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We describe the application of adaptive (variable time step) integrators to stiff differential equations

encountered in many applications. Linear harmonic oscillators subject to nonlinear thermal

constraints can exhibit either stiff or smooth dynamics. Two closely related examples, Nos�e’s

dynamics and Nos�e–Hoover dynamics, are both based on Hamiltonian mechanics and generate

microstates consistent with Gibbs’ canonical ensemble. Nos�e’s dynamics is stiff and can present

severe numerical difficulties. Nos�e–Hoover dynamics, although it follows exactly the same trajectory,

is smooth and relatively trouble-free. We emphasize the power of adaptive integrators to resolve stiff

problems such as the Nos�e dynamics for the harmonic oscillator. The solutions also illustrate the

power of computer graphics to enrich numerical solutions. VC 2016 American Association of Physics Teachers.
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I. INTRODUCTION

Simulations of classical many-particle systems are fre-
quently done by solving Newton’s equations of motion
numerically using leapfrog or Runge–Kutta algorithms.1

This method is termed molecular dynamics.2,3 These simula-
tions are necessarily done in the microcanonical ensemble
for which the number of particles, volume, and energy are
each held fixed. However, most experiments are done at
constant temperature. Hence, it is desirable to modify
Newton’s equations so that the temperature rather than the
energy is fixed.

In 1984 Nos�e modified constant energy molecular dynam-
ics so that the simulations were done at a fixed tempera-
ture.4–9 His goal was to simulate the canonical ensemble
directly from the dynamics. Nos�e based his work on
Hamiltonian mechanics. Because the resulting equations of
motion are typically stiff and difficult to solve, Nos�e intro-
duced the idea of time-scaling to cope with these difficul-
ties.4,5 Hoover showed that an improved set of equations of
motion could be based on Liouville’s theorem without the
need for time-scaling or a Hamiltonian basis.2,3,7 Dettmann
later provided a Hamiltonian basis that linked both equations
of motion.8,9

Both the original Nos�e dynamics and the improved
Nos�e–Hoover dynamics share a common flaw; although
their solutions are consistent with the canonical distribution

and maintain it, they are not necessarily ergodic. Their
phase-space flows cover only a fraction of the available
states, even for the harmonic oscillator.6–13 It was not until
2015 that an ergodic analog of Nos�e dynamics was devel-
oped,12 thus achieving the original goal of Nos�e. The key to
this success was including a cubic dependence on momentum
in formulating thermostating forces.

We will discuss applications of the Nos�e and Nos�e–Hoover
algorithms to the harmonic oscillator. Both algorithms yield
exactly the same trajectories in phase space but at different
rates and are related to each other by time scaling. Only
Nos�e’s original dynamics exhibits the stiffness that is the focus
of our paper.

Nos�e dynamics has both regular (stable to small perturba-
tions) and chaotic solutions, coexisting in a constant-energy
three-dimensional volume within a four-dimensional phase
space. We will see that within this four-dimensional space
there are infinitely many regular solutions (concentric tori and
stable periodic orbits). In addition, there is a single chaotic
sea that stretches to infinity and occupies about six percent
of the stationary measure defined by Liouville’s theorem.
That stationary measure is a three-dimensional product of
Gaussians in the coordinate, the momentum, and the “friction
coefficient” f. Random sampling reveals that only six percent
of this Gaussian product lies in the chaotic sea. The rest is
occupied by regular toroidal solutions. Although the simpler
regular stable tori and the periodic orbits they enclose are
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easy to solve, the motion in Nos�e’s version of the chaotic sea
is sufficiently stiff to require the special numerical methods
that we will describe.

Typical fixed-time-step numerical integrators such as leap-
frog and fourth-order Runge–Kutta1–3 are ineffective in Nos�e’s
chaotic sea. We will discuss a family of useful alternatives,
simple variable-time step adaptive algorithms,1 and explore
Nos�e’s dynamics with their aid. Adaptive techniques vary the
time step to compensate for time-dependent changes in the
stiffness of the underlying ordinary differential equations.

Our goal is to introduce readers to applications of Nos�e
and Nos�e–Hoover dynamics to the harmonic oscillator and
to their solution using adaptive integration. We connect stiff-
ness with time scaling, the adaptive timestep, and Lyapunov
instability. While exploring these numerical features of the
dynamics, we will find intricate topologies with their roots in
simple quadratic differential equations.

The application of Nos�e dynamics to the harmonic oscilla-
tor is an excellent testbed for numerical integrators, computer
graphics, and numerical methods, and provides challenges in
visualizing the fascinating topology of knots and island
chains in readily accessible three- and four-dimensional
phase space. The model’s simple structure makes it an ideal
introduction to dynamical systems.

