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In literature many chaotic systems, based on third-order jerk equations with different nonlinear
functions, are available. A jerk system is taken to be a part of dynamical systems that can exhibit
regular and chaotic behavior. By extension, a hyperjerk system can be described as a dynamical
system with nth-order ordinary differential equations where n is 4 or up to. Hyperjerk systems
have been investigated in literature in the last decade. This paper consists of numerical stud-
ies and experimental realization on FPAA for fourth-order hyperjerk system with exponential
nonlinear function.
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1. Introduction

Chaos and chaos-based systems have been attrac-
tive in the literature. Chaos has occurred in sys-
tems which have at least third-order dimensional
autonomous ordinary differential equations [Chua
et al., 1993; Kennedy, 1992; Lakshmanan & Murali,
1996; Lorenz, 1963; Rossler, 1976; Sprott, 2000a,
2000b]. Among the chaotic systems, simple chaotic
systems, proposed by Sprott, have attracted consid-
erable interest in the literature due to simplicities
and rich contents [Sprott, 2000a, 2000b, 2010, 2011].
Simple chaotic systems based on “jerk systems” can
be described as;

d3x

dt3
= J

(
d2x

dt2
,
dx

dt
, x

)
(1)

where J is called as “jerk” which is the derivation
of a single scalar variable x. In a Newtonian system,
dx
dt ,

d2x
dt2

and d3x
dt3

are the displacements of velocity,

acceleration and jerk, respectively. If a system is the
fourth-order derivative system of the form d4x

dt4
=

J(d3x
dt3 , d2x

dt2 , dx
dt , x), it is called “hyperjerk system”

or “snap system” [Chlouverakis & Sprott, 2006].
Whereas d4x

dt4
is described as “jounce”, “sprite” or

“surge” but it is generally labeled as “snap” in lit-
erature [Sprott, 2010]. There are several studies on
hyperjerk systems in the literature [Chlouverakis &
Sprott, 2006; Linz, 2008; Munmuangsaen & Srisuch-
inwong, 2011; Munmuangsaen et al., 2011; Sprott,
2010; Vaidyanathan et al., 2015]. Those works deal
with numerical analyses of hyperjerk systems.

Recently, the programmable feature of analog
array components-based new circuit techniques pro-
vides flexible design opportunity for chaos genera-
tors. FPAA (Field Programmable Analog Array) is
a suitable programmable device to realize flexible
and useful chaotic generators which are based on
mathematical models.
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In this paper, we have proposed a fourth-order
hyperjerk system by using exponential nonlinear
function with numerical analysis results and have
presented the experimental realization of this
hyperjerk system on FPAA. The paper is organized
as follows: In Sec. 2 the proposed hyperjerk system
is analyzed using the numerical method. FPAA-
based experimental realization of the hyperjerk sys-
tem is given in Sec. 3. Finally some concluding
remarks will be discussed in Sec. 4.

2. Analysis of Proposed Hyperjerk
System

The hyperjerk system which is the focus of this
paper is written below in generalized form.

d4x

dt4
+ a

d3x

dt3
+ b

dx

dt
+ cx = f

(
d2x

dt2

)
(2)

while b and c are the system parameters, a is the
bifurcation parameter. f(d2x

dt2
) is the nonlinear func-

tion which plays an important role for chaos.
The hyperjerk system given in Eq. (2) is rear-

ranged using phase variables. ẋ1, ẋ2, ẋ3 and ẋ4 are
used instead of dx

dt ,
d2x
dt2

, d3x
dt3

and d4x
dt4

respectively.
The form is given below.

ẋ =




0 1 0 0

0 0 1 0

0 0 0 1

−c −b 0 −a







x1

x2

x3

x4


 +




0

0

0

f(x3)


 (3)

where f(x3) is the nonlinear function in Eq. (3) and
is given below.

f(x3) = −exp(x3) (4)

In Eq. (3), the parameters a, b and c are equal
to 1, 3 and 1, respectively.

