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Multistability exists in various regimes of dynamical systems and in different combinations,
among which there is a special one generated by self-reproduction. In this paper, we describe
a method for constructing self-reproducing systems from a unique class of variable-boostable
systems whose coexisting attractors reside in the phase space along a specific coordinate axis
and any of which can be selected by choosing an initial condition in its corresponding basin of
attraction.
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1. Introduction

Multistability has attracted considerable interest
in neurobiological and other dynamical systems.
Multistability basically means a dynamical system
has multiple solutions under different initial condi-
tions, which occurs whether in symmetric systems
or asymmetric systems. Symmetric systems corre-
spond to invariance of the equations with respect
to changing the sign of some of the variables. The
change of any sign of the variables will break the
polarity balance of an asymmetric system. Symmet-
ric systems generally have a symmetric pair of coex-
isting attractors, including equilibrium points, limit
cycles, and strange attractors [Bao et al., 2016a;
Lai & Chen, 2016; Li & Sprott, 2013, 2014a, 2014b,
2014c; Li et al., 2015a; Li et al., 2015b; Sprott,
2014]. Some asymmetric systems also give coex-
isting asymmetric attractors [Barrio et al., 2009;
Jafari & Sprott, 2013; Sprott et al., 2013]. Even
in a simple dynamical system, a point attractor
can coexist with a limit cycle and strange attrac-
tor [Sprott et al., 2013]. For a system with a line of
equilibrium points [Jafari & Sprott, 2013; Li et al.,
2015a; Li et al., 2015b], different initial conditions
can cause the system to be attracted to different
parts of the line of equilibria. Furthermore, multi-
stability in dynamical systems can exist in such a
way that an asymmetric system can have coexist-
ing symmetric attractors and asymmetric ones for
different parameter values [Li et al., 2016b, 2017].

Hens et al. [2012] suggested a new method
to achieve extreme multistability in a system of
two coupled Rössler oscillators, and later Patel
et al. [2014] showed experimental observations of
that multistability in an electronic system consist-
ing of two coupled Rössler oscillators. This kind of
extreme multistability is achieved by adding extra-
neous variables and using their initial conditions in
place of the existing parameters or as additional
parameters [Sprott & Li, 2014]. In addition to the
extreme multistability mentioned in [Bao et al.,
2017; Bao et al., 2016b; Hens et al., 2012; Patel
et al., 2014; Yuan et al., 2016], Chawanya stud-
ied the asymptotic behavior of game dynamic sys-
tems with five species and an interaction matrix
and found coexistence of infinitely many attrac-
tors [Chawanya, 1996, 1997]. This kind of extreme
or infinite multistability occurs in a system whose
dimension is greater than three. Here we show
that a simple three-dimensional system can pro-
vide infinitely many attractors by reproducing

themselves along a particular dimension. We sug-
gest an approach for breeding countless coexisting
attractors based on a special regime of a chaotic
system. Interestingly, all these coexisting attrac-
tors in the self-reproducing system share the same
Lyapunov exponents under different initial condi-
tions, some of which may be countless symmetric
attractor pairs. In Sec. 2, a new regime of variable-
boostable systems is defined, after which a new
class of self-reproducing system is constructed. In
Sec. 3, the infinite multistability is obtained and
shown in two regimes of self-reproducing systems.
Conclusions and discussions are given in the last
section.

2. From Offset Boosting to
Self-Reproducing

2.1. Variable-boostable systems

Since the time derivative of a constant is zero, a
differential equation can preserve its behavior if an
extra constant term is added to one of the vari-
ables. For example, when x changes to x+ c (where
c is a constant), the equation ẋ = f(y, z) remains
true without any revision. Furthermore, if the other
dimensions of the differential system include only a
single term proportional to x, the introduction of
a constant in that dimension will produce an off-
set of the variable x without otherwise altering the
dynamics.

Definition 2.1. Suppose there is a differential
dynamical system, Ẋ = F (X), (X = (x1, x2,
x3, . . . , xi, . . . , xn), (i ∈ N) with xi = ui + c sub-
ject to the same governing equation except intro-
ducing a single constant in one of the dimen-
sional equations, i.e. Ẏ = F (Y, c), (Y = (x1, x2,
x3, . . . , ui, . . . , un) (i ∈ N), then the system is
variable-boostable since it has the freedom for offset
boosting the variable xi by choosing an appropriate
value of c.

