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Simple systems of third-order autonomous nonlinear differential equations can exhibit chaotic
behavior. In this paper, we present a new class of chaotic flow with a square-shaped equilibrium.
This unique property has apparently not yet been described. Such a system belongs to a
newly introduced category of chaotic systems with hidden attractors that are interesting and
important in engineering applications. The mathematical model is accompanied by an electrical
circuit implementation, demonstrating structural stability of the strange attractor. The circuit
is simulated with PSpice, constructed, and analyzed (measured).
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1. Introduction

Over the past three decades, finding new chaotic
systems has attracted the attention of many
researchers. Generating chaotic attractors may help
one to understand the dynamics of real world sys-
tems. After many years of intensive research, numer-
ous chaotic systems have been described. Recent
developments include chaotic systems without any
equilibrium points [Jafari & Sprott, 2013; Pham
et al., 2014; Tahir et al., 2015; Pham et al., 2016],
with a single stable equilibrium [Molaie et al., 2013],
with a line of equilibrium points [Jafari & Sprott,
2013], and with a circular equilibrium [Gotthans &

Petrzela, 2015]. In fact, many chaotic systems with
unique equilibrium points have recently been pre-
sented [Wei et al., 2015; Sprott, 2010, 2015; Sprott
et al., 2015]. Yet many undiscovered systems surely
exist. The goal of this work is not only to present
a new system with unique properties, but to extend
the general knowledge about such systems. In this
paper, we introduce a new category of systems with
infinitely many equilibrium points arranged in a
square. Because of its PWL (piecewise-linear) vec-
tor field, this category poses numerical challenges [Li
et al., 2015; Petrzela, 2012]. The system satisfies two
of the three conditions for novelty [Sprott, 2011].
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2. Mathematical Model

An extension of [Gotthans & Petrzela, 2015] shows
that even simpler examples of systems with a circle
of equilibrium points exist, one example of which is
given by

ẋ = z,

ẏ = −z(ay + by2 + xz),

ż = x2 + y2 − 1,

(1)

where a and b are constants. For a = 5, b =
3 and initial conditions ic = (0, 0, 0)T , this sys-
tem has chaotic solutions with Lyapunov exponents
(0.0291, 0,−0.0697) and a Kaplan–Yorke dimension
of 2.4172.

Linearizing the system by pieces yields a
piecewise-linear (PWL) system given by

ẋ = z,

ẏ = −z(ay + b|y|) − x|z|,
ż = |x| + |y| − 1,

(2)

with a square equilibrium and solutions as shown
in Fig. 1. Note that the attractors surround and
link the equilibrium square. For a = 5, b = 3
and initial conditions ic = (0, 0, 0)T , this sys-
tem has chaotic solutions with Lyapunov exponents
(0.0507, 0,−0.2272) and a Kaplan–Yorke dimension
of 2.2230. It has a small Class 4 (finite) basin of
attraction [Sprott & Xiong, 2015] with a smooth
basin boundary.

Since system (2) is a set of piecewise-linear
equations, an analytical solution in each linearized
region can be obtained. When the solution reaches a
boundary, its value can be used as the initial condi-
tion for the next analytical solution. Unfortunately,
such an approach is impractical due to its algebraic
complexity. System (2) can be further modified to
have a rectangular equilibrium by changing the last
state equation to ż = | x

α2 | + | y
β2 | − 1, but that

generalization leads to nothing new since it merely
amounts to a rescaling of x and y, and thus it will
not be considered.

The equilibrium points of system (2) can be
obtained by solving ẋ = 0, ẏ = 0, and ż = 0,

Fig. 1. Numerical integration. The individual state projections (corresponding to top left: a = 5 and b = 3, top right: a = 10
and b = 3, bottom left: a = 3.5 and b = 3 and bottom right: a = 5 and b = 4). The black quadrangle represents the square
equilibrium. In the figures, Poincaré sections at z = 0 are shown in red. The gray plots are projections of the attractor onto
the different axes.
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giving

x = R,

y =




−1 − x, if −1 < x ≤ 0

1 + x, if −1 < x ≤ 0

1 − x, if 0 < x < 1

−1 + x, if 0 < x < 1,

(3)

z = 0.

Dynamical motion in the close neighborhood
of the equilibrium square is determined by the
eigenvalues and associated eigenspaces established
along this structure [Gotthans & Petrzela, 2015]. In
order to estimate the Jacobian matrix, the partial
derivatives of the state variables are required. The
derivation of |·| can be obtained in several ways, for
example, as condition statements (step functions),
or as x

|x| . Alternatively, we use sgn(·) for simplic-
ity, where the function is not differentiable at 0.
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Fig. 2. For values a = 5 and b = 3 with ic = (0, 0, 0)T , the behavior of the eigenvalues λ2,3 along the square equilibrium.
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Fig. 3. Dynamical motion (blue curves) for initial conditions (red dots) near the equilibrium square (black).

