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Abstract A recent strand of macroeconomic literature has placed sentiment fluctua-
tions at the forefront of the academic debate about the foundations of business cycles.
Waves of optimism and pessimism influence the decisions of investors and con-
sumers, and they might therefore be interpreted as a driving force for the performance
of the economy in the short term. In this context, two questions regarding the for-
mation and evolution of psychological moods in an economic setting gain relevance:
First, how can we model the process of transmission of sentiments across economic
agents? Second, is this process capable of generating endogenous and persistent fluc-
tuations? This paper answers these two questions by proposing a simple and intuitive
continuous-time dynamic sentiment spreading model based on the rumor propaga-
tion literature. As agents contact with one another, endogenous fluctuations are likely
to emerge, with trajectories of sentiment shares potentially exhibiting periodic cycles
and chaotic behavior.
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1 Introduction

There is no consensus among macroeconomists about the role that sentiments or
“animal spirits” occupy in the context of the forces that effectively drive observed
business fluctuations. Although many agree that sentiments or confidence levels are
relevant to determine the intensity of economic activity, these terms are often loosely
mentioned, and they seldom appear as consistent structural elements of the most pop-
ular and widely accepted macro models. The reason for this is simple: as De Grauwe
(2011, page 424) pragmatically puts it “the notions of ‘animal spirits’ and rational
expectations do not mix well.” In fact, mainstream economic models tend to assume,
in a dogmatic way, that agents are rational, markets are complete, and informa-
tion disseminates widely and freely. These assumptions are convenient for analytical
tractability, but leaving no room for sentiments or animal spirits, they contradict the
observed behavior of consumers and investors in the economy.1

The orthodox interpretation of the foundations of economic behavior naturally
ignores local interaction in business relations since this perspective would imply an
arbitrary and unjustified confinement of the agents to a limited part of the market (see
Durlauf 2012). However, the consensus around such a view is being progressively
challenged within the profession, with a growing number of authors embracing the
idea that complete and flawless coordination of actions arising from the interaction
among millions of agents in the whole market economy is nothing more than a fiction
(see Galtier et al. 2012).

The immediate corollary of the observation that complete access to markets
is beyond the reach of any individual agent, no matter its dimension and power,
is that advancement of the knowledge about socio-economic processes requires
approaching the mechanisms through which agents interact locally, coordinate their
actions, and decide strategically. Once local interaction is taken seriously and inte-
grated into economic models, the beliefs of agents will surely depart from complete
homogeneity, and sentiment waves will probably emerge.

Most of the recent meaningful approaches to business cycles that base their argu-
ments on the notion of sentiments incorporate some kind of informational constraint
that limits agents’ full access to the market and forces contact at a local level.
This is the path followed by the influential studies of Angeletos and La’O (2013)
and Milani (2014), Benhabib et al. (2015, 2016) and Chahrour and Gaballo (2015).
In all these studies, information frictions that prevent complete, instantaneous, and

1At this initial stage, we make a terminological clarification that is important for the discussion that
follows. To be rigorous, the concepts of sentiments, understood as a predisposition to be optimistic or pes-
simistic, and of animal spirits, in the strict Keynesian sense, are not necessarily synonymous. Although
some authors refer to these terms interchangeably (e.g., Benhabib et al. 2015, page 549, state that “Fluc-
tuations can be driven by waves of optimism or pessimism, or as in Keynes’ terminology, by ‘animal
spirits’ that are distinct from fundamentals”), Keynes’ notion of animal spirits has a precise meaning; in
the General Theory (Keynes 1936) animal spirits are referred to as a spontaneous urge to action rather
than inaction. Because our sentiment spreading model deals with behavioral features that do not neces-
sarily comply with this idea of propensity to take actions, we enclose them in the less formal notion of
sentiments and refrain from using the term “animal spirits.”
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global interaction generate sentiment oscillations that give rise to self-fulfilling busi-
ness fluctuations. Although strictly economic events help propagate the fluctuations,
their source is a mix of psychological and sociological drivers that take the form of
sentiment shocks.

The above mentioned contributions, although emphasizing the role of interaction
and coordination, share a common characteristic with orthodox business cycle theory:
fluctuations occur as a consequence of exogenous disturbances; instead of the com-
monly taken technology, policy, preference or financial shocks, the source of cycles is
the occurrence of confidence or sentiment shocks. The ignorance about the sources of
sentiment changes that the exogeneity assumption implies is apparently not a strong
concern for these theorists since, as Angeletos et al. (2015) assert, any formal model
of business cycles must ultimately attribute the causes of fluctuations to an external
source. This is a debatable postulate, though, and it is precisely on the endogenous
origins of aggregate sentiment oscillations that we will focus our attention.

To the aforementioned literature, we counter with a model that offers a plausible
mechanism for endogenously generated systematic sentiment shocks. The evolution
of sentiments will be modeled as the outcome of trivial social contact at a local
level, but the emergent sentiment fluctuations will have a close association with eco-
nomic processes in two ways: upstream, we consider that the cadency of contacts
among individuals leading to eventual sentiment changes is a by-product of economic
relations, with agents choosing to interact given their desire to share ideas, informa-
tion, and knowledge that, in turn, allow them to enhance productivity and increase
output; downstream, sentiment cycles influence the economy through the decisions
of a representative investor who will over-invest under generalized optimism and
under-invest under pervasive pessimism.

Models of endogenous business cycles, a category which includes our analyti-
cal framework, are frequently explored by economic theorists, but they are subject
to relevant criticism. Hommes (2013) systematizes in three points the reasons why
endogenous nonlinearities do not provide a fully compelling explanation for observ-
able business fluctuations. These are: (i) most of the models in this class generate
limit cycles that are too regular, thus lacking any meaningful association with the
empirical evidence on fluctuations in economic and financial time series; (ii) endoge-
nous business cycle models are often built upon ‘ad-hoc’ dynamic equations, not
derived from microfoundations; (iii) if the cycles originating from the models’
dynamics are regular, then agents will surely be acting irrationally since rational
agents would be able to anticipate the trajectories followed by the economic vari-
ables, thus revising their expectations accordingly, and consequently causing the
fluctuations to fade out.

In light of the above criticism, why is it relevant to search for a framework
where sentiment fluctuations, instead of being an external shock, are an intrinsically
endogenous component of aggregate behavior? The answer to this question might be
structured along the lines suggested by Beaudry et al. (2015), who interpret a limit
cycle as a more solid and consistent basis to begin analyzing the impact of exogenous
shocks than the common static equilibrium model that, in its deterministic version,
typically displays a stable fixed-point equilibrium. In this view, economic activity
possesses an underlying cyclical structure, possibly of a regular nature, over which
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shocks on fundamentals occur and propagate in a more intuitive and natural fashion
than what would succeed if the underlying structure were a plain fixed-point steady-
state displaying no oscillations whatsoever, case in which the excessive regularity
critique becomes even more acute. In the words of Beaudry et al. (2015, page 1),
concerning dynamic systems of the macro economy displaying limit cycles, “irregu-
lar business cycles can emerge from these underlying regular forces combined with
shocks that move the system away from an attracting orbit.”

Deterministic cycles of a regular or, possibly, irregular nature might be merged
with a stochastic environment, thus weakening the strength of the arguments in the
first and third items of Hommes’ critique. Endogenous cycles do constitute a plausi-
ble interpretation of macro fluctuations, and they may offer a fundamental underlying
structure of cyclicality. The view suggested by the model in this paper is that there
is an underlying cyclical structure in human behavior, with origins in social interac-
tion, that promotes phases of prevailing optimism that alternate with phases in which
pessimism dominates. It is within this structure that shocks over fundamentals will
eventually exert their influence.

By embracing the idea that there is an endogenous component in the observed
macroeconomic fluctuations, the analysis pursued in this paper shares points in
common with two other strands of literature: on one hand, the macro-dynamics dis-
equilibrium theory developed by Asada et al. (2010, 2011), Chiarella and Flaschel
(2000), and Chiarella et al. (2005), which associates endogenous fluctuations with
wage-price spirals and inventory dynamics; on the other hand, the rational routes
to randomness literature, pioneered by Brock and Hommes (1997, 1998), and thor-
oughly surveyed in Hommes (2006, 2013), where an evolutionary switching process
between a fully rational decision rule and a boundedly rational decision rule (an
heuristic) conducts to long-term bounded instability in economic and financial time
series. Differently from both these approaches, our model associates perpetual cycli-
cal motion with a circular process of meetings among agents that are heterogeneous
in the sense of holding different sentiments that nevertheless will change as contact
with others occurs.