The equilibrium points of the proposed hyper-
jerk system in Eqs. (3) and (4) are figured out as

f1(x1, x2, x3, x4) = x2 = 0

f2(x1, x2, x3, x4) = x3 = 0

f3(x1, x2, x3, x4) = x4 = 0

f4(x1, x2, x3, x4) = −cx1 − bx2 − exp(x3) − ax4

= 0
(5)

For a = 1, b = 3 and c = 1, the equilibrium
points of this system are characterized by,

−x1 − 1 = 0; x2 = 0; x3 = 0; x4 = 0 (6)

In this case the corresponding equilibrium
points are P (−1, 0, 0, 0). The Jacobian matrix of the
system is given by

J =




0 1 0 0

0 0 1 0

0 0 0 1

−1 −3 −exp(x3) −1


 (7)

It is known that |λ·I−J | = 0, so the eigenvalues
of the Jacobian matrix J are calculated as λ1 =
−1.4277, λ2 = −0.368, λ3,4 = 0.3978±1.3211i. Here
λ1 and λ2 are negative real numbers and λ3 and λ4

are complex conjugate eigenvalues with positive real
parts. Therefore, the proposed hyperjerk system is
unstable and the equilibrium P is a saddle-focus.

For the hyperjerk system, the initial condi-
tions are not critical and need not be carefully cho-
sen. The system can produce chaotic behaviors for
most initial conditions which lie within the basin of
attraction. For the presented system those are taken
as (−7.4, 0, 0, 0.1) in this paper. In this case the Lya-
punov exponents with the initial conditions are cal-
culated as (0.157, 0,−0.245,−0.913). The Lyapunov
exponents of the hyperjerk system were calculated
with 106 iterations using a fourth-order Runge–
Kutta algorithm which is described by Wolf et al.
[1985] with a step size of ∆t = 0.01. Also, the
Kaplan–Yorke dimension of the hyperjerk system
is obtained as

DKY = 2 +
L1 + L2

|L3| = 2.6408 (8)

For the proposed system, the chaotic dynam-
ics and the chaotic attractor illustration, obtained
from simulations are shown in Figs. 1(a) and 1(b).
To verify the appearance of chaotic behavior of the
system, we additionally show the bifurcation dia-
gram of the system in Fig. 1(c). In the bifurcation
diagram x1 versus a, which is the control parame-
ter of the system that is plotted, a period-doubling
route to chaos is clearly seen in the diagram when
the parameter a varies between 0.95 and 1.7. The
obtained diagram of the Lyapunov exponents is
given in Fig. 1(d) while the parameter a varies in
the same region.
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(a) (b)

(c) (d)

Fig. 1. Numerical analysis results of the hyperjerk system: (a) The chaotic dynamics, (b) the chaotic attractor in (x1–x4)
plane, (c) bifurcation diagram and (d) the diagram of the Lyapunov exponents.

3. Experimental Realization of
Proposed Hyperjerk System
on FPAA

FPAA (Field Programmable Analog Array) is a
programmable IC to implement a rich variety of
systems including analog functions via dynamic
reconfiguration. This means that a new design or
a modification on the available design can be eas-
ily downloaded to an FPAA. In addition, FPAAs
provide more efficient and economical solutions in a
much smaller footprint and with increased reliabil-
ity to design analog dynamical systems [Anadigm,
2016; Callegari et al., 2005; Caponetto et al., 2005;
Kilic & Dalkiran, 2009, 2010].

The flow diagram of a typical FPAA implemen-
tation is shown in Fig. 2. It is clearly seen in the
diagram that the mathematical definitions of a sys-
tem are tested with numerical simulations before

implementing them on an FPAA. Due to the sim-
ulation results, rescaling process may be required
when any mismatches between the system param-
eters and FPAA characteristics occur. After com-
pleting the rescaling process the system can be
modeled and downloaded to the FPAA development
board using FPAA interface software. The exper-
imental results, obtained from programmed hard-
ware, are compared with simulation results. If there
is any error between hardware and software, it is
eliminated by modifying the system model using
FPAA interface software. The implementation is
completed when all the errors are eliminated.