In Sec. II, we discuss the statistical mechanics back-
ground that links Nos�e and Nos�e–Hoover dynamics. We
introduce a family of flexible integrators capable of accurate
solutions of stiff problems in Sec. III. In Sec. IV, we apply a
common initial condition for our investigations of time-
scaling and stiffness. In Sec. V, we summarize what we
have learned and suggest areas for further study using our
new tools.

II. NOS�E AND NOS�E–HOOVER DYNAMICS FOR

THE HARMONIC OSCILLATOR

A. Nos�e dynamics

In 1984 Shuichi Nos�e proposed a temperature-dependent
Hamiltonian HN with a corresponding dynamics that gener-
ates a temperature-dependent trajectory. The evolution is
governed by the time-scaling control variable 0< s< 1 that
controls the kinetic temperature T.4,5 This s-dependent
dynamics generates microstates that are consistent with the
canonical ensemble rather than the more usual constant
energy microcanonical ensemble. In conventional mechan-
ics, the total energy of the one-dimensional harmonic oscilla-

tor, H ¼ ð1=2Þðq2 þ p2Þ, is constant, where q and p are the
displacement and momentum, respectively. This dynamics
generates oscillatory solutions with an amplitude propor-
tional to the square root of the kinetic temperature p2. In one
dimension we have

hq2i ¼ hp2i ¼ T ¼ hHi; (1)

where we have chosen units so that the mass m¼ 1 and the
spring constant j¼ 1. For simplicity, and without loss of
generality in the isothermal equilibrium case, we also set
Boltzmann’s constant equal to unity, k¼ 1.

Nos�e’s time-scaled Hamiltonian, with s the time-scaling
factor and f its conjugate momentum, for the isothermal one-
dimensional harmonic oscillator is

2HN ¼ q2 þ ðp=sÞ2 þ lnðs2Þ þ f2: (2)

The Hamiltonian in Eq. (2) governs the evolution of
four time-dependent variables (q, p, s, f). (We will discuss in
Sec. II C why a Hamiltonian such as the one in Eq. (2) is iso-
thermal.) The usual oscillator coordinate and momentum
variables are still q and p, but the usual link between velocity
and momentum is changed. The relation _q ¼ p is replaced
by _q ¼ ð@HN=@pÞ ¼ ðp=s2Þ. Here and in what follows we
choose the initial conditions so that the Hamiltonian
vanishes, HN ¼ 0, for reasons that we will explain in the
following.

Because the canonical distribution includes microstates
with all energies, 0 < H <1, Nos�e included the time-scale
factor s and its conjugate momentum f in the Hamiltonian,
making it possible for the scaled momentum (p/s) to cover
the infinite range required by the distribution function of the
canonical ensemble

f ðq; pÞ � e�q2=2e�p2=2=2p: (3)

Hamilton’s equations of motion for any (q, p) coordinate-
momentum pair are _q ¼ þ@H=@p and _p ¼ �@H=@q. In
addition to (q, p), HN also has the time-scaling variable s
and its conjugate momentum ps¼ f, making a second
coordinate-momentum pair (s, f). The equations of motion
in the four-dimensional phase space (q, p, s, f) follow
fromHN

_q ¼ p=s2 ðNose dynamicsÞ; (4a)

_p ¼ �q; (4b)

_s ¼ f; (4c)

_f ¼ p2=s3 � 1=s: (4d)

Because the value of the Hamiltonian is constant (the reader

can check this by computing _HN), the motion takes place in
the (unbounded) three-dimensional volume where HN ¼ 0.
The unbounded logarithmic potential makes it possible to
reach arbitrarily large values of the coordinate and scaled
momentum, as is necessary to cover the entire canonical
distribution.

In Nos�e’s mechanics, the temperature is a measure of the
kinetic energy, T / (p/s)2, where p/s is the scaled momen-
tum. Nos�e’s approach uses s to scale the momentum over a
broad range. As a result, Nos�e’s equations of motion in Eq.
(4) present numerical challenges. The scale factor s varies
from its maximum of unity to less than 10–9 over a 109 time
step adaptive simulation, where the mean time step is about
0.002 (see the shorter 106 time step oscillator histories shown
in Fig. 1). Fortunately, there is a way to temper the singular

behavior of _f.9

B. Dettmann and Morriss’ contribution

Dettmann and Morriss’ contribution8,9 is an alternative
Hamiltonian description of the same trajectories but with all
the rates given in Eq. (4) multiplied by s. Their Hamiltonian,
HD, and the new, generally slower and smoother rates it gen-
erates, are

HD¼ sHN¼
1

2
sq2þ p2=s

� �
þsln s2ð Þþsf2

h i
¼0: (5)
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_q ¼ p=s ðNose–Hoover1Þ; (6a)

_p ¼ �qs; (6b)

_s ¼ fs; (6c)

_f ¼ p2=s2 � 1: (6d)

Multiplying HN (and thus the four rates) by s tames the sin-
gular behavior of Nos�e mechanics when s is small and is
equivalent to a close relative of Nos�e–Hoover mechanics,
which we refer to as Nos�e–Hoover1 and which is identical to
Dettmann and Morriss’ dynamics.