The adopted model of social interaction is adapted from rumor propagation theory
as developed, among many others, by Zanette (2002), Nekovee et al. (2007), Huo
et al. (2012), Zhao et al. (2012), and Wang et al. (2013). In rumor spreading models,
there are three categories of agents that interact in a complex social network; these are
the ignorant or susceptible, the spreaders, and the stiflers. When an ignorant meets a
spreader of a rumor, the ignorant becomes a spreader with a given probability; when
a spreader meets another spreader or a stifler, the spreader will potentially become a
stifler; eventually, the stifler might forget the rumor when in contact with an ignorant
and thus might evolve back to the initial state. The adaptation of rumor spreading to
sentiment propagation requires transforming ignorant into neutral agents, spreaders
into exuberant, and stiflers into non-exuberant individuals (as in Gomes 2015a, b);
since sentiments of both optimism and pessimism are considered, there will be five
categories of agents: neutral, exuberant optimists, non-exuberant optimists, exuberant
pessimists, and non-exuberant pessimists.

At a given time, each agent may occupy any of the sentiment categories, and only
local interaction with other individuals will cause a transition from one category to
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another. The model also allows for the possibility of exuberant individuals, those
who more enthusiastically support their sentiment view, to look at the overall sen-
timent evolution and consider this evolution when forming a subjective transition
probability to another sentiment category. As described, the model gives rise to a
four-dimensional system of ordinary differential equations (ODEs) that for reason-
able parameter values generates persistent cyclical and chaotic trajectories for the
various sentiment categories. The chaotic solution is particularly relevant since it
indicates that a small and simple set of interaction rules might trigger bounded but
irregular waves of optimism and pessimism, even in the absence of external shocks,
that resemble the observed empirical time series representing the confidence of
agents in the economy (see, e.g., Lemmon and Portniaguina 2006).

In summary, we provide a simple model of fluctuations in agents’ confidence,
in the context of social contagion, thus offering a rationale for the observed recur-
rent sentiment shocks. The explanation is focused on direct local interaction among
agents, and the resulting chaotic model satisfies Sprott’s 2011 criteria for the publi-
cation of new chaotic systems: (i) the system should credibly model some relevant
problem in nature (or, we add, in the economy and in society); (ii) the system should
display original dynamic behavior; and (iii) the system should be as simple as pos-
sible. Our model satisfies these requisites, addressing an important social issue with
unquestionable economic repercussions using a simple mathematical system. To the
best of our knowledge, this is the first continuous-time dynamic model proposed in
the literature representing social contact in a simple homogeneous network that has
chaotic solutions.

The remainder of the paper is organized as follows. Section 2 describes the model
of sentiment spreading and characterizes the underlying dynamics. Section 3 estab-
lishes a link between the sentiment propagation mechanism, the economic decisions
of agents, and performance of the economy. Section 4 explores the global dynamics
of the sentiments’ model, highlighting the presence of chaos. Finally, Section 5 gives
conclusions.

2 The sentiment propagation model

Consider a large social network, with no particular pre-specified structure, within
which economic agents establish interaction relations. Agents are dispersed across
five categories that represent different confidence levels about the future perfor-
mance of the economy. The five categories are: neutrality, exuberant optimism,
non-exuberant optimism, exuberant pessimism and non-exuberant pessimism. The
respective shares of agents in each category at time t are x(t), y(t), z(t), v(t), and
w(t).2 Since each agent resides in one and only one category at a time, the condition
x + y + z + v + w = 1, ∀t holds.

2Henceforth, to simplify notation and when no ambiguity arises, the time argument in time-dependent
variables will be suppressed.
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Table 1 Interaction outcomes
Sentiment held

by the agent

target of the

interaction:

Sentiment held
by the agent
promoting the
interaction:

Start by assuming that sentiment propagation across the network of social relations
obeys the following sequence: when a neutral agent meets an exuberant individual,
optimist or pessimist, that agent also becomes an exuberant optimist or pessimist,
respectively, with a given probability; second, when an exuberant optimist or pes-
simist meets another optimist or pessimist, exuberant or not, the exuberant individual
becomes non-exuberant within the same class of sentiment, with a given probabil-
ity; third, when a non-exuberant agent, optimist or pessimist, interacts with a neutral
agent, that agent becomes neutral, with a given probability. To simplify the analysis,
assume the transition probability θ ∈ (0, 1] is the same for all the transitions. Table 1
lays out the established interaction rules for an easier perception of the contagion
effects. The table elucidates how an agent with the sentiment indicated in each line
eventually swap sentiments when meeting an agent with the sentiment displayed in
the top of each column. The outcome of the interaction, for the agent that initiates
the contact, is presented in the respective cell inside the table.3 Note that the meet-
ings are one-way contacts: they are triggered by the first agent who is oblivious to
the response of the second agent.

Of course one can contest the exact shape of the sequences of interaction and
respective outcomes as sketched. As mentioned in the Introduction, they were
adopted because they conform to the rumor spreading literature, and sharing a senti-
ment is probably not too different from sharing a rumor: one passes from neutrality
to exuberance, from exuberance to non-exuberance and back to neutrality, given the
pattern of established contacts. Furthermore, the established rules have some simi-
larities to the ones Angeletos and La’O (2013) also consider in a related process of
dissemination of sentiments. For these authors, agents are split into uninformed, par-
tially informed, and fully informed; the partially informed are also designated, in the

3Keep in mind that this outcome occurs with a probability θ ; with a probability 1 − θ , the contact implies
no sentiment change.
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mentioned framework, as exuberant, the pivotal class that has some but not complete
knowledge of relevant data about the expected evolution of the economy, and thus
adopts a particularly active attitude toward the acquisition of information.

In the Angeletos-La’O model, the uninformed are transmuted into partially
informed when meeting someone in this second category, and the partially informed
become fully informed when meeting someone in the same stage or when meeting
a fully-informed agent. In this specific case, the propagation mechanism works as
an information ladder where all agents eventually become fully informed, follow-
ing a process that might be lengthy. Meanwhile, a wave of optimism forms as a
progressively larger portion of uninformed economic units become exuberant and,
subsequently, it fades out when exuberance is systematically replaced by full infor-
mation. Therefore, in this view, a sentiment shock is a fad, i.e., a state of less than
perfect information that will shrink to zero over time.

The main difference between our proposal and the one underlying the Angeletos-
La’O framework is that we consider circularity: once non-exuberant individuals meet
those with a neutral attitude, the ones that were not already strong activists for a
given sentiment will abandon it and become neutral as well, a state in which they
are susceptible to return to their previous sentiment or to shift to the opposite senti-
ment. The remainder of the process is similar to the one described: a neutral meeting
an exuberant is influenced by this second agent with a given probability and might
become exuberant about the sentiment as well; an exuberant looses stamina and even-
tually becomes non-exuberant when meeting a non-exuberant or another exuberant
individual (in this second case, the agent realizes that having deep feelings about
being optimistic or pessimistic is not an exclusive feature of her own emotional state
and such strong feelings are replaced by a more moderate, or non-exuberant, attitude
towards the sentiment).

A fundamental innovation of this process is that two polar sentiments – optimism
and pessimism – are simultaneously taken, and to go from one to the other, agents
must pass through the neutral state. Once, after a meeting, an optimist or a pessimist
change their status back to neutrality, the possibility of acquiring the previously held
sentiment or, alternatively, changing to the opposite sentiment will be determined by
the profile of the agents contacted in subsequent time periods.

Therefore, similar to the Angeletos-La’O framework, cyclical motion is trig-
gered by sentiment dynamics emerging from decentralized and direct contact among
agents; different from Angeletos-La’O, though, sentiment switching in this paper
is not a process to justify a single impulse-response event; on the contrary, it is a
source of everlasting fluctuations where periods of dominant optimism systematically
permute with periods of dominant pessimism, given the circular flow assumption.