Variable-boostable systems [Li & Sprott, 2016]
have the freedom of offset boosting any of the
variables. Consequently, they have the same solu-
tion except for an offset of that variable while
the other variables remain the same in the same
solution space. Some elementary cases conforming
to this topological structure have been found in
[Li & Sprott, 2016; Sprott, 1994]. A typical example
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is the system VB14 [Li & Sprott, 2016],



ẋ = 1 − ayz

ẏ = z2 − z

ż = x − bz.

(1)

The variable x appears only once as a linear
term in the ż equation, and hence it is a candidate
for boosting. When a = 3.55, b = 0.5 with initial
conditions (1, 0, 1), the system has a chaotic attrac-
tor with Lyapunov exponents (0.1362, 0,−0.6362)
and Kaplan–Yorke dimension 2.2141. The variable
x is a bipolar signal since it oscillates between neg-
ative and positive in (−3, 3).

To show that the variable x can be offset-
boosted, suppose x → x + c, y → y, z → z (c is
a constant). The new system just has an additional
constant term in the z dimension, ẋ = 1 − ayz,
ẏ = z2 − z, ż = x + c − bz. The constant c is an
offset boosting controller for the variable x; specifi-
cally the added constant can easily change the sig-
nal x between unipolar and bipolar as desired for
engineering applications since in many cases a spe-
cific physical circuit can only accept a unipolar sig-
nal or a bipolar signal. The broadband property of
chaotic signal makes it difficult to make a polarity
converter with broadband; however the offset con-
troller here can realize this transformation directly.
When c = −3, the signal x is up-boosted by 3,
and consequently x becomes unipolar (always posi-
tive). Note that the initial condition in the boosting
variable may need to be correspondingly adjusted
to remain in the basin of attraction. The case in
Eq. (1) was chosen because it has a global basin of
attraction, and thus it can be arbitrarily boosted
without concern for the initial conditions. Some
other variable-boostable systems can be found in
the Sprott chaotic family, such as systems P, J, L,
M, N, and S [Li & Sprott, 2016; Sprott, 1994].

Another case with such a property is system
HJ3 [Li et al., 2016b],




ẋ = |y| − 1

ẏ = z

ż = x − by − az.

(2)

When a = 0.6, b = 1 and initial conditions
(2, 0,−1), this system has a chaotic attractor
with Lyapunov exponents (0.0363, 0,−0.6363) and
Kaplan–Yorke dimension 2.0570. System (2) also
has the freedom for offset boosting [Li et al., 2016b,

2017; Li & Sprott, 2016] in the variable x. The sub-
stitution x → x + d will only introduce in the z
dimension a new constant as ż = (x + d)− by − az,
which means that the new introduced constant
d will change the average level of the variable x
without otherwise altering the dynamics. In those
variable-boostable systems, the change of coordi-
nates or shifting of the variables does not mean
coexistence of attractors, but are associated with
the constructing of self-reproducing system as will
be discussed in the following.

2.2. Self-reproducing systems

As described above, adding a single additive con-
stant to the right-hand side of a differential equa-
tion can produce an offset boosting of one of the
variables in the system. We now consider the case
in which the boosted variable (assumed to be x
without loss of generality) is replaced by a function
F (x) that is periodic in x. It is reasonable to assume
that the solution of the differential equation will be
reproduced infinitely many times in the direction of
that variable.

Definition 2.2. Suppose there is a M -dimensional
variable-boostable system, Ẋ = F (X), (X = (x1,
x2, x3, . . . , xi, . . . , xM ) (i ∈ N)). If the offset boost-
ing xi = ui + c makes the system recover its origi-
nal governing equations, the system can be called
a shift-invariant system. Since the system repro-
duces its own attractor by the offset boosting, it
can be defined as a self-reproducing system. Self-
reproducing systems keep their form when one of
the variables is boosted, which means that the
variable only varies in its initial space while not
altering the structure of the system and not influ-
encing its parameter space. Many functions can be
introduced to transform a variable-boostable sys-
tem into a self-reproducing one, a typical example
of which is a periodic function.