This improvement can be simplified further to obtain the
usual Nos�e–Hoover equations of motion by replacing the
scaled momentum (p/s) by p

_q ¼ p ðNose–Hoover2Þ; (7a)

_p ¼ �q� fp: (7b)

_f ¼ p2 � 1: (7c)

_s ¼ sf: (7d)

A numerical advantage of Eq. (7) is the irrelevance of the
scaling variable s, which means Eq. (7d) can be ignored. The
evolution of {q, p, f} in a three-dimensional space extending
to infinity can be determined without any consideration of s
provided that H vanishes.

The choice of the unusual condition HD ¼ 0 is necessary
for the derivation of the equations of motion in Eq. (6)
directly from Hamilton’s equations. With this trick, Nos�e’s
multiplication of all the rates by s is not required. Time-
scaling is absent in the Dettmann-Morriss approach. The
vanishing of the Hamiltonian makes it possible to simplify
the expression for _f

_f ¼ �@HD

@s
¼ � 1

2
q2 � p=sð Þ2 þ ln s2ð Þ þ f2 þ 2

h i
: (8)

If HD ¼ 0, Eq. (8) reduces to the much simpler, but numeri-
cally equivalent Eq. (6d).

C. Equations of motion using Liouville’s theorem

We now discuss the physics behind Hoover’s much sim-
pler three equation subset of Eq. (7).7 We begin with an

augmented set of equations of motion for a harmonic oscilla-
tor with a friction coefficient f that acts over a characteristic
relaxation time s

_q ¼ p; (9a)

_p ¼ �q� fp; (9b)

_f ¼ ½ðp2=TÞ � 1�=s2: (9c)

Here, f is the friction coefficient or control variable. If the
kinetic temperature p2 exceeds the target temperature T, the
friction increases, slowing p. If p2 is less than T, the friction
is reduced and can become negative, accelerating the oscilla-
tor. Provided only that a stationary state results, the long-
time-averaged value h _fi is necessarily zero, so that the
kinetic temperature p2 eventually reaches its target

h _fi ¼ h½ðp2=TÞ � 1�=s2i ¼ 0; (10)

which implies that hp2i ¼ T. By design the control variable
responds to (p2/T) – 1 in a characteristic time s.

A remarkable feature of the ð _q; _p; _fÞ equations of motion
is that they leave Gibbs’ canonical distribution function (or
probability density) unchanged. Suppose that

f ðq;p;f;TÞ¼ðs=TÞð2pÞ�3=2e�q2=2Te�p2=2Te�ðfsÞ
2=2; (11)

and consider the rate of change of the probability density in
r ¼ ðq; p; fÞ space as a result of the continuity equation for
the flow v ¼ ð _q; _p; _fÞ

@f

@t
¼ �rr � fvð Þ (12)

¼ �f
@ _q

@q
þ @ _p

@p
þ @

_f
@f

 !
� _q

@f

@q
� _p

@f

@p
� _f

@f

@f

�f 0� fþ 0� q

T
p� p

T
�q� fpð Þ

�

�fs2 p2

T
� 1

� �
=s2

� �)
¼ 0: (13)

The vanishing rate of change throughout (q, p, f) space
implies that the Gibbs’ distribution is left unchanged by the
flow.

Fig. 1. The variation of the time-scaling factor s found from the numerical solution of Eq. (4) (left) and Eq. (6) (right). In principle, exactly the same values of

(q, p, s, f) are generated by both sets of equations. Equations (4) and (6) were solved for 106 time steps using the adaptive fourth-order Runge–Kutta algorithm.

The time step is doubled when the root-mean-square discrepancy between a single time step (Dt and two half steps Dt/2) is less than 10�12. The time step is

halved if the discrepancy is greater than 10�10. The minimum value of s during the time shown is about e�10 ’ 0.00005. All four rates in Eq. (6) are smaller

than in Eq. (4) by a factor of s(t). The initial conditions for Eqs. (4) and (6) are given in Eq. (14) and are chosen so that the Hamiltonian vanishes.
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We modified Nos�e’s original work4,5 and replaced his
factor of (2/s) by (1/s) and his ps by f to match Eq. (6).
The wide-ranging values of the time-scaling variable s (see
Fig. 1) make the Nos�e equations so stiff that an accurate,
fixed-time-step fourth-order-Runge–Kutta solution of the
equations for a typical duration of 106 would require 1013

time steps with Dt¼ 10�7.
In brief, we have learned that by scaling the time and

redefining the momentum, (p/s)! p, we can obtain a more
manageable set of equations consistent with the canonical
distribution.6 The same equations of motion can be derived
directly from the phase-space continuity equation if we
insist that the friction coefficient f imposes the kinetic tem-
perature T on the dynamics. The situation is ideal because
we have several ways to check our work. Apart from the
time, the stiff Nos�e dynamics in Eq. (4) and the smooth
Nos�e–Hoover equations in Eqs. (6) and (7) have identical
solutions. Because our goal is learning to solve the stiff set
in Eq. (4), we turn next to developing suitable adaptive
integrators.