Although most of the networks considered in various fields of science are complex
with a heterogeneous connectivity profile as in the case of the scale-free networks
of Barabási and Albert (1999), we consider a homogeneous network in which every
agent is equally connected. We do this for analytical tractability and because of an
economic rationale explained in Section 3. This rationale is based on the idea that
all agents solve the same optimality problem and thus compute the same optimal
level of intended connectivity. The degree of connectivity is an integer if we con-
ceive it strictly as the number of links of a node to the other nodes in the network;
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alternatively, it can be considered a positive real number if we interpret it as the num-
ber of links weighted by the strength of the links. We will adopt the second, broader,
interpretation and denote the relevant connectivity parameter by κ > 0. In what
follows it will be convenient to define the product ζ ≡ θκ > 0.4

Applying the law of mass action to the described interaction rules leads to a system
of ODEs that can be represented as5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
x = −ζx(y + v) + ζ(z + w)x
.
y = ζxy − ζy(y + z)
.
v = ζxv − ζv(v + w)
.
z = ζy(y + z) − ζzx
.
w = ζv(v + w) − ζwx

x(0), y(0), z(0), v(0), w(0) given

(1)

Note that every term is proportional to ζ , and hence ζ can be eliminated from the
equations by re-scaling time according to t → t/ζ . Observe, also, that the equations
in system (1) describe quantitatively the contents of Table 1: the meeting between
a neutral (x) and an exuberant (y or v) makes x decrease, and makes each of the
shares y and v increase. The meeting between exuberant individuals (y or v) and
other agents sharing the same sentiment type (y + z or v + w) leads to the flow of a
percentage of agents from states y or v to states z or w, respectively. Finally, when
non-exuberants (z or w) meet neutrals (x), the x share increases and the shares z and
w decrease.

Since the sum of the five shares is equal to unity, the five-dimensional system (1)
reduces to a four-dimensional compact form through the suppression of variable x,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

.
y = ζ [1 − (y + z + v + w)] y − ζy(y + z)
.
v = ζ [1 − (y + z + v + w)] v − ζv(v + w)
.
z = ζy(y + z) − ζz [1 − (y + z + v + w)]
.
w = ζv(v + w) − ζw [1 − (y + z + v + w)]
y(0), z(0), v(0), w(0) given

(2)

4This product, although convenient for analytical purposes, merges the role of the probability of transition
with the role of the degree of connectivity, hiding the individual effects of each parameter when later
assessing the model’s dynamics. One should note that all that matters for the purpose of the analysis of
dynamics is that any specific value of ζ corresponds to an array of values of θ and κ , where a relation
of opposite sign exists between the two, i.e., if one considers, e.g., ζ = 40, this might mean a transition
probability θ = 0.5 and a connectivity level of κ = 80 or, alternatively, θ = 0.25 and κ = 160, or any
other combination of parameters such that ζ remains at the specified value.
5See Nekovee et al. (2007) for a thorough characterization of a rumor spreading process leading to a set
of differential equations with features similar to system (1).
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The essential dynamical features of the sentiment variables under system (2) are
given by the following two propositions:

Proposition 1 System (2) contains four equilibrium points plus an equilibrium line,
respectively,

e1 : (y∗, v∗, z∗, w∗) =
(
1

6
,
1

6
,
1

6
,
1

6

)

e2 : (y∗, v∗, z∗, w∗) =
(
1

4
, 0,

1

4
, 0

)

e3 : (y∗, v∗, z∗, w∗) =
(

0,
1

4
, 0,

1

4

)

e4 : (y∗, v∗, z∗, w∗) = (0, 0, 0, 0)

e5 : (y∗, v∗, z∗, w∗) = (
0, 0, z∗, w∗) , with z∗ + w∗ = 1.

Proof See Appendix.

Proposition 2 Equilibrium point e1 is locally stable. All the other equilibria are
unstable.

Proof See Appendix.

The results in Propositions 1 and 2 indicate that any equilibria where exuberant
optimism or exuberant pessimism are absent (which we denote as corner solutions)
are unstable. This implies that under condition y(0) > 0 ∧ v(0) > 0, the system
in the long run will not remain in any of the corner solutions. Thus, the mentioned
initial condition will necessarily imply a convergence to the only stable equilibrium
point, which is e1, a point in which agents are equally distributed among neutrality,
optimism, and pessimism, and equally distributed among neutrality, exuberance, and
non-exuberance.

The symmetry of the stable result (i.e., the coexistence of sentiment states with
identical densities) is a straightforward consequence of assuming the same probabil-
ity of transition for all the transition processes, i.e., the same share of individuals will
systematically abandon a sentiment class and will enter another. If we had assumed
different probabilities of transition for switching sentiments, the equilibrium state
would reflect the existence of a higher percentage of individuals in the state for which
the probability of entering is larger and the probability of leaving is smaller relative
to the other states. Although there is a constant flow of agents, and no agent remains
indefinitely in the same sentiment position, the fully uniform distribution of indi-
viduals across states is only possible for a balanced transition where probabilities of
change are the same for all switching options.

Figure 1 illustrates the convergence of the four variables toward the only
stable long-term solution, e1, for initial conditions (y(0), v(0), z(0), w(0)) =
(0.01; 0.02; 0; 0). The figure confirms the decaying oscillations converging on e1 as
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Fig. 1 Convergent sentiment trajectories

predicted by the eigenvalues of the respective Jacobian matrix, which are complex
conjugates with a negative real part (see the proof of Proposition 2).

This stability outcome prevails in the relatively simple case described above. How-
ever, a reasonable assumption concerning the behavior of exuberant individuals will
now be introduced, and this assumption will drastically alter the system’s dynamics.
Exuberant agents are likely to be the ones with a more pro-active attitude within the
network of relations. This means that they will probably search for additional infor-
mation to decide how to act when they meet another agent.6 Specifically, we assume
that the transition from the exuberant state (y or v) to the non-exuberant state (z or
w) will depend on the assessment that exuberant individuals make about the strength
of their belief. If they perceive that it is fading (i.e., if the inflow to the sentiment,
ζxy or ζxv, is lower than the outflow, ζzx or ζwx, respectively for optimists and
pessimists), then the relevant probability of transition θ from exuberance to non-
exuberance will assume a higher value than in the opposite case as characterized by
the following sigmoidal forms:

θ(y → z) = θ

2
[1 − tanh (ζxy − ζzx)] (3)

θ(v → w) = θ

2
[1 − tanh (ζxv − ζwx)] (4)

Function θ(y → z) describes the transition probability from optimistic exuber-
ance to optimistic non-exuberance, and function θ(v → w) corresponds to the
transition probability from pessimistic exuberance to pessimistic non-exuberance.
The functions are identical in the sense that in both cases the probability of transi-
tion changes according to the trend of the respective sentiment; two boundary values

6As in Angeletos and La’O (2013), we attribute a pivotal role to those in a state of exuberance. Neutral and
non-exuberant individuals do not search actively for new information and are influenced solely by local
interaction. Exuberant people, instead, are pro-active in the sense that besides being influenced by direct
contact, they also search for economy wide information on the acceptance about the sentiment they hold
(measured by the net inflow of people into the sentiment category). In this case, exuberance is synonymous
with a proclivity to make an informed decision.
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Fig. 2 Exuberance – Non-exuberance transition probability functions

exist: θ is the probability of transition that corresponds to a strong negative change
in the sentiment share (this continues to be the transition probability from neutrality
to exuberance and from non-exuberance to neutrality, regardless of the overall senti-
ment changes), while a strong positive change in the corresponding sentiment causes
the probability of transition to approach zero. This captures the idea that an exu-
berant individual who observes an increasing adherence to her sentiment type will
not be convinced to shift to the respective non-exuberance state. When sentiments
of optimism and pessimism do not vary, the transition probabilities are half of θ :
θ(y → z) = θ(v → w) = θ

2 .
7

Figure 2 shows how the transition probability from exuberance to non-exuberance
departs from θ when the flow of agents away from the sentiment (optimism or
pessimism) is not large relative to the respective inflow.

The introduced assumption transforms system (2) into a new system of ODEs,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

.
y = ζxy − ζ

2 {1 − tanh [ζx(y − z)]} y(y + z)
.
v = ζxv − ζ

2 {1 − tanh [ζx(v − w)]} v(v + w)
.
z = ζ

2 {1 − tanh [ζx(y − z)]} y(y + z) − ζzx
.
w = ζ

2 {1 − tanh [ζx(v − w)]} v(v + w) − ζwx

y(0), z(0), v(0), w(0) given; x = 1 − (y + z + v + w)

(5)

Section 4 gives an analysis of the global dynamics underlying the above character-
ized ODE system, revealing the existence of long-term out-of-equilibrium dynamic
behavior. For now, we repeat the stability analysis under the new assumption.