Theorem 2.1. For a three-dimensional self-repro-
ducing system,




ẋ = f(y, z)

ẏ = g(y, z)

ż = h(y, z) + F (x)

(3)

if the function G(x, y, z)= (f(y, z), g(y, z), h(y, z)+
F (x)) satisfies Lipschitz condition, the functions
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f, g, h are all determined by the variables y, z, the
function F (x) in the ż equation is periodic and
system (3) converges to a bounded solution (an
attractor) when the variable x is confined to one
period, system (3) has infinitely many attractors at
least some of which are equally spaced along the x
axis with a period P .

Proof. Since F (x) is periodic, suppose F (x) =
F (x + P ), where P �= 0 ∈ R is the period of the
function F (x). Make a substitution x = x + P in
system (3) leading to the same form of Eq. (3).
Therefore, system (3) gives infinitely many identical
attractors when the variable x varies by an integer
multiple of P . �

If a dissipative self-reproducing system remains
chaotic after introducing the periodic function
F (x), it will generate infinitely many chaotic attrac-
tors. There is good reason to believe that an appro-
priately chosen sinusoidal F (x) will preserve the
chaos since the function F (x) = sin(εx)/ε → x for
ε → 0. Thus any chaotic system with a single lin-
ear occurrence of x on its right-hand side should
remain chaotic when x is replaced by such an F (x).
By adjusting the parameters, it is usually possi-
ble to retain the chaos even for values of ε near
unity. Self-reproducing systems may also lead to an
undesired “symmetry” when some of the variables
are phase-reversal invariant. In this case, the sys-
tem remains invariant after the variables other than
the boosted one are symmetrically transformed.
We call this a conditional symmetry [Li et al.,
2017] since the system remains the same under the
symmetry-like transformation except for one spe-
cific pre-boost. Consider a variable-boostable sys-
tem Ẋ = F (X), (X = (x1, x2, x3, . . . , xi, . . .) (i ∈
N)). If the offset boosting ui = xi + c causes a
symmetry-like transformation, we call this system
a conditionally-symmetric system. Specifically, if a
three-dimensional system remains the same after
the transformation x → x + c, y → −y, z →
−z, the system is a conditionally rotational sys-
tem. Similarly, the conditionally-symmetric system
could have conditional reflection symmetry. How-
ever, there is no regime of conditional inversion
symmetry since the variable-boostable system must
retain at least one term that is not inversion sym-
metric for introducing a constant. Conditionally-
symmetric, self-reproducing systems can survive
offset boosting when they have a symmetric
attractor.

3. Self-Reproducing Breeds Infinite
Multistability

3.1. Self-reproducing breeds
infinitely many attractors

As an example, consider a self-reproducing modifi-
cation of system (1) given by




ẋ = 1 − ayz

ẏ = z2 − z

ż = F (x) − bz.

(4)

Set F (x) = A sin(x), here A is a constant coeffi-
cient. Let x = u + 2πk (k ∈ N), y = v, z = w
(2πk is the constant for offset boosting). Since
F (x) = A sin(x) = F (u + 2πk) = A sin(u) = F (u),
the new equations in the variables u, v,w are iden-
tical to system (4), indicating that system (4) is a
self-reproducing system along the x-axis.

When a = 3.55, b = 0.5, A = 2, system (4)
is chaotic with infinitely many coexisting attractors
depending on the initial conditions. Eight attrac-
tors are shown in Fig. 1 when the initial condition
x0 varies from −5 to 4 with y0 = 0 and z0 = −1,
and the basins of attraction are shown in Fig. 2.
The basins for y = 1 being tangled and the basin
plot shows why that is, although the basin struc-
ture is relatively simple. Note that only a relatively
small change in x0 is required to access some of
these various attractors that are more widely spread
along the x-direction because of the complicated
basins of attraction. Figure 3(a) indicates that all
the attractors have the same Lyapunov exponents
(0.1644, 0,−0.6644), and the values are different
from those for Eq. (1). The staircase waveform of
the average x shown in Fig. 3(b) shows which of
the eight attractors is accessed by each initial con-
dition. The basins of attraction are not arranged in
a simple array, but are tangled together.