III. STIFF OSCILLATOR SOLUTIONS USING

ADAPTIVE RUNGE–KUTTA

The original work on the stiff oscillator problem6,7 was
frustrated by huge and rapid variations of p and s. Stiff equa-
tions were unusual in the molecular dynamics simulations of
the 1980s. Researchers with a background in simulation
were not familiar with adaptive integrators. In contrast,
researchers in control theory and heat transfer often used the
Runge–Kutta-Fehlberg integrator14 to solve their stiff equa-
tions. The Fehlberg modification of the classic Runge–Kutta
methods of the early 20th century compares the RK4 and
RK5 results of a trajectory integration for a single time step.
The two trajectories over one time step provide a criterion
for increasing or decreasing Dt on the next time step. If the
discrepancy is too large, Dt is reduced. If it is too small, Dt is
increased. In this way the discrepancy between the two
estimates can be restricted to a band. If the discrepancy is
too large, an alternative to proceeding with the better RK5
estimate is to repeat the current step with smaller values of
Dt until the discrepancy falls within the acceptable limits.
Suitable limits15 for double precision and quadruple preci-
sion are 10�12 to 10�10 and 10�24 to 10�20.

Rather than comparing the RK4 and RK5 trajectories, we
can just as well compare an iteration with a single time step
to two successive iterations with half the time step. We
have adopted this choice here. We compare two RK4 inte-
grations [Dt versus (Dt/2)þ (Dt/2)] of the vector (q, p, f) or
x ¼ ðq; p; s; fÞ for a single time step from t to tþDt, with the
result of two half-time steps of the initially identical vector.
The comparison of the single-time step x1 solution to the
double-time step x2 solution provides the criterion for
increasing or decreasing the time step. In either case, the
less-accurate vector x1 is set equal to the more accurate
vector x2 before the next time step is undertaken. The error
is the square root of the quantity ðx1 � x2Þ2. If the error is
greater than 10�10; Dt! Dt=2; if the error is less than
10�12, then Dt! 2Dt.

As an example, we choose for our standard initial
condition

ðq; p; s; fÞ ¼ ð2:4; 0; e�2:88; 0Þ; (14)

because this choice corresponds to HD ¼ 0 for which the
Nos�e and Nos�e–Hoover equations of motion provide identi-
cal trajectories (apart from numerical errors):

2HD¼q2þðp=sÞ2þ lnðs2Þþf2¼2:42þ0�5:76þ0¼0:

Figure 2 shows a short history of the root-mean-square dis-
crepancy between the single and double-step versions of Eq.
(4). The first step is taken with Dt¼ 0.001 with the value of
the discrepancy checked at each full time step and Dt
changed accordingly. Readers are encouraged to reproduce
Fig. 2 and to consider modifications of the algorithm.

There is a downside to existing adaptive integrators.
Because the past is different than the future, adaptive inte-
grators are not reversible, which means that the accuracy of
such algorithms cannot be checked directly. We can easily
check a conserved quantity, such as the total energy, equally
well in both time directions, but trajectory accuracy requires
a more elaborate investigation.16 One criterion is the cross-
ing of the p¼ 0 section. We should obtain the same number
of crossings forward and backward with a good adaptive
integrator.

Because atomistic mechanics problems are typically time-
reversible, as are all the problems we will discuss, we have
developed a time-reversible adaptive integrator by averaging
the forward and backward errors at each time step to define
an error independent of the direction of time, and then using
this error to decide on the magnitude of the local time step.
Although this averaging doubles the computational time, it is
a reasonable price to pay for a robust integrator useful for
problems with time-reversible dynamics. Because our
approach is only approximate, developing a time-reversible
adaptive integrator remains a worthy research goal.

