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Abstract Using asystematic computer search, twelve
simple three-dimensional chaotic flows were found that
have surfaces of equilibria. Although there are some
four-dimensional systems with surfaces of equilibria,
there is no such system in three-dimensional state space
reported in the literature. Such systems are not difficult
to design, but they can have some practical benefits.
Study of chaotic flows with surfaces of equilibria pro-
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vides a good reference for building systems with attrac-
tors that are protected from external influences, which
can increase the safety of engineering.
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1 Introduction

Itis widely recognized that mathematically simple sys-
tems of nonlinear differential equations can exhibit
chaos. With the advent of fast computers, it is now
possible to explore the entire parameter space of these
systems with the goal of finding parameters that result
in some desired characteristics of the system [1].
Recent research has involved categorizing periodic
and chaotic attractors as either self-excited or hidden
[2-5]. A self-excited attractor has a basin of attraction
that is associated with an unstable equilibrium, whereas
a hidden attractor has a basin of attraction that does
not intersect with small neighborhoods of any equilib-
rium points. The classical attractors of Lorenz, Rossler,
Chua, Chen, Sprott systems (cases B to S) and other
widely known attractors are those excited from unsta-
ble equilibria. From a computational point of view,
this allows one to use a numerical method in which
a trajectory started from a point on the unstable man-
ifold in the neighborhood of an unstable equilibrium,
reaches an attractor and identifies it [2]. Hidden attrac-
tors cannot be found by this method and are important
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Table 1 Twelve simple chaotic flows with surface equilibrium

Case  Surface type Equations (a,b,c)  Equilibria LEs Dgy (x05 Y0» 20)

ES; One plane XxX=fxy a=154 (0,y,2) 0 2.0065 6
y=fxz —1.0869
2:f><(—x+ay2—xz) -1
f=x

ES, One plane Xx=fxy a=1 ©,y,2) 0.0644  2.0778 0.15
y=fX(—x+az) b=3 0 0
t=f x (by* — xz) —0.8279 0.8
f=x

ES;  One plane ¥ =fx (y*+axy) a=2 ©,y,2) 0.0661  2.0397 0.87
y=/fx(=2) b=1 (\/2 —+ab, 0) 0 0.4
7= f x (b+xy) (—\/g,\/ﬁ,o) —1.664 0
f=x 4

ES;  One plane i=fx(—y) a=2 (x,y,0) 0.0560  2.0516 0
y=fxx+2) b=035 0 0.46
=[x (ay*+xz—b) —1.0855 0.7
f=z

ESs Two planes X = f x(—az) a=04 ©,y,2) 0.1242  2.0677 1
y=fx(b+z2-xy) b=1 (x,0,z) 0 1.44
i=fx (x2—xy) (vVb.v.0) —1.8356 0
f=xy (_\/B’ —vb, 0)

ES¢  Three planes X = fx(y+ayz) a=2 ©,y,2) 0.0294  2.0725 1
y=fx(bz+y*+cz?) b=8 (x,0,2) 0 -13
z=fx (x2 — yz) c=17 (x,y,0) —0.4051 -1
f=xyz (£1.5, 1.5, -0.5)

(£1.5,—1.5, -0.5)

ES7  Sphere i=fx(ay) a=04 x4y +72=1 0.0113  2.0119 0
y=fx (xz) b=6 (0,0,0) 0 0.1
t=f x(—z—x*—byz) —0.9501 0
F=1—x2—y2—272

ESs  Sphere X =f x (az+y?) a=1 24y 4+2=1 0.0323  2.0338 0.24
y=fx(-y+0bx?) b=5 (0,0,0) 0 0.2
2= f x(=xy) —0.9552 0
F=1—x2—y2—72

ESy  Circular cylinder % = f x (y* — axy) a=5 2 4y2=1 0.0388  2.0321 0.06
y=fx(xz) b= (—0.0756, —0.3781, 0) 0 0
t=fx(1-by? (+0.0756, +0.3781,0)  —1.2078 1

f=1-x—y?
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Table 1 continued

Case Surface type Equations (a,b,c) Equilibria LEs Dxy (x0, Y0, 20)

ESj9  Hyperbolic cylinder i = f x (a — z2) a=0.1 y:—x2=1 0.0420 2.1883 0
y=fx(x2) b=1 0,0,-0.3162) 0 —0.08
i=f x (y+bxz) 0,0, +0.3162)  —0.2230 0
f=1+x2—y?

ESi;;  Paraboloid = fx(z) 24y =—z 0.0283 2.0458  0.46
y=fx(x—axz) b=06 (0, y,0) 0 0
= fx(x —b?) (0.6,0, 1) —0.6171 0.8
f=z+x7+)?

