, 1998]. This
potential loss of a family relationship recalls Tol-
stoy’s thought: “All happy families are alike; each
unhappy family is unhappy in its own way.” We
emphasize here that the close relationship linking
phase volume to thermodynamics is to be celebrated
rather than avoided.

We note that our dimensionless friction coeffi-
cients could be multiplied by relaxation times or by
powers of the temperature, changing their units. We
have carefully chosen the forms used here in order to
guarantee the consistency of the motion equations
with both Gibbs’ canonical distribution and with
thermodynamics. Dimensionless friction coefficients
seem to us the simplest approach to thermodynamic
consistency.

In the 1950s, Green and Kubo showed that their
“linear-response” theory expresses nonequilibrium
transport coefficients in terms of equilibrium corre-
lation functions. This same theory can be applied
to the various thermostats we have described. Next
we illustrate this idea for two examples, the doubly-
thermostated Hoover–Holian thermostat and the
singly-thermostated 0532 Model.
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5. Linear Response Theory with a
Temperature Gradient

We have celebrated the equivalence of two mea-
sures of dissipation, phase-volume loss and Gibbs’
entropy production when any one of our five ther-
mostat models (NH, MKT, JB, HH, 0532) is time
averaged. This equivalence guarantees their use-
fulness in simulations consistent with dynamical
equivalents of the canonical ensemble. Green–Kubo
linear-response theory is a perturbation theory
based on Gibbs’ ensembles. Typically the energy is
modified by a perturbation, giving rise to a nonequi-
librium flux. In our case, both the energy and the
temperature are modified by introducing a temper-
ature profile along with a stabilizing frictional force.
Let us demonstrate their theory’s usefulness for
the Hoover–Holian (q, p, ζ, ξ) and the 0532 Model
(q, p, ζ) oscillators as two concrete examples.

5.1. Hoover–Holian oscillator with
temperature gradient

We begin with the extended canonical distribution
for the oscillator with energy E and at a tempera-
ture T of unity:

f(q, p, ζ, ξ)HH ∝ e−H(q,p)/kT e−ζ2/2e−ξ2/2

= e−q2/2T e−p2/2T e−ζ2/2e−ξ2/2.

Adding a temperature perturbation,

T = 1→ T = 1 + ∆T = 1 + ε tanh(q),

we wish to compute the responding current, (p3/2)
as a function of time.

The simplest form of the Hoover–Holian motion
equations is:{

q̇ = p; ṗ = −q − ζp− ξ

(
p3

T

)
; ζ̇ =

(
p2

T

)
− 1;

ξ̇ =
(

p4

T 2

)
− 3

(
p2

T

)}
[HH].

The time-dependent change of the canonical weight
e−∆(E/kT ) can be linearized in the thermal pertur-
bation ε with the result:(

fneq

feq

)
= 1 +

∫ t

0
[ε tanh(q)]0

×
[
−ζp2 − ξ

(
p4

T 2

)]
t′

dt′.

We can use this nonequilibrium perturbation to
compute the current (p3/2) at time t from the equi-
librium correlation function (which depends only on
the time difference t′):〈(

p3

2

)〉
neq

=
∫ t

0

〈
[ε tanh(q)]0

×
[
−ζp2 − ξ

(
p4

T 2

)]
0

(
p3

2

)
t′

〉
eq

dt′.

A highly-accurate equilibrium calculation can
be based on the fact that the four-dimensional equi-
librium measure is ergodic, a Gaussian probabil-
ity density known in advance. To compute averages
we begin with a grid of [100 × 100 × 100 × 100]
equiprobable points and use these as the initial con-
ditions for computing both the nonequilibrium cur-
rent and the equilibrium correlation function. The
excellent agreement shown in Fig. 4 confirms the
analysis showing that both the equilibrium distri-
bution function and its linear perturbation are well
suited to numerical exploration. The figure com-
pares the linear-response expression for the cur-
rent to that actually measured with nonequilibrium
molecular dynamics at the relatively small field
strength ε = 0.10. We conclude that simple linear-
response theory is a fringe benefit of our determin-
istic ergodic thermostat models.