Both the Nos�e and Nos�e–Hoover equations of motion have
stable and unstable chaotic solutions. In the latter case, the
effects of small changes in the initial conditions increase expo-
nentially in time. Choosing an initial condition (see Fig. 3)
that yields a chaotic trajectory for Nos�e dynamics and the ini-
tial time step Dt¼ 0.001 generates an adaptive trajectory for
109 time steps without any numerical difficulties. Figure 3

Fig. 2. Example of the variation of the root-mean-square integration error

within the band 10�12 to 10�10 for 0.001< time< 10. The standard initial

condition is given in Eq. (14). Although both double-precision and

quadruple-precision results are shown here, so as to confirm the accuracy of

the double-precision work, the difference is barely visible on the scale of

this plot.
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shows the variation of the adaptive time step for a chaotic tra-
jectory. As a check of such trajectories other integrators can
be used and compared. Although chaos prevents us from ever
finding a nearly exact solution to an initial-value dynamics
problem, it does not prevent us from finding a reasonable
solution.

IV. CHARACTERIZATION OF STIFFNESS AND

CHAOS

We now turn to the numerical characterization of stiffness
and chaos. These results are new and are indicative of many
novel and promising research directions. To begin we quan-
tify the Lyapunov instability of a chaotic trajectory by mea-
suring the rate at which two neighboring trajectories diverge.
If the distance between the neighboring trajectories is
denoted by d, we can characterize its single-time step
tendency toward divergence by the local (time-dependent)
value of the largest (indicated by the subscript 1) Lyapunov

exponent, k1ðtÞ � ð _d=dÞ. The procedure for measuring k1 is
described in Sec. IV B. Figure 4 shows that the dependence
of the time-averaged value k1 � hk1ðtÞi on the temperature
disappears for long times. The fluctuations in k1(t) have a
strong dependence on temperature. Let us explain the details
of such simulations.

A. Nos�e dynamics

Nos�e’s dynamics for the harmonic oscillator has two kinds
of solutions, smooth and stable periodic or toroidal solutions,
and chaotic solutions in which nearby trajectories separate
from one another exponentially fast with d ’ ekt. Figure 5
shows a cross section of the chaotic sea. All of the points in
the chaotic sea are accessible by a single unstable trajectory.
All other points lie on stable tori or periodic orbits. The cha-
otic points are plotted whenever a trajectory passes through
the plane p¼ 0 or equivalently (p/s)¼ 0; they therefore
reflect the flux through the section, which is the product of
the probability density and the speed normal to the plane, j _pj

jqjf ðq; 0; s; fÞ / jqjf ðq; 0; fÞ / jqje�q2=2e�f2=2: (15)

The stationary distribution satisfying (@f/@t)¼ 0 is Gaussian in
all state variables (q, p, f), as is shown in Eq. (13). The cross
section in Fig. 5 and the flux through it are exactly the same in
Nos�e and Nos�e–Hoover dynamics because the trajectory is the
same, with the same velocity at the p¼ 0 plane, independent
of s; that is, _pN ¼ _pNH ¼ �q. Solving either set of equations,
Nos�e or Nos�e–Hoover, generates exactly the same cross sec-
tion. Although their trajectory speeds are generally different,
they agree exactly in the p¼ 0 cross section.

Let us delve into the details of the chaotic sea from the
perspective of Nos�e dynamics, using the initial condition in
Eq. (14), which implies that HN ¼ ð1=2Þ½q2 þ ðp=sÞ2
þlnðs2Þ þ f2� ¼ 0. One way (there is no consensus) to quan-
tify the oscillator’s stiffness is to record the range of the
time-scaling factor s that is responsible for the stiffness.
Another way is to record the range over which Dt must be
varied in order to solve the equations with a given integrator.
We have used the classic RK4 integrator, increasing or
decreasing Dt as needed for accuracy. The variables (s and
jpjÞ each depend linearly on the variable time step Dt as
shown in the log-log plot of Fig. 6. The stiffness gives a

Fig. 3. The variation of log2(Dt) with time using double-precision adaptive

integration with the root-mean-square error confined to lie between 10�12

and 10�10 for Nos�e (bottom) and Nos�e–Hoover (top) dynamics. Crossings of

the p¼ 0 plane are indicated by filled circles. The Nos�e data cover about

88.7� 103 variable time steps, and the Nos�e–Hoover data correspond to the

range from 80.2� 103 to 84.4� 103 time steps. In both cases the initial con-

dition is given in Eq. (14).

Fig. 4. The time variation of hk1i and hk2
1i for Nos�e dynamics using d¼ 10�6 and double-precision integration. The root-mean-square error is confined to the

band 10�12 to 10�10. The time-averaged Lyapunov exponent is temperature-independent, but the fluctuations of the exponent vary with temperature. The

curves correspond to equally spaced temperatures from T¼ 1 to 10, where the highest temperature is the shortest curve. Because the equations are stiffer at

higher temperatures, the length of the curves shortens as the temperature is increased. The time reached is a uniformly decreasing function of the temperature

due to the stiffer nature of the higher temperature simulations.
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rough correspondence between ln(Dt) and ln(s). Because the
scaled momentum (p/s) is proportional to

ffiffiffi
T
p

, and the tem-
perature T is unity in the figure, jpj is roughly proportional
to s and to Dt. To solve this same problem for Nos�e dynam-
ics with a fixed time step would require a tiny time step, Dt
’ 10�7.