To observe how many attractors are repro-
duced, we consider the bifurcation of the initial
condition x0 in a wider range. When the initial con-
dition of x varies in [−15, 35], the bifurcations of
system (4) show that there are more than ceil(m

n ) =
ceil( 50

4.25 ) = 12 attractors residing in the limited
region shown in Fig. 4 (Here m is the range of
the initial conditions x0, while n is the size of the
attractor in the x-dimension). The number of coex-
isting attractors depends on their size and the size
of their projections. Note that different selections
of the initial condition (x0, y0, z0) lead to different
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(a) (b)

Fig. 1. Coexisting attractors for system (3) with different initial conditions: cyan for (−5, 0,−1), pink for (−4, 0,−1), yellow
for (−3, 0,−1), red for (−2, 0,−1), green for (−1, 0,−1), blue for (1, 0,−1), white for (2, 0,−1), black for (4, 0,−1).

Fig. 2. Basins of attraction of the coexisting attractors in
the y = 1 plane.

bifurcations as shown in Figs. 4(a) and 4(b), indi-
cating the complicated structure of the basins of
attraction. Separate coexisting strange attractors
can be triggered by initial conditions in a discrete
and nonlinear way. Since the periodic function is
slowly varying, the coexisting attractors occur in a
periodic way, which is consistent with the change
in the average value of the variable x as shown in
Fig. 3(b). For initial conditions of x beyond the
range of one period, the strange attractors continue
to reproduce forever along the x-axis.

All the coexisting chaotic attractors are
identical in the sense that they have the same
Lyapunov exponents, but the detailed trajectories
differ because of sensitive dependence on initial con-
ditions. Moreover, different values of the parameter
b give different attractors including limit cycles as
shown in Fig. 5, and they are also infinitely repro-
duced by the selected periodic function.

Almost all 24 VB cases in [Li & Sprott, 2016]
can be converted into self-reproducing systems by

(a) (b)

Fig. 3. Lyapunov exponents and the average values of the variables in system (3) when F (x) = 2 sin(x) for initial conditions
(x0, 0,−1), x0 varies from −6 to 7.
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(a) (b)

Fig. 4. Dynamical behavior of system (4) with F = 2 sin(x), a = 3.55, b = 0.5 when x0 ∈ [−15, 35]: (a) initial condition
(x0,−1, 1) and (b) initial condition (x0, 0,−1).

(a) (b) (c)

(d) (e) (f)

Fig. 5. Typical attractors of system (3) with F = 2 sin(x), a = 3.55 with initial conditions (1, 0, 1) for various values of b.

1750160-6

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
10

/1
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 5, 2017 11:23 WSPC/S0218-1274 1750160

Infinite Multistability in a Self-Reproducing Chaotic System

introducing a trigonometric function if the param-
eters are adjusted appropriately. One might object
that in cylindrical coordinates, all these attractors
are the same, but they represent a different number
of rotations around the cylinder relative to the ini-
tial condition and are thus distinguishable in that
sense. Furthermore, from Figs. 2 and 8, we see that
basins of attractions of those coexisting attractors
usually get entangled, the output attractor cannot
be captured directly by a mod 2π reverberation of a
single value. Furthermore, for the butterfly effect of
a chaotic attractor, those coexisting attractors do
not overlap exactly when the coordinate gets mod-
ulus by the period.

The period of the function F (x) will change
the spacing of the coexisting attractors. For F (x) =
2 sin(fx), Fig. 6(a) shows how the parameter f =
P/2π compresses or expands the attractors. The
sin(x) function can also be replaced by cos(x) or
a combination of the two as shown in Fig. 6(b).
Furthermore, for system (4) with F (x) = 2 tan(x)
and a = 3.55, b = 0.5, the system gives infinitely
many coexisting attractors with Lyapunov expo-
nents (0.1855, 0,−0.6855). The distribution of the
basins of attraction in system (3) is determined
by the chosen trigonometric function. Note that
since tan(±π/2) or tan((2k + 1)π/2) (k ∈ N) equal
±∞, the solution of the system in this neighbor-
hood is unbounded, which results in “death” of
the attractor. Therefore, we refer to the neighbor-
hood of the initial conditions leading to unbounded
solutions as the “dead sea” in initial condition
space.