7The specific shape of functions (3) and (4) is intended to capture the idea that the transition probability
approaches zero when the inflow into the sentiment is stronger than the outflow and approaches θ > 0
when the respective net outflow is a positive value. This is done rather than considering a piecewise
function that would be analytically less tractable and arguable less realistic; the continuity is assured by the
specific hyperbolic tangent function. This function introduces a convenient S-shaped nonlinearity similar
to the one used in some evolutionary switching models where specific relations are defined through the
arctangent function (see, e.g., the supply curve (1.2) in Hommes (2013)).
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Four equilibrium points and an equilibrium line continue to exist in the new ver-
sion of the model. However, the changes introduced in the transition probabilities
between exuberance and non-exuberance imply a different set of equilibrium points.
Equilibria e4 and e5 are the same as before, but changes occur for e1, e2 and e3.

Proposition 3 For system (5), four equilibrium points plus an equilibrium line exist,
respectively,

e′
1 : (y∗, v∗, z∗, w∗) =

(
1

5
,
1

5
,
1

5
,
1

5

)

e′
2 : (y∗, v∗, z∗, w∗) =

(
1

3
, 0,

1

3
, 0

)

e′
3 : (y∗, v∗, z∗, w∗) =

(

0,
1

3
, 0,

1

3

)

e4 : (y∗, v∗, z∗, w∗) = (0, 0, 0, 0)

e5 : (y∗, v∗, z∗, w∗) = (
0, 0, z∗, w∗) , with z∗ + w∗ = 1.

Proof See Appendix.

Note that by assuming that the transition probability from exuberance to non-
exuberance might fall below θ unless the net outflow of agents from the respective
category is relatively strong, the first three equilibrium points suffer changes. The
first equilibrium is now a point in which agents are equally distributed across the five
sentiment categories; the other two points represent equilibrium loci such that exclud-
ing one of the sentiments, agents are equally distributed across neutrality, exuberance,
and non-exuberance.

Next, we reassess the stability properties of the system with the introduced
changes.

Proposition 4 In the sentiment propagation model with dynamics given by Eq. 5, the
equilibria e′

2, e
′
3, e4 and e5 are unstable ∀ζ > 0. The equilibrium point e′

1 is locally
stable under condition ζ < 25

2 .

Proof See Appendix.

The local stability dynamics in the new scenario, with exuberant having different
transition probabilities for different global sentiment status, has some similarities
with the original framework. In particular, every corner solution for which at least
one of the exuberance categories is unpopulated, is unstable. Thus, as before, we can
focus the discussion on the remaining equilibrium by imposing the initial condition
y(0) > 0∧v(0) > 0. For e′

1, the universal stability result found for e1 no longer holds;
a supercritical Hopf bifurcation occurs at ζ = 25

2 , and this bifurcation separates
the region of stability for relatively low values of ζ from a region where a stable
limit cycle is observed. It is in this region that waves of optimism and pessimism are
modeled.
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Fig. 3 Stability (S) and instability (U) regions in the sentiment model with the hyperbolic tangent
transition probability function

Recall that parameter ζ is the product of the transition probability and the connec-
tivity degree. Hence, another way of presenting the stability condition is through the
inequality κ < 25

2
1
θ
. This condition is satisfied whenever the degree of connectiv-

ity and the probability of transition across sentiment states both have relatively low
values. The regions of stability and instability, and the bifurcation line that separates
them, are shown in Fig. 3.

Before proceeding with the analysis of the global dynamics underlying the sen-
timent spreading system that will uncover the formation of endogenous cycles,
Section 3 establishes the bridge between the sentiments setup, as described above,
and the optimal decisions made by the agents when acting as (boundedly) rational
economic players.

3 The economic environment

In this section, two processes are discussed. First, a rationale is proposed for the
network homogeneity assumption that underlies the mechanism of sentiment propa-
gation described in the previous section; the degree of connectivity is interpreted as a
control variable of a simple intertemporal time allocation planning problem that each
individual agent is supposed to solve. In a second part of the section, a straightfor-
ward apparatus characterizing the impact of sentiment changes over the economy is
presented; on the aggregate, the economy may over-invest (if sentiments of optimism
dominate) or under-invest (if sentiments of pessimism prevail), with over-investment
and under-investment both implying a departure from the optimal profit condition.
As illustrated in the next section, if the interaction framework gives rise to endoge-
nous fluctuations in sentiments, then these will propagate to investment, output, and
profits.

The two economic mechanisms described in this section might be integrated under
the following interpretation: The first setup, in which a multiplicity of agents solves
the same optimal time allocation problem, is the problem of the labor suppliers in
an economy who decide how to allocate their effort between participation in the
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productive activity and interaction in search of new ideas and knowledge that enhance
productivity. In a second stage, the labor force will then contribute to a productive
activity managed by a representative investor whose decisions are influenced by the
overall sentiment level.

We begin the analysis by considering a network with a maximum connectivity
degree K̂ > 0; this is the degree of connectivity that prevails whenever the mar-
ket is complete, and hence every agent is in direct contact with everyone else, i.e.,
κ = K̂ . In what follows, our argument is that establishing contact with others,
although desirable from a knowledge enrichment point of view, requires effort and
thus involves economic costs measured in terms of time diverted from productive
activities. Consequently, agents will eventually be compelled to choose an optimal
degree of interaction lower than K̂ . Because agents all face the same time allocation
problem, they will all want to set an identical connectivity degree in the steady-state,
independent of initial conditions, which justifies the homogeneity across individual
agents regarding desired connectivity.

In this scenario, the connectivity degree is the outcome of a decision on the optimal
share of time allocated to social interaction with the objective of accumulating addi-
tional knowledge. However, this deliberation process has a side effect: the selected
connectivity degree will also determine the pace of sentiment spreading, as charac-
terized in Section 2. Sentiment spreading emerges as a by-product of the purposive
effort of every agent in searching for new productivity-enhancing knowledge that
originates in the process of decentralized contact and communication.

In assembling a framework where workers might allocate time between produc-
tion and interaction, we essentially follow Lucas and Moll (2014). Here, as in the
Lucas-Moll growth model, there is an opportunity cost involving knowledge as an
input used to produce goods: time allocated to production is time not spent in foster-
ing contact with others in search for new ideas capable of stimulating productivity.
Higher productivity, in turn, allows for the generation of additional output per unit of
time. Meetings occur randomly and in a number that is directly related to the fraction
of time dedicated to the communication process.

The trade-off between time spent working and time spent searching for ideas that
others already hold implies conceiving knowledge as a partially rival input; rival in
the short term, because a search resource-consuming effort is required to attain it;
non-rival in the long run because it ends up by propagating, sooner or later, through-
out the whole of the economy. Knowledge will eventually become disembodied, in
the sense of being freely and immediately accessible to all, but only in the long term.

How relevant is the process of acquiring knowledge via systematic social contact
as a source of productivity growth? A growing number of economists classify such
processes as vital. In Lucas (2009, page 1), an eloquent argument in favour of such a
perspective is offered,

It is widely agreed that the productivity growth of the industrialized economies
is mainly an ongoing intellectual achievement, a sustained flow of ideas. Are
these ideas the achievements of a few geniuses, Newton, Beethoven and a hand-
ful of others, viewed as external to the activities of ordinary people? Are they
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the product of a specialized research sector, engaged in the invention of patent-
protected processes over which they have monopoly rights? Both images are
based on important features of reality and both have inspired interesting growth
theories, but neither seems to me central. What is central, I believe, is the fact
that the industrial revolution involved the emergence (or rapid expansion) of a
class of educated people, thousands – nowmanymillions – of people who spend
entire careers exchanging ideas, solving work-related problems, generating new
knowledge.

Besides Lucas (2009), other authors (Staley, 2011; Lafond, 2015) also present
compelling arguments to justify the preponderance of social interaction in the diffu-
sion of innovative thinking and in the promotion of economic growth. These studies
are inspired in a previous essay byManski (2000) where it is emphatically argued that
the transmission of knowledge occurs many times beyond the boundaries of market
relations, entering the domains of a wider sphere of human contact that takes place
in the context of different kinds of communities and in the society as a whole.

To encounter the optimal share of time allocated to interaction, we solve a minimal
intertemporal optimization problem, with a single state variable (productivity) and
a single control variable, the time allocated to contact with others. Each individual
agent will select the value of κ over time by solving the following infinite horizon
optimal control planning problem:

max
s(t)

∫ +∞

0
U [(1 − s)A] exp(−ρt)dt

subject to :
.
A = g

κ

K̂
A

κ = f (s)

A(0) = A0 given (6)

In Eq. 6, A ≥ 0 represents the agent’s productivity level, and 1 − s ∈ (0, 1) is the
share of time allocated by the agent to production at time t .