In contrast, the smooth equations of motion in Eq. (7) can
be solved with the classic RK4 integrator for 2� 109 double-
precision time steps with Dt¼ 0.01, reaching a duration of
2� 107 without any difficulty. The three-dimensional initial
condition, (q, p, f)¼ (2.4, 0, 0), corresponds to the four-
dimensional initial condition used in Fig. 2 and given in Eq.
(14). The Nos�e–Hoover solution generates more than 5� 106

penetrations of the p¼ 0 cross-sectional plane. With this
fixed time step the Nos�e oscillator’s progress is roughly one
hundred thousand times slower, while generating exactly the
same (q, p/s, f) states.

B. The local Lyapunov exponent k(t) as a stiffness
criterion

An alternative measure of stiffness can be based on the
local (instantaneous) Lyapunov exponent. The local expo-
nent describes the rate k1(t) at which two nearby trajectories
tend to separate. To measure this rate, we choose a satellite
trajectory xs constrained to be a distance d¼ 10�6 from the
reference trajectory xr. The distance is rescaled after each
time step Dt by multiplying the separation by a factor g that
is close to unity

xs ¼ xr þ gðxs � xrÞ; (16)

where

g ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs � xrð Þ2

q ’ e�k1Dt: (17)

The largest local Lyapunov exponent is thus

k1ðtÞ ¼ �lnðgÞ=Dt:

Figure 7 shows two sections of a typical time history of k
from an adaptive fourth-order Runge–Kutta solution of Nos�e
dynamics in Eq. (4). The central Nos�e peak near t¼ 5.0862
was resolved by an adaptive integrator that chose a time step
of 2� 10�9 at this peak. The corresponding time for
Nos�e–Hoover dynamics in Eq. (7) is t¼ 16.42 and corre-
sponds to a broad minimum in s. The amplitudes and the
required number of time steps differ by about six orders of
magnitude for the two equivalent representations of the
oscillator trajectory at constant temperature.

Nos�e avoided the stiffness of his equations of motion by
arbitrarily multiplying the right-hand sides of each of his
four equations of motion by s. This trick doesn’t change the
four-dimensional trajectory, but the rate at which the trajec-
tory is followed is changed by the factor s. Nos�e termed this
change as “scaling the time.”4,5 We now can solve his equa-
tions directly with adaptive integrators, and have attained a
good picture of the Lyapunov instability and stiffness of the
original Nos�e equations. Figure 8 shows the structure of a
typical Nos�e–Hoover peak for this same oscillator problem.

Fig. 5. The (q, p, s, f)¼ (q, 0, s, f) cross section for Nos�e dynamics in the

constant energy three-dimensional chaotic sea. The energy is zero. A point in

this zero momentum cross section is determined whenever the product of two

successive momentum values is negative. Stable families of tori cut by this

p¼ 0 section occupy the infinitely many holes in the distribution. See Ref. 6

for many examples. The largest time-averaged Lyapunov exponent in the sea

is k1¼ 0.046, and thus the chaos is weak. The same cross section is found for

the isothermal Nos�e–Hoover equations, for which k1¼ 0.0145. Despite the

similar Lyapunov exponents and identical cross sections, there are huge fluc-

tuations in the rate of exploration of phase-space for Nos�e dynamics, which

requires an adaptive integrator to reproduce the cross section shown here. The

abscissa reflects the scaling of the coordinate q and momentum p [or (p/s) for

Nos�e–Hoover dynamics] with the square root of the temperature T. This

million-point cross section applies to both the Nos�e and the Nos�e–Hoover tra-

jectories as they share a common chaotic sea whenH ¼ 0.

Fig. 6. The dependence of the speed jpj (points) and scale factor s (horizon-

tal lines) on the variable time step Dt for Nos�e dynamics. Both variations are

close to linear. The adaptive fourth-order Runge–Kutta integrator maintains

a single-step root-mean-square error between 10�12 and 10�10. The plot

includes 106 double-precision time steps in the chaotic sea withH ¼ 0.

