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Removing the amplitude or polarity information in the feedback loop of a jerk structure shows that 
special nonlinearities with partial information in the variable can also lead to chaos. Some striking 
properties are found for this kind of hypogenetic chaotic jerk flow, including multistability of symmetric 
coexisting attractors from an asymmetric structure, hidden attractors with respect to equilibria but with 
global attraction, easy amplitude control, and phase reversal which is convenient for chaos applications.

© 2016 Published by Elsevier B.V.
1. Introduction

Jerk dynamical systems have the form ẋ = y, ẏ = z, ż =
f (x, y, z), which can be depicted as 

...
x = f (x, ̇x, ̈x), and therefore 

can be realized with a compact electrical circuit structure [1–5]. 
Generally, jerk circuits have four connections at the node x, where 
the derivative of x is determined by the amplitude and polarity 
of y, and the amplitude and polarity of x influence the derivative 
of z. In this paper, we study those chaotic flows with incomplete 
information transmission from the node x based on the jerk struc-
ture, and are therefore named hypogenetic chaotic jerk flows with 
incomplete feedback loops since the modified systems are not al-
ways conventional jerk flows.

Generally symmetric systems have a symmetric pair of coexist-
ing attractors [6–8] and some asymmetric systems give asymmetric 
multistability [9,10], hidden attractors with composite basins of at-
traction [11–15], and amplitude control [16–18] which is realized 
in the circuit by a single variable resistor. Our exploration shows 
that some cases of hypogenetic chaotic jerk flows may have co-
existing symmetric and asymmetric strange attractors. Hidden at-
tractors from systems without equilibria may have global attraction 
[19]. Experimentally, amplitude control can be achieved by varying 
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a resistor and capacitor while not altering the frequency of the sig-
nals. In Section 2, we propose such hypogenetic chaotic jerk flows 
based on three or two connections at the node x. In Section 3, the 
property of special multistability and hidden attractors with global 
attraction is explored. In Section 4, amplitude control and phase 
reversal are discussed. Conclusions are given in the last section.

2. Hypogenetic chaotic jerk flows

2.1. Hypogenetic jerk flows with three connections

A jerk system has inherent connections among its variables. For 
a conventional jerk system, the derivative of x is determined by 
the variable y, and further influences the derivative of the vari-
able z. Typically, the derivative of the variable x is determined by 
the variable y through a simple governing equation ẋ = y; that is 
to say the derivative of the variable x is associated with the ampli-
tude evolution and the alternate polarity change of the variable y. 
All the feedback information of amplitude and polarity from the 
variables x, y and z usually determine the time derivative of the 
variable z. In view of this jerk structure, since the derivative of 
the variable x is determined by the variable y and impacts the 
derivative of variable z, therefore the variable x can be regarded 
as an intermediate variable absorbing the amplitude and polarity 
information from the variable y and transmitting them to the vari-
able z. The variable x connects the other two variables y and z, 
making all the nodes active in a whole feedback system.
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Fig. 1. Structure of hypogenetic jerk flows with three connections.

As mentioned above, each variable has two kinds of informa-
tion, i.e. amplitude and polarity. Therefore a standard jerk system 
has four connections at the node of variable x. However, the “arm” 
of the variable x may not be so strong, which means that the inter-
mediate variable x takes the amplitude and/or polarity information 
from the variable y and hands it to the variable z with incom-
plete information. Consequently, those hypogenetic jerk flows with 
incomplete information transmission can be classified in two cate-
gories, one of which has three connections, and the other one has 
two connections, while for the regular jerk systems there are four 
connections at the node of the variable x.

In Fig. 1, where solid lines mean amplitude connections while 
dotted lines indicate polarity connections, when the amplitude or 
polarity information is absent in the dynamical loop and the vari-
able x only has three connections with other nodes, there can exist 
four structures for chaotic jerk systems. An existing example is the 
chaotic system proposed by Linz and Sprott [1], which could be 
the simplest chaotic system of finite size with an absolute value 
nonlinearity. The system is given by 

...
x = −aẍ − ẋ + |x| − 1, and 

corresponds to the structure of Fig. 1(a). Some other cases asso-
ciated with the structures in Fig. 1(b)–(d) are shown in Table 1. 
In contrast to case HJ1, the node in case HJ2 of variable x gets 
the whole information of amplitude and polarity from the node of 
variable y, and only influences the node of variable z with its po-
larity information. In case HJ3, the node of variable x only gets the 
amplitude from the node of variable y, and influences the node of 
variable z with its whole information, while in case HJ4, the node 
of variable x only gets the polarity information from the node of 
variable y.
Fig. 2. Chaotic attractors in hypogenetic jerk systems with three connections, A: case 
HJ1 with initial condition (−2, 0, 1), B: case HJ2 with initial condition (1, 0, −1), 
C: case HJ3 with initial condition (2, 0, −1), D: case HJ4 with initial condition 
(3, 2, −1).