Besides production, time can also be allocated in the remaining share s to interac-
tion. Through successful interaction, the agent can increase its connectivity to others.
The relation between time spent with interaction and interaction outcome is provided
by the continuous and differentiable function f : [0, 1] → [0, K̂], with f ′ > 0,
f (0) = 0 and f (1) = K̂ . The conditions that constrain the shape of the function
convey the following information: connectivity increases with the time allocated to
social interaction activities; if no time is allocated to interaction, the agent will remain
in complete isolation; in the opposite case where all the available time is dedicated to
interaction, the contacts established by each agent will comprise the whole network.

An additional condition on f in the proposed setting concerns the sign of its
second derivative; we assume f ′′ > 0: increasing returns of time allocation for
successful interaction are taken in order to capture the intuitive idea that the more
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extensive the network of contacts the agent already has, the easier it will be to under-
take successful new contacts. A functional form that satisfies these properties and
that facilitates analytical treatment of the problem is

f (s) = K̂
[
1 − (1 − s)1/τ

]
, τ > 1 (7)

The dynamic constraint in Eq. 6 on the motion of A reflects the simple notion that
productivity grows at a rate that depends on interaction: stronger interaction signi-
fies a wider dissemination of ideas, information, and knowledge, which are the main
drivers of individual productivity. As displayed, the state constraint relating produc-
tivity evolution is such that in the limiting case κ = K̂ , the productivity changes at
the maximum possible rate g > 0. Problem (6) can be interpreted as an analytical
structure of endogenous growth since, ultimately, the pace of growth will be endoge-
nously chosen in order to attain the agent’s goal. Although a growth ceiling exists,
given by rate g, the production-interaction trade-off underlying the optimal control
decision will conduct to an intermediate solution where part of the available time
goes to production and the other share in trying to approximate the growth rate of
productivity to the benchmark level g.

The objective function of the time allocation problem, U(·) : R
+ → R, is

designed to reflect the utility the agent draws from the generated income. House-
hold income is simply defined as the product of the productivity index and the time
allocated to production. The objective function is assumed to be continuous and dif-
ferentiable, and to exhibit positive and diminishing utility, i.e., U ′ > 0 and U ′′ < 0.
The simplest specification that obeys these conditions, and that will be used in the
analysis, is a logarithmic function,

U [(1 − s)A] = ln [(1 − s)A] (8)

Parameter ρ ≥ 0 is the intertemporal discount rate of future utility.
Once presented with all its components and variables, one might synthesize the

agents’ decision problem in the following way: agents, who are all alike in terms of
the economic choices they face and thus solve an identical problem, wish to maxi-
mize, under an infinite horizon, the utility of their income in a setting where the state
variable, for which the respective rule of motion is known, is the productivity level,
and the control variable is time allocation, or, since there is a direct relation between
the two, the degree of social connectivity.

By applying Pontryagin’s principle and taking into consideration functions (7) and
(8), it is straightforward to solve (6). The current value Hamiltonian function is

H(A, κ, q) = ln

[(

1 − κ

K̂

)τ

A

]

+ g
κ

K̂
qA (9)

with q representing the co-state variable or shadow-price of the productivity level A.
First-order optimality conditions are

∂H

∂κ
= 0 ⇒ K̂ − κ = τK̂

gqA
(10)

.
q = ρq − ∂H

∂A
⇒ .

q =
(

ρ − g
κ

K̂

)

q − 1

A
(11)
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and the transversality condition is

lim
t→+∞A exp(−ρt)q = 0 (12)

Differentiation of Eq. 10 with respect to time implies that

.
κ

K̂ − κ
=

.
q

q
+

.
A

A
(13)

which, given Eq. 11 and the productivity constraint, is equivalent to

.
κ = (

K̂ − κ
)
[

ρ − g

τK̂

(
K̂ − κ

)
]

(14)

Equation 14 is a one-dimensional ODE with a single endogenous variable, namely
the degree of connectivity. Note that this equation has two equilibrium points; solu-

tions κ∗ = K̂ and κ∗ = K̂
(
1 − ρτ

g

)
both of which satisfy

.
κ = 0. The first solution

is senseless from an economic viewpoint since it would mean that every agent would
be in contact with everyone else in the economy but at an unbearable cost. For the
connectivity degree to be equal to its maximum value, all the time must be allocated
to interaction, s∗ = 1, which would imply that no time would be left for production,
and thus the long-term steady-state level of utility of the agent would be zero.

The second steady-state is admissible but imposes a constraint on the parameters:
g > ρτ . A lower bound on the growth potential of productivity is required to obtain

a feasible solution. Note that this equilibrium point is unstable, d
.
κ(t)

dκ(t)

∣
∣
∣
κ∗=K̂

(
1− ρτ

g

) =
ρ > 0. Given that κ is a control variable, the instability result suggests that the repre-

sentative agent will choose to locate at point κ∗ = K̂
(
1 − ρτ

g

)
, ∀t . Thus, this value

will effectively be the connectivity degree optimally chosen by all the agents in the
economy at every instant. The non-completeness of markets is not the outcome of
any kind of informational deficiency or other market failure; markets are not com-
plete because agents rationally select an optimal degree of connectivity, lower than
K̂ , given the trade-off between interaction and participation in the productive activ-

ity. Note that for κ = K̂
(
1 − ρτ

g

)
, productivity grows at a rate

.
A
A

= g − ρτ , a

positive rate under the imposed condition g > ρτ , time allocated to the interaction is

s = 1 −
(

ρτ
g

)τ

, and time allocated to production is 1 − s =
(

ρτ
g

)τ

.

Consider a simple example. Take K̂ = 1000, ρ = 0.048, τ = 1.25 and g = 0.1.
The connectivity degree will be κ = 400, i.e., each agent will optimally choose to
connect with 40% of the whole social network. In this case, the rate of productivity

growth is
.
A
A

= 0.04, and time will be allocated in the following way: s = 0.4719 and
1 − s = 0.5281, i.e., the time spent in interaction activities is a smaller fraction than
the time allocated to production, under the assumed parameterization.

The meaningful point that we once again stress is that engaging in interaction has
a well defined purpose, which is to enhance productivity, but it has a by-product: as
agents interact to share ideas, information, and knowledge and, as a consequence,
raise their ability to increase the value of what they produce, they also share their
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sentiments about the future performance of the economy, which will put them at each
instant in one of the sentiment categories of the previous section. How fast sentiments
spread in this setting is then an indirect consequence of the effort agents make to
share ideas for promoting productivity growth.

A pertinent question is whether sentiments can somehow enter the optimal deci-
sion of the agent. The answer in the proposed setting is no for two reasons. First,
sentiment switching, as characterized in Section 2, is a completely state-driven pro-
cess; no agent has the ability to choose the respective sentiment state. Second, if
agents wanted to control the rate of sentiment change, for instance, avoiding all vari-
ation and thus suppressing sentiments as a source of fluctuations from the economy,
they could set κ to zero, but this would not be a rational decision because zero fluc-
tuations would come at an unbearable cost: no productivity growth would occur.
Therefore, in the proposed scenario, agents solve a long-term growth problem that,
nonetheless, by shaping how these agents interact, impacts the short-run aggregate
behavior, generating more or less intense waves of optimism and pessimism.

In the second part of this section, we discuss how sentiments, which evolve under
the social contact process characterized in Section 2, eventually spread into the econ-
omy. The presented framework is intentionally plain and simple, since it will show
that any imbalance between optimism and pessimism generates an economic out-
come that is less favorable than what occurs if the mass of agents is neutral on
average.

We assume a representative entrepreneur who wishes to maximize her profits. 8

Profits are defined as the difference between output revenues and costs, both invest-
ment and labor costs. The output of the entrepreneur is given by a Cobb-Douglas
function with Harrod-neutral technological progress,

F (K, AL) = Kα

[(
ρτ

g

)τ

AL

]1−α

(15)

In the production function (15), K ≥ 0 represents the stock of capital, L ≥ 0 is
a fixed amount of labor that corresponds to the workforce in the economy that the

entrepreneur can hire, and
(

ρτ
g

)τ

A is the contribution of each worker to the pro-

ductive process, a value that corresponds to the output of the agents’ time allocation
problem addressed above. The parameter α ∈ (0, 1) is the output-capital elasticity.