Fig. 7. The largest local Lyapunov exponent of the Nos�e oscillator in the

chaotic sea as a function of time with d¼ 10�6 and the quadruple-precision

error confined to be between 10�28 and 10�24. (left) Data with time steps

from 1.63 to 3.07� 106. (right) Data between 2.01 and 2.16� 106 time

steps. The standard chaotic initial condition in Eq. (14) was used.
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V. SUMMARY AND OUTLOOK

A. Adaptive integrators and the use of mappings

Present day molecular-dynamics simulations of systems
such as liquid water at constant temperature involve a host of
practical computational issues.17 One that we have not dis-
cussed is the need for integration techniques that deal with
discontinuous terms. The discontinuous jumps of a control
variable provide an example. Special precautions need to be
taken when the dynamics is singular as in hard-sphere or
square-well dynamics, and the smooth separation rate k1(t) is
replaced by a singular map18 as collisions occur. Although
this approach has been commonly used in molecular dynam-
ics simulations since the 1980s, the mapping technique
relating post-collision momenta to their pre-collision prede-
cessors is unfamiliar to most workers in dynamical systems
simulations. In hard-sphere molecular dynamics, going
back to Alder and Wainwright’s pioneering work,19 with
thousands to millions of degrees of freedom, it is usual to
integrate up to the time of the next collision, change the
momenta of the colliding particles at the collision (this
change is the “mapping” referred to previously), and then
continue until the next collision.

B. Characterizing chaos with Lyapunov instability

If chaos is present, which is typical of interesting prob-
lems, Lyapunov instability is most easily quantified by fol-
lowing two neighboring trajectories. The relative motion of
the two trajectories can be constrained by using a Lagrange
multiplier.20 Alternatively, the distance between the two
trajectories can be rescaled. Either way the original separa-
tion length is recovered at the end of each time step. As
we discussed, the logarithm of the scale factor required for the
rescaling is simply related to the local largest Lyapunov expo-
nent. These two approaches provide the largest Lyapunov
exponent k1 ¼ hk1ðtÞi, the mean separation rate over a long
simulation. The Lagrange multiplier approach can also be
applied to a linearized version of the equations at the expense
of additional algebra. All three of these techniques are useful
tools that can benefit from adaptive integration.

Joseph Ford21 emphasized that numerical methods are
unable to follow a chaotic trajectory accurately for very long.
The only convincing test of accuracy is the reproducibility of
the trajectory itself. The simple reversal of a trajectory or
conservation of energy are not reliable criteria for accuracy.16

Numerical chaotic trajectories can provide weak averages,

which are accurate despite the lack of global accuracy of the
computed trajectory. This good fortune is likewise typical of
event-driven dynamical systems. No numerical methods are
capable of precise solutions of such problems. Inaccurate
though they may be, adaptive integrators are a useful tool for
producing reasonable chaotic trajectories.

C. Unique features of Nos�e dynamics

Because Eqs. (4), (6), and (7) share common trajectories
the elapsed times of their trajectories are related to their
Lyapunov exponents in an intriguing way, unique in our
experience with dynamical systems. For T¼ 1 the exponents
and the elapsed times for the three models are related by
kN ¼ 3:26kNH and tNH ¼ 3:26tN. These ratios are long-time
limits for which the exponents and the speeds have con-
verged to their limiting values. The Nos�e trajectory is the
fastest of the three. The differences are the result of the
slower rates (by a common factor s< 1) in the two versions
of Nos�e–Hoover dynamics. The travel times for a long
trajectory in (q, p, s, f) space are necessarily related by the
same ratio, with tNH ¼ 3:26tN. The long time averaged
growth rate of the slower Nos�e–Hoover trajectories leads to
a smaller common Lyapunov exponent kNH1 ¼ kNH2

¼ kN=3:26. This relation between the time-averaged expo-
nents does not hold for the local exponents kNHðtÞ and kNðtÞ.

Why not? It is evident that both dynamics share the same
reference trajectory, so it might appear that the neighboring
satellite trajectory determining k(t) would also be the same
for both dynamics. But because the local exponent responds
to the time rate of change of the scale factor s(t), there is no
simple relation linking the local exponents. Nevertheless, the
relation between the rates, ðd=dtÞNH ¼ sðd=dtÞN, holds for
any (q, p, s, f) trajectory segment with a vanishing
Hamiltonian. The relation linking all the rates leads directly
to the useful relations

tNH ¼ h1=siNtN; (18)

tN ¼ hsiNHtNH: (19)

As an example (see Fig. 9), consider the simplest stable
periodic orbit, with initial values ðq; p; s; fÞ ¼ ð1:2145; 0:0;
e�q2=2; 0Þ, traced out in times of tNH¼ 5.5781 and
tN¼ 2.1655. The ratios of the two times are related to the
mean values of s and 1/s averaged over the orbit

Fig. 8. The variation of the local Lyapunov exponent with d¼ 10�6 for Nos�e–Hoover dynamics in the chaotic sea with a closeup showing the resolution of a

typical large peak. The maximum time shown, 440, corresponds to a total of 286,575 time steps with Dt confined to the interval 10�16 to 10�14 using double-

precision arithmetic.
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tNH=tN ¼ 5:5781=2:1655 ¼ 2:5759 ¼ h1=siN; (20)

tN=tNH ¼ 2:1655=5:5781 ¼ 0:3882 ¼ hsiNH: (21)

An interesting feature of the oscillator problems is that the
largest Lyapunov exponent k1 is independent of temperature
[see Fig. 4(a)]. Figure 4(b) for hk2

1ðtÞi does show a tempera-
ture dependence. The fluctuations of the exponents, which
are two orders of magnitude larger than hk1ðtÞi2, and there-
fore hardly distinguishable from hk2

1ðtÞi, increase with T for
T> 2.