Note that for case HJ3, the derivative of variable x gets only the 
absolute value information from the variable y, and thus in the ab-
sence of the additional −1 term, the system would be unbounded 
unless y is identically zero, in which case x would be constant. 
Consequently, there is no system of that form that gives chaos. 
However, as with the Linz–Sprott jerk system, adding the constant 
−1 in system HJ3 gives chaotic solutions.

By the same method, we can design other systems using feed-
back of the amplitude to retain the chaos. We cannot obtain a 
chaotic jerk system of case HJ4 by slightly modifying the Linz–
Sprott jerk system, where the node of variable x only gets the 
polarity information from the node of variable y. To find chaotic 
solutions with the form of the specified nonlinear functions shown 
in Eq. (1), a systematic numerical search procedure developed in 
[5,19,20] was employed. In this procedure, the space of control pa-
rameters embedded in the ż equation and initial conditions were 
scanned to find a positive Lyapunov exponent, which is a signature 
of chaos. By this method, many more such chaotic systems were 
found, some simple examples of which are given in Table 1 along 
with the numerically calculated Lyapunov exponents and Kaplan–
Yorke dimensions. To limit the complexity of the examples, we 
consider only quadratic nonlinearities. Some other system features 
are also listed in Table 1 (see Fig. 2).
Table 1
Hypogenetic chaotic jerk flows with three connections.

Model Equations Parameters Equilibria x0

y0

z0

LEs DKY

HJ1 ẋ = y
ẏ = z
ż = b |x|− y −az −1

a = 0.6
b = 1

(1, 0, 0)

(−1, 0, 0)

−2
0
1

0.0156
0
−0.6156

2.0253

HJ2 ẋ = y
ẏ = z
ż = −b ∗sgn(x) − y −az−1

a = 0.6
b = 1.25

none 1
0
−1

0.0605
0
−0.6605

2.0916

HJ3 ẋ = |y| − 1
ẏ = z
ż = x − by − az

a = 0.6
b = 1

(1, 1, 0)

(−1, −1, 0)

2
0
−1

0.0305
0
−0.6305

2.0484

HJ4 ẋ = sgn (y)

ẏ = z
ż = −ay − x − bxy − xz

a = 0.2
b = 1.5

(0,0,0) 3
2
−1

0.0429
0
−0.6372

2.0673
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Fig. 3. Structure of hypogenetic jerk flows with two connections.

⎧⎪⎪⎨
⎪⎪⎩

ẋ = sgn(y),

ẏ = z,
ż = a1 y + a2z + a3 y2 + a4z2

+ a5 yz + a6x + a7xy + a8xz + a9.

(1)

2.2. Hypogenetic jerk flows with two connections

Each variable has two kinds of information; the intermediate 
variable x may only possess two connections with the other two 
nodes in the closed-loop structure, where the node x absorbs the 
amplitude or polarity information from the variable y and only 
passes one of them to the node z. According to the structure of 
the information feedback loop in Fig. 3, we get four example cases 
HJ5, HJ6, HJ7, and HJ8, in which the derivative of variable x gets the 
polarity or amplitude information from the variable y. In case HJ5, 
the node of variable x gets the amplitude information from the 
node y, and only gives the amplitude information to the node z; 
in case HJ6, the node x gets the amplitude from the node y, and 
influences the node z with its polarity information; in case HJ7, 
the node x only gets the polarity information from the node y and 
passes its amplitude information to the node z; in case HJ8, the 
node x collects and transfer the polarity information.

For the same reason that non-negative absolute values lead to 
an increasing dissipation, in case HJ5 and HJ6, we need to intro-
duce a new constant to balance the divergence and convergence 
in the node x. In this way, we get a simple example of case HJ5 
from the Linz–Sprott jerk system, listed in Table 2. Furthermore, 
we can obtain the case HJ6 with a direct signum operation on 
the variable x. For the case HJ7 and HJ8, we employed a similar 
Fig. 4. Chaotic attractors in hypogenetic jerk systems with two connections: E: case 
HJ5 with initial condition (±2, 0, ∓1), F: case HJ6 with initial condition (−2, 0, 1), 
G: case HJ7 with initial condition (3, −2, 2), H: case HJ8 with initial condition 
(1, −2, −1).

search from Eqs. (2) and (3). The corresponding strange attractors 
are shown in Fig. 4.