3.2. Self-reproducing admits
conditional symmetry

Self-reproducing systems can also lead to a con-
ditional symmetry giving infinitely many coexist-
ing attractors, some of which are symmetric to
one another. As mentioned above, system (2) is a
unique system that can be revised to be condition-
ally symmetric if the odd variable x in the z dimen-
sion is replaced with a trigonometric function of x.
According to Theorem 1, system (2) has the self-
reproducing version,




ẋ = |y| − 1

ẏ = z

ż = F (x) − by − az.

(5)

Set F (x) = A cos(x) and x = u+(2k +1)π(k ∈ N),
y = −v, z = −w ((2k + 1)π is a constant for offset
boosting). Then system (5) becomes,




u̇ = |v| − 1

v̇ = w

ẇ = F (u) − bv − aw.

(6)

Here F (x) = A cos(x) = F (u + (2k + 1)π) =
A cos(u + (2k + 1)π) = −A cos(u) = −F (u). The
variables u, v, and w in the new equations are iden-
tical to system (4), which indicates that system (5)
is a self-reproducing system with conditionally rota-
tional symmetry. However, the function cos(x) can
be changed to sin(x) to give a self-reproducing
attractor since sin(x + π/2) = cos(x), which just

(a) (b)

Fig. 6. Average value of x in system (3) for initial conditions (x0, 0,−1), x0 varies from −6 to 6: (a) when F (x) = 2 sin(fx),
f = 0.5, 1, 1.5 and (b) when F (x) = 2 sin(x), 2 cos(x) and 2 sin(0.5x) + 2 cos(1.5x).
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(a) (b)

Fig. 7. Coexisting attractors for system (5), green for initial conditions (2, 0,−1), blue for initial conditions (2 − 2π, 0,−1),
red for initial conditions (2 + 2π, 0,−1), pink for initial conditions (2 − π, 0,−1), cyan for initial conditions (2 + π, 0,−1).
(a) x–y plane and (b) x–z plane.

indicates a different boosting process. Since sin(x+
(2k + 1)π) = −sin(x), the above system (5) retains
its conditional symmetry.

When F (x) = A cos(x), system (5) gives in-
finitely many equilibrium points (2πk + arccos ×
(±b/A),±1, 0). Specifically, when a= 0.6, b= 1,
A = 1.55, the equilibrium points are (2πk + 0.8696,
1, 0) and (2πk + 2.272,−1, 0). Five attractors are
found as shown in Fig. 7 when the initial condi-
tions of the variable x are in the region [2− 2π, 2 +
2π]. However, there are infinitely many coexisting
attractors since boostable initial conditions exist,
some of which are symmetric like the attractors in
the region shown in Fig. 7. Basins of attraction in
the plane z = −1 are shown in Fig. 8. The basins
also have a nested conditionally-symmetric struc-
ture but are arranged separately along with the line
of y = 0, z = −1. The distribution of regions of
attraction is related to the periodic nonlinear func-
tion, but dominantly determined by the structure
of the original offset-boostable system [Sprott &
Xiong, 2015]. The period of cos(x) determines the
distance between attractors of the same type, while
the half-period determines the distance between
symmetric attractors, which are 2π and π, respec-
tively. This is interesting because it provides a new
way to calculate the value of π. Lyapunov exponents
for system (5) under different initial conditions are
shown in Fig. 9(a). We see that even the symmet-
ric attractors have the same Lyapunov exponents
(0.0285, 0,−0.6285). Since the basins of attraction
for system (5) are fully assigned to different coexist-
ing attractors, the lines of average values smoothly
evolve according to the initial condition x0. As

shown in Fig. 9(b), the average of the variable z is
zero, while the average of the variable y switches
between a positive and a negative value, showing
that system (5) has a symmetric pair of coexist-
ing attractors, while the average x position of the
attractor increases monotonically with x0. When
the initial condition of x varies in [−15, 35], the
bifurcations of system (5) show that there are more
than ceil(m

n ) = ceil(50
3 ) = 17 attractors residing in

this limited region as shown in Fig. 10. Here two
transverse lines, short lines and long lines, repre-
sent the two symmetric attractors.