ES;»  Saddle i=fx 2 a=0.1 y:—x2=g¢ 0.0068 20135 1
y=f x (—ax) b=6 (0,0, 0) 0 0
i=fx(—z+by*+x2) —0.4998

f=z+x2—y2

in engineering applications because they allow unex-
pected and potentially disastrous responses to pertur-
bations in a structure such as a bridge or an airplane
wing [6-10].

The chaotic attractors in dynamical systems with-
out any equilibrium points [11-19], with only sta-
ble equilibria [20-23], or with curves of equilibria
[24-28] are hidden attractors. That is the reason such
systems are rarely found, and only recently such exam-
ples have been reported in the literature [29-37]. There
is a similar definition for hidden attractors in chaotic
maps [38,39]. Even more specific systems such as
chaotic systems with multi-scroll attractors [40,41] can
have hidden attractors [15].

In this paper, we introduce a new category of chaotic
systems with hidden attractors: systems with surfaces
of equilibria. Although in such systems the basin of
attraction may intersect the equilibrium surface in some
sections, there are usually uncountably many points on
the surface that lie outside the basin of attraction of the
chaotic attractor, and thus, it is impossible to identify
the chaotic attractor for sure by choosing an arbitrary
initial condition in the vicinity of the unstable equilib-
ria. In other words, from a computational point of view
these attractors are hidden. On the other hand, to the
best of our knowledge, there are no 3D chaotic systems
with surfaces of equilibria in the literature (there are
papers on 4D chaotic systems with a plane of equilibria
[42]). As described in the next sections, such systems
are not difficult to construct, but they can have some
practical benefits.

2 Simple chaotic flows with surfaces of equilibria

In the search for chaotic flows with surfaces of equilib-
ria, we followed a simple procedure. Consider the gen-
eral parametric form of quadratic three-dimensional
flows:

x=01(x,y,2)

y=02(x,y,2) (1)
z2=03(x,y,2)

in which

Q1 = arx + ayy+asz+asx® + asy? + agz* + arxy
+agxz +agyz + aip

0> = anx +any + aiz + aux’ + aisy* + aiez’
+ayzxy + aijgxz + ajgyz + ao

03 = axx + any + anz + aux® + asy® + axz’
+azy;xy + axgxz + az9yz + azp (2)

In order to have a surface on which all the points are an

equilibrium, there should be a multiplying factor such

as f (x, y, z) in all the equations, so that an equilibrium

surface occurs whenever f (x,y,z) = 0. Thus, the

equations to be examined are

x:f(xvy9Z)Ql
y=f(xy2 02 3
2= f(x,y,2) 03

The simplest candidates for the surface f (x, y, z) are
simple planes (one plane such as f = x, two orthog-
onal planes such as f = xy and three orthogonal
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Fig. 1 State space plots of the cases in Table 1 projected onto the xy plane
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Fig. 2 Largest Lyapunov
exponent and bifurcation L
diagram of case ES;
showing a period-doubling
route to chaos

o
=)
5]

Largest Lyapunov exponent

-0.01

Xmin

planes such as f = xyz). Also standard quadrics
(ellipsoids, hyperboloids and paraboloids) are proper
candidates.

An exhaustive computer search was done, seeking
elegant [1] dissipative cases for which the largest Lya-
punov exponent is greater than 0.001. Cases ES1-ES;»
in Table 1 are twelve of the simplest cases found in this
way. All these cases are dissipative with attractors pro-
jected onto the xy plane as shown in Fig. 1. The value of
parameters, Lyapunov exponent spectra and Kaplan—
Yorke dimensions are shown in Table 1 along with
initial conditions that are close to the attractor. As is
common for strange attractors from three-dimensional
autonomous systems, the attractor dimension is only
slightly greater than 2.0, the largest of which is ESjg
with Dxy = 2.1883, although no effort was made
to tune the parameters for maximum chaos. All the
cases appear to approach chaos through a succession
of period-doubling limit cycles, a typical example of
which (ES1) is shown in Fig. 2. with increasing a. As

a increases further, the strange attractor is destroyed in
a boundary crisis.

Figure 3 shows a cross section in the xz plane at
y = 0 of the basin of attraction for the two attractors
for the typical case ESj. The basin of attraction of the
chaotic attractor intersects the plane equilibrium almost
nowhere except in a tiny area near x = 0, z = 1. Thus,
the strange attractor is hidden in the sense that there are
uncountable points on the equilibrium plane of which a
tiny fraction intersect the basin of the chaotic attractor.
In other words, for computational purposes, the attrac-
tor is hidden from the equilibria to some extent, and
knowledge about the equilibrium plane will not guar-
antee that its location can be found.