⎧⎨
⎩

ẋ = sgn(y),

ẏ = z,
ż = a1 y + a2z + a3 y2 + a4z2 + a5 yz + a6|x| + a7x2 + a8,

(2)

⎧⎪⎪⎨
⎪⎪⎩

ẋ = sgn(y),

ẏ = z,
ż = a1 y + a2z + a3 y2 + a4z2 + a5 yz + a6 sgn(x)

+ a7 sgn(x)y + a8 sgn(x)z + a9.

(3)

3. Unique multistability and hidden attractors

Even for the case with simple absolute value nonlinearities, 
there can be some interesting multistability. System HJ4 is such 
a special asymmetric system, which gives different regimes of 
multistability. When b = 1, the system has two coexisting almost 
symmetric attractors, as shown in Fig. 4(E), whose basin of attrac-
tion are shown in Fig. 5. Although the regions in light blue and 
red representing two different attractor basins are asymmetric, the 
strange attractors, represented in cross section by black lines, are 
symmetric and nearly touch their basin boundaries. Two of the 
Table 2
Hypogenetic chaotic jerk flows with two connections.

Model Equations Parameters Equilibria x0

y0

z0

LEs DKY

HJ5 ẋ = |y| − b
ẏ = z
ż =| x | −y − az − c

a = 0.6
b = 1
c = 2

(±3, 1, 0)

(±1, −1, 0)

±2
0
∓1

0.0534
0
−0.6534

2.0817

HJ6 ẋ = |y| − 1
ẏ = z
ż = b ∗ sgn(x) − y − az − c

a = 0.65
b = 1.5
c = 2

none −2
0
1

0.0419
0
−0.6919

2.0606

HJ7 ẋ = sgn (y)

ẏ = z
ż = −z+ay2 − z2 −b |x|+c

a = 2.1
b = 0.54
c = 0.365

(±0.6759, 0, 0) 3
−2
2

0.0299
0
−1.0299

2.0290

HJ8 ẋ = sgn (y)

ẏ = z
ż = −ay − bz2 + yz + sgn(x)

a = 3
b = 0.4

(0,0,0) 1
−2
−1

0.0926
0
−0.5052

2.1833
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Fig. 5. Cross section for z = 0 of the basins of attraction for the symmetric strange 
attractors (light blue and red) of system HJ5 at a = 0.6, b = 1, c = 2. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

equilibrium points are within the attracting basins, while the other 
two are on the basin boundary.

Suppose x = u + d, y = −v , z = −w (here d is another con-
stant). If c = (|x| + |u + d|)/2 the new deduced system has a con-
ditional rotational symmetry, which can be proved by the trans-
formation u̇ = |v| − b, v̇ = w , ẇ = − |u + d| − v − aw + c. We see 
that in the variables u, v , w the equations are conditionally identi-
cal to the original case HJ5 system if c − |u + d| =| x | −c. Here the 
symmetry depends on the condition equation in the z dimension. 
We call this a degenerate conditional symmetry since the variable 
x should be pre-boosted with a constant shift.

Furthermore, there are other cases of asymmetric multistability. 
As shown in Fig. 6, when b = 1.5 and b = 1.25, one strange attrac-
tor coexists with another strange attractor or with two asymmetric 
limit cycles, whose attracting basins are shown in Fig. 7. Here the 
black lines or dots are asymmetric. For the HJ1 and HJ7 systems, 
since the absolute value of variable x is in the z dimension, a neg-
ative operation in the x dimension may realize a phase reversal of 
the variable x.

Note that systems HJ2 and HJ6 have hidden attractors since 
they have no equilibrium points, but both strange attractors are 
globally attracting [19]. The z dimension is ż = −b sgn(x) − y −
az − 1 in HJ2, and it is ż = b sgn(x) − y − az − c in HJ6. The dis-
appearance of the equilibria is a result of the signum operation. 
Systems HJ4 and HJ8 have one equilibrium point, HJ1, HJ3, and HJ7 
have two equilibrium points, and HJ5 has four equilibrium points, 
but none of those systems are globally attracting, and they have 
initial conditions that give unbounded solutions.

4. Amplitude control and phase reversal

Since most of the cases give chaos by the absolute value or a 
signum nonlinearity, it is relatively convenient to obtain total am-
plitude control, for instance using the constant in systems HJ1 and 
HJ3. System HJ3 is a special system for its freedom of amplitude 
control. We see that setting x = u + c will introduce in the z di-
mension a new constant c which will change the average value of 
the variable x. Thus it is convenient to offset the bipolar signal x by 
a unipolar DC voltage in the circuit, or vice versa. It is important 
to revise the initial conditions to guarantee the shifted attractors 
are in the corresponding basins of attraction. Some other unique 
cases with the same property of variable boosting can be found in 
the Sprott J, L, M, N, P and S systems [21]. Note that HJ3 is a sys-
tem with a striking property for amplitude control. The constant in 
Fig. 6. Asymmetric coexisting attractors for system HJ5 (a) two coexisting strange 
attractors for b = 1.5, (b) three coexisting attractors for b = 1.25.

the x dimension is a total amplitude controller. Therefore the sys-
tem has the freedoms of amplitude control and variable boosting, 
which are convenient for engineering applications.