Fig. 8. Basins of attraction of the coexisting attractors in
the z = −1 plane.
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(a) (b)

Fig. 9. (a) Lyapunov exponents and (b) the average values of system (5) for initial conditions (x0, 0,−1), x0 varies from
2 − 2π to 2 + 2π.

(a) (b)

Fig. 10. Bifurcation of system (5) with F (x) = 1.55 cos(x), a = 0.6, b = 1 when x0 ∈ [−15, 35]: (a) initial condition (x0,−1, 1)
and (b) initial condition (x0, 0,−1).

(a) (b)

Fig. 11. Coexisting attractors for system (8) with different initial conditions: cyan for (−13, 1, 0), pink for (−13,−1, 0), blue
for (1, 1, 0), red for (1,−1, 0), green for (13, 1, 0), yellow for (13,−1, 0). (a) x–y plane and (b) the average values of system (8)
at initial conditions (x0,−1, 0), x0 varies from 1 to 17.
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We can construct conditional reflection symme-
try in the variable-boostable system VB18 [Li &
Sprott, 2016; Li et al., 2017]. The following system
is variable-boostable with the variable x and has
reflection symmetry for the variable y,




ẋ = az + y2 − 1

ẏ = byz

ż = −x − z.

(7)

When a = 2.8, b = 4, the system has a chaotic
attractor with Lyapunov exponents (0.1149, 0,
−1.1149) and Kaplan–Yorke dimension 2.1031. Sys-
tem (7) is invariant under the transformation x →
x, y → −y, z → z, corresponding to symmetry
about the y = 0 plane. A version of conditional
symmetry can be obtained by introducing a peri-
odic function in the boosting dimension x,




ẋ = az + y2 − 1

ẏ = byz

ż = −A sin(Bx) − z.

(8)

When a = 2.8, b = 4, A = 2.2, B = 0.5, sys-
tem (8) has infinitely many strange attractors with
the same Lyapunov exponents (0.1101, 0,−1.1101)
as shown in Fig. 11(a). Let x = u + 4kπ (k ∈ N),
y = −v, z = w (4kπ is a constant for offset boost-
ing). The new system is identical to Eq. (8), and
thus system (8) is conditionally symmetric with
reflection invariance. As shown in Fig. 11(b), the
average of the variables y and z are constant, while
the average of the variable x increases with the
initial condition of the variable x giving strange
attractors climbing along the x-axis. The discon-
tinuous parts of the line correspond to crossing a
basin boundary.

4. Discussions and Conclusions

If any of the variables in a differential system
has the freedom of offset boosting by introduc-
ing a single constant without changing the fun-
damental structure, the variable-boostable system
can be further revised to be a self-reproducing sys-
tem, where infinite multistability is obtained when
a periodic trigonometric function of that variable
is introduced. Two regimes of self-reproducing sys-
tem were constructed, where countless attractors or
countless symmetric pairs of attractors were found
with uniform Lyapunov exponents. Note that as
shown in the above analysis, since the attractor

reproducing is based on the periodically offset
boosting and the newly introduced periodic func-
tions may destroy the basic dynamics, consequently
there is a risk to reproduce the desired attrac-
tor. The construction of a self-reproducing sys-
tem needs additional parameter modification in the
periodic function for the main dynamics remain-
ing in one period. It is reasonable to conclude that
if the periodic trigonometric function changes to
some other nonperiodic functions with slow modu-
lation, the corresponding self-reproducing systems
may probably give some if not infinitely many
coexisting attractors with unequal intervals. This
translation is not restricted to one variable, and
corresponding n-dimensional shifted multistability
can be created by the proposed method. Fur-
thermore, self-reproducing systems can also admit
conditional symmetry giving countless symmetric
attractor pairs, which means that a system with
the same Lyapunov exponents under different initial
conditions may hide the existence of infinite multi-
stability. Self-reproducing system provides infinitely
many coexisting attractors for engineering appli-
cation, which used to be generated by switchable
chaotic systems or compound chaotic systems. From
the view of implementation of electronic circuit,
chaotic signal of different polarity becomes avail-
able from corresponding attractors, which can be
probed out with an initial condition without need-
ing an extra polarity converter.
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