The representative firm faces two types of costs: (i) labor costs, which correspond
to the wage (marginal productivity of labor) times the amount of labor,

wL = ∂F

∂L
L = (1 − α)F (K, AL) (16)

8The assumption of a profit maximizing firm is not, as we shall see below, essential for the analysis, since
the only requirement is to consider some benchmark value for investment over which waves of optimism or
pessimism might exert some effect. Nevertheless, by solving this problem, expressions for the investment,
profits and output will be explicitly derived, and these will be important for the simulation exercise to be
performed in the next section.
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and (ii) investment costs, which are the rental price for a unit of capital, R > 0, times
the amount of acquired capital stock,

I = RK (17)

Then the profit function is

	 = F (K, AL) − wL − I = αF (K, AL) − I (18)

The entrepreneur will want to maximize profits for a given level of investment.
Straightforward maximization of Eq. 18 yields

∂	

∂I
= 0 ⇒ I = α2/(1−α)

(
1

R

)α/(1−α) (
ρτ

g

)τ

AL (19)

Condition (19) furnishes the optimal level of investment; this investment level will

grow over time at the same rate as productivity, i.e.,
.
I
I

=
.
A
A

= g − ρτ . To write
an expression for optimal profits, one substitutes investment, as displayed in Eq. 19,
into Eq. 18, giving the result

	 = (1 − α)α(1+α)/(1−α)

(
1

R

)α/(1−α) (
ρτ

g

)τ

AL (20)

Profits, as investment, grow over time at the same rate as labor productivity. This
observation also applies to the entrepreneur’s output; the production level that
satisfies the optimal profits condition is

F (.) = α2α/(1−α)

(
1

R

)α/(1−α) (
ρτ

g

)τ

AL (21)

Having presented a benchmark for the analysis of optimal production decisions,
we now add to this framework the impact of sentiments by taking the following
function,

a(y, v, z, w) = 1 + (a − 1)(y + z)

1 + (a − 1)(v + w)
, a > 1 (22)

Function (22) is designed to evaluate sentiment imbalances; whenever y+z = v+w,
a(·) = 1; the value of a(·) increases above 1 when the number of optimists exceeds
the number of pessimists and falls below 1 in the opposite case. Figure 4 illustrates
the intuition behind Eq. 22; three lines are presented in the referential (y + z; v +w).
The line that separates the quadrant in two equal parts represents case a(.) = 1 ; any
line to the left of a(.) = 1 is such that a(.) < 1 (pessimism is dominant); any line to
the right of a(.) = 1 is such that a(.) > 1 (optimism is dominant).

Next, we make investment depend on the sentiments of the population. The intu-
ition is that sentiments exert influence on the confidence of consumers, thus distorting
demand decisions. The representative firm reacts to the distortion on aggregate
demand by raising investment above the optimal level when optimism dominates and
by lowering investment below the optimal level when optimism is overpowered by
pessimism. Let Ĩ be the effective investment level, which in our specification will
relate to optimal investment by

Ĩ (t) = a(·)I (t) (23)



748 O. Gomes, J.C. Sprott

0

1

0 1

+

+

= 1

> 1

< 1

Fig. 4 Function a(y, v, z, w)

In a sense, I (t) reflects fundamentals while a(·) is a distorting systematic shock that
has its origins in the constantly changing dominant aggregate sentiment.

According to condition (23), effective investment will coincide with optimal
investment only when the numbers of optimists and pessimists in the economy are
balanced; departures from this coincidence occur for y + z > v + w, the case in
which Ĩ > I , and for y + z < v + w, the case in which Ĩ < I . Therefore, under the
proposed assumption, when optimism is dominant, the entrepreneur will over-invest;
in the opposite circumstance, she will under-invest relative to the benchmark optimal
investment level. Substituting the new notion of investment into the profit expression
gives

	̃ = α(1+α)/(1−α)a(·)α
[
1 − αa(·)1−α

](
1

R

)α/(1−α) (
ρτ

g

)τ

AL (24)

Any value of a(·) lower or higher than unity will make profits fall below the
optimal level, (20). As the next section will reveal, for reasonable parameter values,
the local interaction framework will trigger endogenous fluctuations that repre-
sent episodes of departure from optimal profits, with extreme periods of prevailing
optimism or pessimism implying stronger reductions in profit. Output, as given by

F̃ (.) = a(·)αα2α/(1−α)

(
1

R

)α/(1−α) (
ρτ

g

)τ

AL (25)

will also display fluctuations, simulating the persistence of business cycles.

4 Long-term dynamics and chaos

The global dynamics of the sentiment interaction model outlined in Section 2, namely
the dynamics concerning system (5), is now examined with regard to the single
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bifurcation parameter ζ . Figure 5 shows the four Lyapunov exponents, the Kaplan–
Yorke dimension, and the local maxima of y(t) as a function of ζ over the range
0 < ζ < 200. For calculation of the Lyapunov exponents, time has been scaled
according to 1/ζ to avoid a linear dependence of the numerical values on ζ . As indi-
cated in Section 2, the coexisting equilibrium point e′

1 at y
∗ = v∗ = z∗ = w∗ = 1

5 is
stable for ζ < 25

2 with all four eigenvalues equal to −0.1+ ζ/125, which agree with
the four Lyapunov exponents in this range.

At ζ = 25
2 , a supercritical Hopf bifurcation occurs and spawns a stable limit cycle

with a dominant angular frequency of
√
19/10. The limit cycle grows rapidly in

size and undergoes a period-doubling route to chaos, which onsets around ζ = 100
and persists to arbitrarily large values of ζ except for a number of small windows
of periodicity. At ζ = 150, the chaos is fully developed with Lyapunov exponents

Fig. 5 Lyapunov exponents, Kaplan-Yorke dimension and local maxima of y(t)
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Fig. 6 Strange attractors (ζ = 150)

of (0.0133, 0, −0.1196, −0.2038), and the strange attractor shown in Fig. 6 has a
Kaplan–Yorke dimension of 2.1109.9

9Given that the system is four-dimensional, it involves four Lyapunov characteristic exponents (LCE). The
identification of chaos, based on the evidence of sensitive dependence on initial conditions, requires the
existence of at least one positive LCE, as is observed in this particular case.
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Fig. 7 Sentiment time trajectories (ζ = 150)

There is no evidence of hysteresis or multistability (coexisting attractors). The
strange attractor is self-excited rather than hidden in the sense of Leonov et al. (2011),
and it has a Class 3 basin of attraction as described by Sprott and Xiong (2015). No
evidence of hyperchaos (two positive Lyapunov exponents) was found. This system
is relatively stiff at large values of ζ since the argument of the hyperbolic tangent
function is large, necessitating an integrator with an adaptive step size.

In Fig. 7, the occurrence of endogenous fluctuations in every sentiment category is
highlighted, given the chosen parameter value (ζ = 150); the respective time series
are presented after a time interval for which the respective transients have vanished.
Alternate periods of low sentiment intensity and peaks of optimism and pessimism
are evident.

As emphasized in Section 3, the irregular cycles of animal spirits can be transposed
in a straightforward way to the economic aggregates, namely the entrepreneur’s
investment and profits and the economy’s output, which, under the influence of sen-
timents are given, respectively, by Eqs. 23, 24, and 25. Figure 8 shows long-term
trajectories for the variables of effective investment, profits, and output, with each
of these variables presented as a ratio with respect to productivity.10 The trajecto-
ries are drawn after selecting specific values for the relevant parameters. Namely,

10Note that productivity grows over time at a constant rate g − ρτ (productivity growth is not affected by
sentiment oscillations). Effective investment, profits and output, in turn, suffer the influence of sentiment
changes, and hence they will grow at a rate that fluctuates around the productivity growth rate (which is
also the growth rate of the optimal levels of investment, profits and output). Therefore, a straightforward
way of displaying graphically the oscillations underlying each of the variables is presenting them as ratios
with respect to productivity. In this way, the values of the variables will fluctuate around a constant level.
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a

b

c

Fig. 8 a Long-term investment-productivity ratio under sentiment waves. b Long-term profits-
productivity ratio under sentiment waves. c Long-term output-productivity ratio under sentiment waves
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in the example we consider K̂ = 1000, ρ = 0.048, τ = 1.25, g = 0.1 (as in
Section 3, which implies that κ = 400); in order to maintain ζ = 150, we also let
θ = 0.375. Furthermore, for production conditions, we assume α = 0.25, R = 0.1,
and L = 1. Finally, the parameter in the sentiment function (22) is taken as a = 10.11

For the selected values, the sentiment-free levels of investment, profits and output,
per productivity unit, are

I

A
= 0.0282; 	

A
= 0.0847; F

A
= 0.4515

and, by adding sentiments in the proposed form, these constant values give rise
to the trajectories exhibiting endogenous fluctuations in the figure. As discussed
above, note that investment and output will fluctuate about their sentiment-free levels,
and profits will remain below the optimal level, with periods of stronger sentiment
imbalances leading to lower profits.