Fig. 4. Lyapunov exponents, Kaplan–Yorke dimension, and local maxima of x as a function of a for b = 3.
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Note that the statements can always be substituted into the equations. In the case of Eq. (2), a state-
dependent linearization matrix can be established as

J =




0 0 1

−|z| −a · z − b · z · sgn(y) −a · y − b · |y| − x · sgn(z)

sgn(x) sgn(y) 0


. (4)

The local behavior along the equilibrium square is
determined by the eigenvalues, i.e. the roots of the
parameterized characteristic equation

det(J− λ) = −λ2(a · z + λ) + sgn(x)

· [a · z + λ + b · z · sgn(y)]

− sgn(y) · {b · λ|y| + |z|
+ λ[a · y + b · z · λ + x · sgn(z)]}

= 0. (5)

The equilibrium points lie in the plane z = 0
and have eigenvalues given by

λ1 = 0

λ2,3 = ±
√

sgn(x) − a · y · sgn(y) − b · |y| · sgn(y).
(6)

The behavior along the square equilibrium
located as noted in Eq. (3) can be seen in Fig. 2.
A pair of purely imaginary eigenvalues represent
an unstable center equilibrium. That means there
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Fig. 5. Circuitry realization of proposed system.
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are concentric periodic orbits around the equilib-
rium lines. Such phenomena can also be observed
in Fig. 3. The pair of purely real eigenvalues imply
an unstable saddle. Three-dimensional Bogdanov–
Takens equilibria (λ1,2,3 = 0) are also present
and are located at (x, y, z) = (0.5,−0.5, 0) and
(x, y, z) = (0.825, 0.175, 0).

The dynamical motion near the equilibrium
square is shown in Fig. 3. The negative value of
the state variable x creates a periodic motion along
the equilibrium. After reaching some point, chaotic
motion can be observed (it can be considered as
a very long transient). Therefore, initial conditions
must be chosen carefully.

The dynamics of system (2) is examined by
varying the parameter a with b = 3. Figure 4 shows
the Lyapunov exponents, the Kaplan–Yorke dimen-
sion [Leonov & Kuznetsov, 2015], and the local
maxima of x for 3 < a < 10 with b = 3. They
indicate that system (2) is chaotic for a large range
of a except for a few small windows of periodicity.

3. Experimental Verification

Synthesis of electronic circuits is not only a way
to accurately model a nonlinear dynamical system,
but it is also a way to test the structural stability
of the system. There are several ways to practically
realize chaotic oscillators [Petrzela et al., 2011]. To
synthesize a circuit from the differential equations
in system (2), integrator synthesis was chosen. Only
a few basic building blocks are necessary: inverting
integrators (TL084), summing amplifiers (TL084),
three multipliers (AD633), and diodes (1N4148) (for
absolute value modeling). The analog multiplier has
all the nodes not displayed in Fig. 5 connected to
ground.

First, the proposed topology is verified with
the PSpice 16.0 circuit simulator. The individual
state variables are easily measured at the output
nodes of the lossless integrators. Then the circuit
was constructed, and the state variables were mea-
sured by a Rohde&Schwarz RTM 1052 oscilloscope.

(a)

(b)

Fig. 6. (a) Measurements and (b) simulations on individual state variables (corresponding to a = 5 and b = 3).
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(a)

(b)

Fig. 7. (a) Measurements and (b) simulations on individual state variables (corresponding to a = 5 and b = 2.2).

(a)

(b)

Fig. 8. (a) Measurements and (b) simulations on individual state variables (corresponding to a = 5 and b = 4).
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The screenshots as shown in Figs. 6–8 agree well
with numerical calculations.

4. Conclusion

In this paper a three-dimensional system with a
circular equilibrium was presented as an initial
system. A PWL modification of the system with
a square equilibrium was presented, and a vari-
ant with a rectangular equilibrium was mentioned.
After providing a numerical analysis, the behav-
ior around regions of the square equilibrium was
described. Then the Lyapunov exponents, Kaplan–
Yorke dimension and bifurcations were shown as a
function of the bifurcation parameter a.

Finally we used an analog circuit to confirm
the structural stability of the proposed system. The
circuit was simulated, constructed, and tested. The
measurements are in good agreement with numeri-
cal simulations. The proposed system is apparently
new and may be the simplest such system with a
square equilibrium and chaotic solutions, thus mak-
ing it yet another example of a system with a hid-
den chaotic attractor [Leonov & Kuznetsov, 2013;
Zelinka, 2016].
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