We can prove the temperature independence shown in Fig.
4. If we consider the temperature-dependent Nos�e–Hoover
dynamics in Eq. (7) and introduce the new variables

Q � ðq=
ffiffiffi
T
p
Þ; P � ðp=

ffiffiffi
T
p
Þ; Z ¼ f; (22)

the temperature-independent result shows that the largest
Lyapunov exponent (but not its fluctuations) is temperature
independent because a linear change of scale leaves the
time-averaged logarithmic growth rate unchanged. That is,
_q ¼ p implies that _Q ¼ P; _p ¼ �q� fp implies that
_P ¼ �Q� ZP, and _f ¼ ðp2=TÞ � 1 implies that _Z ¼ P2 � 1.

In Sec. II B, we saw that the temperature-dependent
Nos�e–Hoover equations provide a stationary solution from
Liouville’s theorem. That is, f / e�q2=2Te�p2=2Te�f2s2=2

implies that Eq. (9) holds. Just as in the simpler case with T
and s equal to unity, we can find a corresponding HD with
any temperature T as well as an arbitrary relaxation time for
the thermostating

2HD ¼ sq2 þ p2=sþ Tslnðs2Þ þ sf2=Ts2 � 0: (23)

We remarked on the disparity of the Lyapunov exponents
for Nos�e and Nos�e–Hoover dynamics. The largest local
Lyapunov exponent is k1¼ 0.046 6 0.001 for Nos�e and
k1¼ 0.0145 6 0.0001 for the two Nos�e–Hoover dynamics.
Figure 7 illustrates, on two very different scales, a typical
excursion of the local Lyapunov exponent for Nos�e dynam-
ics. On the scale of Fig. 7(a) the variation looks singular, but
it is actually smooth when adaptive integration is used to
control the scale of the smallest time step, which is 10�9.
Figure 8 shows similar data for the Nos�e–Hoover version of
the same problem. In that case no special precautions need
be taken. A fixed time step of 0.001 is perfectly adequate for
accurate estimates of the local Lyapunov exponent.

D. Challenges and ideas for future work

There is a significant variation in the topology of the
chaotic and regular solutions for our oscillator models if the

Fig. 9. (Left) The coordinate q is plotted as a function of s, which is always positive, and f. (Right) A plot of p as a function of q. The inner ellipse corresponds

to Eq. (4); the outer ellipse represents Eq. (7). The two Nos�e–Hoover curves have a period of 5.578, and the Nos�e period is 2.1655, useful test cases for a read-

er’s program. The extreme values of the coordinate q are 61.2145.

Fig. 10. (Color online) (a) The variation of k1(t), (b) the adaptive integrator time step Dt, and (c) the time scale factor s. These are three possible criteria for the

stiffness of the Nos�e oscillator as described by Eq. (4) and shown in the intersection of the chaotic sea with the p¼ 0 plane. In general, the larger Lyapunov

exponents are found near the outer boundary of the plots with the smaller Lyapunov exponents closer to the origin. (In the online version, red indicates regions

of maximum stiffness, blue indicates regions of least stiffness, and green indicates regions of intermediate stiffness.)
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thermostating is speeded up by introducing a quick response
of f in a short time s

_f ¼ ½p2 � 1� ! _f ¼ ½p2 � 1�=s2: (24)

In particular, fast thermostating, which speeds up the
convergence of the temperature to its target value, generates
infinitely many intricately knotted trajectories, of which the
trefoil knot (an overhand knot in a closed loop) is the sim-
plest. Many such knots are described and illustrated in Refs.
22 and 23. These simple oscillator models, with quadratic
ordinary differential equations (and their nonequilibrium
fractal relatives, generated by the motion equations when
temperature is a function of the coordinates), can trace out
interlinked rings in phase space! An example is described in
Ref. 24. These models’ chaotic trajectories, with their knots
and interlinked rings could easily fill an entertaining and pro-
fusely illustrated book on the subject. We encourage readers
to explore these topics. In this spirit, we include in Fig. 10
three Nos�e p¼ 0 sections illustrating the dependence of
k1(t), Dt, and s on (q, f). See either the online version or the
arXiv versions for color.
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