Observe that in the case of full optimism (y + z = 1), Ĩ
A

= 0.2822 and F̃
A

=
0.8029, while in the case of full pessimism (v + w = 1), Ĩ

A
= 0.0028 and F̃

A
=

0.2539. The presented values are the virtual boundaries for the fluctuations displayed
in Fig. 8, panels a and b. Relative to profits, the highest potential value is the one

implied by y + z = v + w; if y + z = 1, then 	̃
A

= −0.0815, and if v + w = 1, then
0.0606. The extreme scenarios indicate that excessive optimism is, in this case, more
harmful than excessive pessimism, leading to an eventual result of negative profits.

Finally, observe that a change in the value of the parameter of the sentiment func-
tion, a, will not disturb the sentiment-free levels of investment, profits and output;
however, the change will have impact on the amplitude of the fluctuations; namely,
whenever a > 10, the cycles will be more pronounced, and the opposite when
a < 10, with relation to the benchmark scenario. Take, for instance, a = 12 and
a = 7. In the first case, if y + z = 1, then Ĩ

A
= 0.3386; and if v + w = 1, then

Ĩ
A

= 0.0023. For a = 7, if y + z = 1, then Ĩ
A

= 0.1975; and if v + w = 1, then
Ĩ
A

= 0.0040. It is notorious that fluctuations are more pronounced for larger values
of the parameter. A similar outcome would result from analyzing profits and output
oscillations. Hence one might interpret this parameter as a measure of the impact of
consumer sentiments on the intensity of business fluctuations.

5 Conclusion

Recent macroeconomic literature has revived sentiments as a driver of aggregate fluc-
tuations by suggesting that the economy is constantly suffering confidence shocks.
However, this literature is basically silent about the sources of such shocks. This

11Below, we consider alternate values for this parameter.
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paper devised a local interaction framework with the goal of explaining how sen-
timents spread and how this dissemination might lead to waves of optimism and
pessimism.

Agents in the economy were separated into five categories, and they interact
locally and change from one category to another. The specific formulation of the
interaction process leads to the possibility of limit cycles and aperiodic chaotic
cycles, suggesting that regular and irregular sentiment waves may be endogenously
triggered as a result of the way individual agents establish contact with one another.
The single condition that is necessary to ignite the process is that there must be at least
one exuberant individual in each of the sentiment states, optimism and pessimism.
Exuberance is the seed that triggers everlasting sentiment oscillations. Furthermore,
the requisites for persistent sentiment waves are far from being demanding. All
that is required is for the probability of transition across sentiment states and the
connectivity degree not be unreasonably low.

Although sentiments are modeled as a purely social contact process, two links
were established between the sentiment framework and economic decisions. First,
connectivity among agents emerges as a direct consequence of the need to enhance
productivity through the exchange of ideas and knowledge. As agents establish con-
tact, they will end up sharing sentiments as well, and thus the degree of connectivity
that is determined in the context of the optimization of time allocation between inter-
action and participation in the productive activity is the same degree of connectivity
that will determine the social interaction that drives potential sentiment changes. Sec-
ond, pure rationality is abandoned once we introduce the concepts of over-investment
and under-investment relative to a benchmark optimal investment level. When opti-
mism dominates, the investment will exceed optimal levels, and when pessimism
dominates, the investment will fall below optimal. In both cases, the net income gen-
erated by the assumed representative firm will be lower than the one obtained when
sentiments of optimism and pessimism are balanced.

Business cycles are illustrated in this setting when merging the framework
concerning investment decisions with the sentiment propagation apparatus, where
the latter involves nonlinear dynamics and thus allows for endogenous waves of
optimism and pessimism.
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Appendix

Proof of Proposition 1 Applying the equilibrium condition
.
y = .

v = .
z = .

w = 0 to
system (2) gives

⎧
⎪⎪⎨

⎪⎪⎩

[
1 − (y∗ + z∗ + v∗ + w∗)

]
y∗ = y∗(y∗ + z∗)

[
1 − (y∗ + z∗ + v∗ + w∗)

]
v∗ = v∗(v∗ + w∗)

y∗(y∗ + z∗) = z∗ [
1 − (y∗ + z∗ + v∗ + w∗)

]

v∗(v∗ + w∗) = w∗ [
1 − (y∗ + z∗ + v∗ + w∗)

]
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The solutions of the above system are the four equilibrium points and the equilibrium
line in the proposition.

Proof of Proposition 2 The Jacobian matrix for system (2) has the general form

J = ζ

⎡

⎢
⎢
⎣

1 − 4y∗ − 2z∗ − v∗ − w∗ −y∗
−v∗ 1 − y∗ − z∗ − 4v∗ − 2w∗

2y∗ + 2z∗ z∗
w∗ 2v∗ + 2w∗

−2y∗ −y∗
−v∗ −2v∗

−(1 − 2y∗ − 2z∗ − v∗ − w∗) z∗
w∗ −(1 − y∗ − z∗ − 2v∗ − 2w∗)

⎤

⎥
⎥
⎦

For each of the equilibria,

e1 : J = ζ

6

⎡

⎢
⎢
⎣

−2 −1 −2 −1
−1 −2 −1 −2
4 1 0 1
1 4 1 0

⎤

⎥
⎥
⎦

e2 : J = ζ

4

⎡

⎢
⎢
⎣

−2 −1 −2 −1
0 2 0 0
4 1 0 1
0 0 0 −2

⎤

⎥
⎥
⎦

e3 : J = ζ

4

⎡

⎢
⎢
⎣

2 0 0 0
−1 −2 −1 −2
0 0 −2 0
1 4 1 0

⎤

⎥
⎥
⎦

e4 : J = ζ

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦

e5 : J = ζ

⎡

⎢
⎢
⎣

−z∗ 0 0 0
0 −(1 − z∗) 0 0
2z∗ z∗ z∗ z∗

1 − z∗ 2(1 − z∗) 1 − z∗ 1 − z∗

⎤

⎥
⎥
⎦

From the Jacobian matrices, the respective eigenvalues are

e1 : λ1,2 =
(
−1 ± i

√
3
)

ζ
6 ; λ3,4 =

(
−1 ± i

√
11

)
ζ
6

e2, e3 : λ1,2 =
(
−1 ± i

√
7
)

ζ
4 ; λ3 = − ζ

2 ; λ4 = ζ
2

e4 : λ1,2 = −ζ ; λ3,4 = ζ

e5 : λ1 = −z∗ζ ; λ2 = −(1 − z∗)ζ ; λ3 = 0; λ4 = ζ

The signs of the eigenvalues show that the equilibrium points e2, e3, e4 and e5 are
all unstable since at least one of the eigenvalues has a non-negative sign. Point e1 is



756 O. Gomes, J.C. Sprott

locally stable because the respective eigenvalues are two pairs of complex conjugates
with negative real parts.

Proof of Proposition 3 Equilibrium condition
.
y = .

v = .
z = .

w = 0 is now applied to
system (5) with the result,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x∗y∗ = ζ
2

{
1 − tanh

[
ζx∗(y∗ − z∗)

]}
y∗(y∗ + z∗)

x∗v∗ = ζ
2

{
1 − tanh

[
ζx∗(v∗ − w∗)

]}
v∗(v∗ + w∗)

ζ
2

{
1 − tanh

[
ζx∗(y∗ − z∗)

]}
y∗(y∗ + z∗) = z∗x∗

ζ
2

{
1 − tanh

[
ζx∗(v∗ − w∗)

]}
v∗(v∗ + w∗) = w∗x∗

Given that tanh(0) = 0, the solution of the above system gives the set of equilibrium
points claimed in the proposition.