Before programming the FPAA board to model
the hyperjerk system, it is tested in SIMULINK.
Due to the fact that SIMULINK is structurally sim-
ilar to FPAA interface software, numerical simu-
lations in FPAA flow diagram are realized using
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Fig. 2. FPAA-based design and implementation procedure.

SIMULINK [1999]. In this study we used the
AN231K04 type FPAA development board pro-
duced by Anadigm. The FPAA board has ±1.5 V
saturation level. Due to the fact that the voltage
ranges of x1, x2, x3 and x4 state variables of the pro-
posed system exceed saturation level, the equations
of the hyperjerk system are rescaled. The following
rescaling factors were chosen:

X1 =
x1

kx1

; X2 =
x2

kx2

; X3 =
x3

kx3

; X4 =
x4

kx4

;

kx1 = 16; kx2 = 7; kx3 = 6; kx4 = 15.

After rescaling process the system described by
Eqs. (3) and (4) becomes as follows.

Ẋ1 =
kx2

kx1

X2

Ẋ2 =
kx3

kx2

X3

Ẋ3 =
kx4

kx3

X4

Ẋ4 = −aX4 +
1

kx4

f(kx3X3)

− b
kx2

kx4

X2 − c
kx1

kx4

X1

f(kx3X3) = −exp(kx3X3)

(9)

The FPAA implementation scheme of the
rescaled hyperjerk system, modeled in FPAA soft-
ware, is depicted in Fig. 3. The state-variables of
the system namely X1, X2, X3 and X4 are obtained
from the outputs of SUMFILTER blocks as shown
in the FPAA implementation scheme. A SUMFIL-
TER block consists of a summing stage with up to
three inputs and a single pole low pass filter. Cir-
cuit gains are implemented by the gains of SUMFIL-
TER and SUMDIFF blocks. A SUMDIFF block is a
summing stage with up to four inputs without filter-
ing. A user-defined TRANSFER FUNCTION block
and GAINHALF block are used to implement the
nonlinear function f(kx3X3). This transfer function

Fig. 3. FPAA implementation schemes of proposed hyper-
jerk system.
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module produces an output voltage related with
256 quantization steps according to a lookup table,
defined by the user. GAINHALF block provides a
gain which can be adjusted between 0.01 and 100
and is run inverting and noninverting the mode.
In this study this block is used in inverting the

(a)

(b)

(c)

Fig. 4. Experimental results obtained from FPAA-based
implementation of the hyperjerk system: (a) and (b) Time
responses of X1(t) and X4(t) chaotic dynamics and (c)
chaotic attractor projection in (X1–X4) plane.

mode. The chaotic dynamics and the chaotic attrac-
tor illustration produced by experimental realiza-
tion of the system are shown in Fig. 4.

4. Conclusion

In conclusion, a simple hyperjerk system which
is exactly simple and elegant is presented with
numerical simulations and experimental results.
Some fundamental properties of the hyperjerk sys-
tem have been investigated with respect to chaotic
dynamics, chaotic attractor, bifurcation diagram,
the Lyapunov exponents, the eigenvalues of the
Jacobian matrix while studying numerical simula-
tions. Later experimental studies are realized using
an FPAA application board. It is clearly seen that
experimental results obtained from FPAA board
correspond to numerical simulation results. The
proposed FPAA-based system design can be effec-
tively used as an easily programmable and recon-
figurable chaos generator in practical applications.
This study can be accepted as an alternative inves-
tigation of fourth-order hyperjerk systems. Further-
more chaotic behaviors, generated by the hyperjerk
system, can be used in chaos-based applications and
this system can be electronically implemented.
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