Some coefficients can control the amplitude of two variables. 
The system HJ4 can realize such partial amplitude control for the 
variables y and z. As shown in the following equations, a new 
introduced coefficient n in the z dimension is such a partial am-
plitude controller,

ẋ = sgn(y)

ẏ = z

ż = −ay − nx − bxy − xz. (4)

To show this, let x = u, y = nv , z = nw to obtain new equations 
in the variables u, v , w that are identical to the system HJ4. There-
fore, the coefficient n controls the amplitude of variables y and z
according to n. The signum operation in the x dimension makes 
the derivative of variable x independent of the magnitude of the 
variable y.

For circuit implementation, besides the traditional amplitude 
control, some cases have special partial amplitude control where 
the time constant provides amplitude control, such as systems 
HJ2 and HJ8. The time constant in the x dimension controls the 
amplitude of the variable x because its amplitude is removed by 
the signum operation without influencing the balance in the z di-
mension. As shown in the following equations, a new introduced 
coefficient m in the x dimension is a partial amplitude controller 
for the variable x,

ẋ = my

ẏ = z

ż = −b ∗ sgn (x) − y − az − 1. (5)

To show this, let x = mu, y = v , z = w to obtain new equations 
in the variables u, v , w that are identical to system HJ2. Therefore, 
the coefficient m controls the amplitude of variable x according 
to m. Note that here the coefficient m in the x dimension can be 
realized in a circuit with a resistor or a capacitor, which means 
that the time constant in the first integration circuit controls the 
amplitude of variable x. Usually, the capacitor controls the time 
scale or frequency of the variable. Here the capacitor is another 
amplitude scaler. For system HJ8, there is a similar transformation 
to give partial amplitude control.

ẋ = m ∗ sgn(y)

ẏ = z

ż = −ay − bz2 + yz + sgn(x). (6)

The coefficient m in the x dimension also provides a time con-
stant in the physical circuit, which means both the capacitor and 
the resistor in the x dimension determine the size of the variable x.
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Fig. 7. Cross section for z = 0 of the basins of attraction for the asymmetric attractors of system HJ5 at (a) a = 0.6, b = 1.5, c = 2, light blue and red for two coexisting 
attractors (b) a = 0.6, b = 1.25, c = 2, yellow, light blue and red for three coexisting attractors. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
Almost all of the cases have their mirror image versions, whose 
polarities are reversed from the original ones. The image equa-
tions can be deduced easily by a transformation x = −u, y = −v , 
z = −w . For example, the image system for system HJ2 is u̇ = v , 
v̇ = w , ẇ = −b ∗sgn (u)− v −aw +1. We see that an opposite con-
stant changes the polarities of all three variables. For system HJ3, 
the image system only needs to adjust the first dimension x to be 
ẋ = 1− | y |. For system HJ1, the z dimension must be revised as 
ż = 1 − b |x| − y − az. For system HJ4, the z dimension needs to be 
revised as ż = −ay − x + bxy + xz. For system HJ8, the z dimen-
sion needs to be revised as ż = −ay + bz2 − yz + sgn(x). Image 
versions of other cases are obtained by changing the sign of a few 
of the terms. Phase trajectories from the image systems are shown 
in Fig. 8.

All of the cases can be realized with a common three dimen-
sional circuit structure. Some of them can be implemented in a 
traditional compact jerk electrical circuit. For example, system HJ1 
can be transformed into 

...
x = b |x| − ẋ − aẍ − 1, system HJ2 can be 

transformed into 
...
x = −b ∗ sgn(x) − ẋ − aẍ − 1 and system HJ3 can 

be transformed into 
...
y = |y| − b ẏ − aÿ − 1. The circuit implemen-

tation for hypogenetic chaotic jerk flows is being considered for 
future work.

5. Conclusions

A new class of hypogenetic jerk flow with weak feedback is 
explored. By the incomplete information transportation with an 
absolute value function or a signum operation, eight cases of hy-
pogenetic chaotic jerk flows are obtained. It turns out that the 
absolute value function and the signum operation still have a 
strong nonlinearity, and therefore preserve the chaos. Multistabil-
ity of coexisting symmetric attractors in an asymmetric system is 
found, and unique parameters for amplitude control are described, 
which can be realized in an electrical circuit with a resistor or a ca-
pacitor. Moreover, simple polarity selection by absolute value and 
signum operations makes it easy to revise the polarity of chaotic 
signals in circuits.
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