Fig. 4. Comparison of the linear-response correlation inte-
gral (in blue) with the measured current (red) for the HH
oscillator at a field strength ε = 0.10. Numerical results
for T = 1 + 0.10 tanh(q) (shown here) and T = [1 −
0.10 tanh(q)]−1 are very similar and confirm that ε = 0.10 is
close to the linear regime. The phase-space integration uses
1004 equally-probable Gaussian points as the initial states
for the averaged current 〈(p3/2)〉 and for the linear-response
correlation integral.
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Fig. 5. Comparison of the linear-response correlation inte-
gral with the measured current for the 0532 oscillator at
a field strength ε = 0.10. We show results for T = 1 +
0.10 tanh(q) which closely resemble those for T = [1 −
0.10 tanh(q)]−1 confirming that ε = 0.10 is close to the linear
regime. The three-dimensional Gaussian phase-space integra-
tion uses 2003 equally-probable points as the initial states for
both the average current and the correlation integral.

5.2. 0532 Model oscillator with
temperature gradient

The 0532 Model has only three phase-space dimen-
sions rather than four so that the linear response
simulation is about three orders of magnitude, one
thousand times, faster. The agreement between the
linear-response and directly measured current is
likewise excellent, as is shown in Fig. 5. Evidently
the ergodic thermostats reproduce both Gibbs’
canonical distribution and linear nonequilibrium
perturbations as described by Green–Kubo theory.

6. Summary and Historical
Perspective

A wide variety of time-reversible thermostats all
generate Gibbs’ canonical ensemble through deter-
ministic chaos. When the kinetic temperature varies
with coordinate, the resulting heat current (p3/2)
leads to dissipation, heat transfer, and entropy
change. The steady loss of comoving phase vol-
ume obeys Gibbs’ thermodynamic relations in the
extended phase space:〈(

Ṡ

k

)
=

(
Q̇

kT

)
=
(⊗̇
⊗
)〉

,

where the comoving phase volume includes exten-
sions in the thermostat directions. These time-
averaged relations hold even for the nonergodic

Nosé–Hoover oscillator:〈(⊗̇
⊗
)〉

= −〈ζ〉 = −
〈

ζ

(
p2

T

)〉

=

〈(
Ṡ

k

)〉
[NH].

Because the ergodic thermostats all gener-
ate Gibbs’ canonical distribution, they also give
linear-response relations linking the nonequilibrium
currents and thermal gradients. We believe that
these observations are fundamental to a systematic
exploration of nonequilibrium statistical mechanics
through thermostated dynamics.

Our present day understanding of nonequilib-
rium systems has its basis in the work of Boltzmann,
the Ehrenfests, Gibbs, Maxwell, and Nosé. Fifty
years of numerical work have provided alternatives
to their classic Hamiltonian and stochastic models.
Deterministic reproducibility with dissipative time-
reversibility have provided explicit links between
microscopic nonequilibrium molecular dynamics
and macroscopic thermodynamics.

Shockwave studies which generate localized far-
from-equilibrium states would seem to be an ideal
problem for consolidating these gains in under-
standing. Shock dynamics is purely Hamiltonian
inside the wave and with equilibrium cold and
hot boundaries. The relaxation times correspond
to vibrational collision times. The nonlinear depen-
dence of transport coefficients and the irreversible
nature of the timelag between forces and fluxes can
be measured directly in shockwaves [Hoover et al.,
2010]. There is a comprehensive listing of nearly
all the existing approaches to nonequilibrium sys-
tems in Jepps and Rondoni’s review article [Jepps &
Rondoni, 2010]. This variety illustrates that many
tools for the exploration of these problems are close
at hand. The only thing lacking in the shockwave
problems is a simple model example like the Galton
Board [Hoover et al., 2015b] and the conducting
oscillator studied here.
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