As in the cases with a line of equilibrium points,
the strange attractor can reside very close to the sur-
face of equilibria. However, there is a fundamental dif-
ference between the two cases. In a three-dimensional
system, the attractor can surround the equilibrium line,
and often does, whereas a surface equilibrium divides
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Fig. 3 Cross section of the
basins of attraction of the
two attractors in the xz plane
at y = 0 for case ES;. Initial
conditions in the white
region lead to unbounded
orbits, those in the light blue
region lead to the strange
attractor whose cross
section is in black, and those
in the green region lead to
the plane equilibrium

the space into two regions that the attractor cannot span
because the normal component of the flow is zero at the
surface. Our experience shows that the surface equilib-
rium can be and often is very close to the strange attrac-
tor, and that the strange attractor is little altered if the
surface is removed by eliminating the factor f (x, y, z)
in the equations. Furthermore, it is possible to have sep-
arate strange attractors in the two regions (or more if
there are multiple surfaces), although we do not show
any such examples here.

There can be some practical uses for such systems.
A surface of equilibrium (such as a sphere) can act like
a protector shield for the strange attractor, causing no
entrance and exit. No perturbation smaller than that
radius of the sphere can cause unbounded solutions.
With such closed surfaces, the attractor will be hidden
in an egg, which makes finding it more difficult. This
is important in secure communication uses of chaotic
systems. In the next section, we investigate the feasi-
bility of constructing a real electrical circuit based on
the proposed systems.

@ Springer
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3 Circuit implementation

Errors in numerical simulations and the long simu-
lation time required to investigate the dynamics of
chaotic systems have encouraged their physical imple-
mentation as an alternate means of study [43,44].
Moreover, the hardware implementation of theoreti-
cal chaotic models is important in engineering applica-
tions [43,45]. Until now, realizations using commercial
amplifiers [1] and integrated circuits have been intro-
duced [46].

In addition, the designed circuit is an effective way
for discovering new dynamics of the theoretical model.
An electronic circuit that emulates ES7 is presented in
this section. The state variables x, y and z of ES7 are
linearly scaled by changing the system ES7 to

X = f x (aY)

Y =fx (%) )
Z:fx(—Z—)f—g—b%)
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Fig. 4 Schematic of the designed circuit where F' is the signal at the output of the adder Us
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Fig. 5 Experimental realization of the system with a surface of
equilibria (3)

f=rte o = s — (5)

where X = 10x, Y = 10y, Z = 10z.

The schematic of the circuit and its experimental
realization are shown in Figs. 4 and 5, respectively. This
circuit has three integrators (U;—U3) and two adders
(Uy4, Us), which are implemented with the operational
amplifiers TLO84 and LF411, as well as eight signal
multipliers (Ug—U;3) by using the analog multiplier
AD633. A series of capacitors for decoupling the power
supplies for each of the TL084 and AD633 has been
used.

By applying Kirchhoff’s circuit laws, the circuital
equations of the designed circuit are:

= g [P (e 36)] ©

5 _ 1 R __10R* Xx*  10R® YZ
Z=xc [FX( RI0VZ T BRITVE 10~ RaRyI08VE 1

F=_1X [—R‘IOVV, _x2 - Y2—ZZ:| 7)
Ri10V

where the variables X, Y and Z correspond to the
voltages at the outputs of the integrators Uy, Uy and
Us, while F is the signal at the output of the adder
Us. By normalizing the differential equations of sys-
tem (6) for t = t/RC, this system is equivalent
to ES7, with @ = & b = ok, and 1> =
—V,. The circuit components have been chosen as:
R = 10k, R; = 100k, R, = 1kQ,R, =
25kQ2, Ry, = 1.666kQ2,C = 10nF and V, =
—4Vpc, while the power supplies of all active devices
are £15Vpc. As a result, the parameters of system (6)
are: a = 0.4,b = 6 and r = 2. The chaotic attractors
captured from the oscilloscope are shown in Fig. 6. The
circuit emulates well the proposed system.

4 Conclusion

In conclusion, it is apparent that simple chaotic systems
with surfaces of equilibria that seemed to be rare may
in fact be rather common. These systems belong to the
newly introduced class of chaotic systems with hidden
attractors and have not been previously described. Fur-
thermore, the study of chaotic flows with surfaces of
equilibria provides a good reference for building sys-
tems with attractors that are protected from external

Fig. 6 Experimental chaotic attractors captured from the oscilloscopeina X — Y,b X — Z and ¢ Y — Z phase planes (X: 1 V/div, Y:

2 V/div)
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influences, which can increase the safety of engineer-
ing.
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