Proof of Proposition 4 The Jacobian matrix of system (5) is a modified version of
the one presented in the proof of Proposition 2 given by

Ĵ = ζ

⎡

⎢
⎢
⎢
⎢
⎣

1 − 3y∗ − 3
2z

∗ − v∗ − w∗ + χ(y,y)
2 y∗(y∗ + z∗)

−v∗ + χ(v,y)
2 v∗(v∗ + w∗)

y∗ + 3
2z

∗ − χ(y,y)
2 y∗(y∗ + z∗)

w∗ − χ(v,y)
2 v∗(v∗ + w∗)

−y∗ + χ(y,v)
2 y∗(y∗ + z∗)

1 − y∗ − z∗ − 3v∗ − 3
2w

∗ + χ(v,v)
2 v∗(v∗ + w∗)

z∗ − χ(y,v)
2 y∗(y∗ + z∗)

v∗ + 3
2w

∗ − χ(v,v)
2 v∗(v∗ + w∗)

− 3
2y

∗ + χ(y,z)
2 y∗(y∗ + z∗)

−v∗ + χ(v,z)
2 v∗(v∗ + w∗)

−
(
1 − 3

2y
∗ − 2z∗ − v∗ − w∗

)
− χ(y,z)

2 y∗(y∗ + z∗)
w∗ − χ(v,z)

2 v∗(v∗ + w∗)

−y∗ + χ(y,w)
2 y∗(y∗ + z∗)

− 3
2v

∗ + χ(v,w)
2 v∗(v∗ + w∗)

z∗ − χ(y,w)
2 y∗(y∗ + z∗)

−
(
1 − y∗ − z∗ − 3

2v
∗ − 2w∗

)
− χ(v,w)

2 v∗(v∗ + w∗)

⎤

⎥
⎥
⎥
⎥
⎦

with

χ(y, y) = ∂ tanh [ζx(y − z)]

∂y

∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

=
∂[ζx(y−z)]

∂y

cosh2 [ζx(y − z)]

∣
∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

= ζ(1 − 2y∗ − v∗ − w∗)
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χ(y, v) = ∂ tanh [ζx(y − z)]

∂v

∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

=
∂[ζx(y−z)]

∂v

cosh2 [ζx(y − z)]

∣
∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

= −ζ
(
y∗ − z∗)

χ(y, z) = ∂ tanh [ζx(y − z)]

∂z

∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

=
∂[ζx(y−z)]

∂z

cosh2 [ζx(y − z)]

∣
∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

= −ζ
(
1 − 2z∗ − v∗ − w∗)

χ(y, w) = ∂ tanh [ζx(y − z)]

∂w

∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

=
∂[ζx(y−z)]

∂w

cosh2 [ζx(y − z)]

∣
∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

= −ζ
(
y∗ − z∗)

χ(v, y) = ∂ tanh [ζx(v − w)]

∂y

∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

=
∂[ζx(v−w)]

∂y

cosh2 [ζx(v − w)]

∣
∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

= −ζ
(
v∗ − w∗)

χ(v, v) = ∂ tanh [ζx(v − w)]

∂v

∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

=
∂[ζx(v−w)]

∂v

cosh2 [ζx(v − w)]

∣
∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

= ζ
(
1 − y∗ − z∗ − 2v∗)

χ(v, z) = ∂ tanh [ζx(v − w)]

∂z

∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

=
∂[ζx(v−w)]

∂z

cosh2 [ζx(v − w)]

∣
∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

= −ζ
(
v∗ − w∗)

χ(v, w) = ∂ tanh [ζx(v − w)]

∂w

∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

=
∂[ζx(v−w)]

∂w

cosh2 [ζx(v − w)]

∣
∣
∣
∣
∣
(y∗,z∗,v∗,w∗)

= −ζ
(
1 − y∗ − z∗ − 2w∗)

For e′
1, observe that χ(y, y) = χ(v, v) = ζ

5 , χ(y, v) = χ(y, w) = χ(v, y) =
χ(v, z) = 0, and χ(y, z) = χ(v, w) = − ζ

5 . Given the values of the derivatives of
the hyperbolic tangent functions evaluated in the equilibrium, it is straightforward to
compute the respective Jacobian matrix,

e′
1 : Ĵ = ζ

10

⎡

⎢
⎢
⎣

−3 + 2
25ζ −2 −3 − 2

25ζ −2
−2 −3 + 2

25ζ −2 −3 − 2
25ζ

5 − 2
25ζ 2 1 + 2

25ζ 2
2 5 − 2

25ζ 2 1 + 2
25ζ

⎤

⎥
⎥
⎦
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The eigenvalues of Ĵ for e′
1 are

λ1,2 =
⎡

⎣−
(

1 − 2

25
ζ

)

±
√

(

1 − 2

25
ζ

)2

− 4

⎤

⎦
ζ

10
;

λ3,4 =
⎡

⎣−
(

1 − 2

25
ζ

)

±
√

(

1 − 2

25
ζ

)2

− 20

⎤

⎦
ζ

10

Relative to the above eigenvalues, four different cases are identifiable (excluding the

border cases that imply the existence of bifurcation points): (i) if ζ > 25
2

(
1 + √

20
)

then the four eigenvalues have positive real values; (ii) if 75
2 < ζ < 25

2

(
1 + √

20
)

then two of the eigenvalues are positive real roots, while the other two are a pair of
complex conjugate eigenvalues with a positive real part; (iii) if 25

2 < ζ < 75
2 , then

the eigenvalues are two pairs of complex conjugates with positive real parts; (iv) if
ζ < 25

2 then the eigenvalues are two pairs of complex conjugates with negative real
parts. Only in the last case will stability hold, and thus the condition for stability is
the one claimed in the proposition.

Next, we analyze the stability of the other equilibrium points and confirm that they
are also unstable. Observe that:

• For e′
2 and e′

3 : χ(y, y) = χ(v, v) = ζ
3 , χ(y, v) = χ(y, w) = χ(v, y) =

χ(v, z) = 0, χ(y, z) = χ(v, w) = − ζ
3 ;

• For e4 : χ(y, y) = χ(v, v) = ζ , χ(y, v) = χ(y, w) = χ(v, y) = χ(v, z) = 0,
χ(y, z) = χ(v, w) = −ζ ;

• For e5 : χ(y, y) = χ(y, z) = z∗ζ , χ(y, v) = χ(y, w) = χ(v, y) = χ(v, z) =
0, χ(v, v) = χ(v, w) = (1 − z∗)ζ .

With these derivatives, matrix Ĵ in each case will be

e′
2 : Ĵ = ζ

6

⎡

⎢
⎢
⎣

−3 + 2
9ζ −2 −3 − 2

9ζ −2
0 2 0 0

5 − 2
9ζ 2 1 + 2

9ζ 2
0 0 0 −2

⎤

⎥
⎥
⎦

e′
3 : Ĵ = ζ

6

⎡

⎢
⎢
⎣

2 0 0 0
−2 −3 + 2

9ζ −2 −3 − 2
9ζ

0 0 −2 0
2 5 − 2

9ζ 2 1 + 2
9ζ

⎤

⎥
⎥
⎦

e4 : Ĵ = ζ

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦

e5 : Ĵ = ζ

⎡

⎢
⎢
⎣

− 1
2z

∗ 0 0 0
0 − 1

2 (1 − z∗) 0 0
3
2z

∗ z∗ z∗ z∗
1 − z∗ 3

2 (1 − z∗) 1 − z∗ 1 − z∗

⎤

⎥
⎥
⎦
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As in the original model, the eigenvalues of the pair of equilibrium points e′
2 and

e′
3 are identical and are given in this case by

e′
2, e

′
3 : λ1,2 =

⎡

⎣−
(

1 − 2

9
ζ

)

±
√

(

1 − 2

9
ζ

)2

− 12

⎤

⎦
ζ

6
; λ3 = −ζ

3
; λ4 = ζ

3

At least one of the eigenvalues of Ĵ for e′
2 and e′

3 has a positive sign, regardless of the
value of ζ , and therefore the instability of the respective equilibria is confirmed. For
e4, the Jacobian matrices J and Ĵ are identical. Thus the corresponding eigenvalues
are also the same, namely λ1,2 = −ζ ; λ3,4 = ζ , and local stability is absent in
this case as well. Finally, note that the eigenvalues for e5 are λ1 = − 1

2z
∗ζ ; λ2 =

− 1
2 (1 − z∗)ζ ; λ3 = 0; λ4 = ζ ; for the equilibrium line, one of the eigenvalues is

positive and one other is zero, which again implies instability.
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