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Perpetual points represent a new interesting topic in the literature of nonlinear dynamics. This
paper introduces some chaotic flows with four different structural features from the viewpoint
of fixed points and perpetual points.
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1. Introduction

Recently, many new chaotic flows have been dis-
covered that are not associated with a saddle point,
including ones without any equilibrium points, with
only stable equilibria, or with a line containing
infinitely many equilibrium points [Jafari & Sprott,
2013, 2015; Jafari et al., 2013; Jafari et al., 2015b;
Kingni et al., 2014; Lao et al., 2014; Molaie et al.,
2013; Pham et al., 2014a; Pham et al., 2014b;
Pham et al., 2014c; Pham et al., 2014d; Pham
et al., 2015; Shahzad et al., 2015; Tahir et al.,
2015; Pham et al., 2016; Goudarzi et al., 2016]. The
attractors of these categories have been called hid-
den attractors [Leonov & Kuznetsov, 2014; Leonov
et al., 2014; Leonov & Kuznetsov, 2011; Leonov
et al., 2011, 2012; Leonov et al., 2015; Leonov &
Kuznetsov, 2013a, 2013b, 2013c; Bragin et al., 2011;
Kuznetsov et al., 2010; Kuznetsov et al., 2011;
Leonov, 2010; Kiseleva et al., 2017; Andrievsky
et al., 2016; Kiseleva et al., 2016; Bianchi et al.,

2016; Kuznetsov et al., 2016b]. Hidden attractors
are important in engineering applications because
they allow unexpected and potentially disastrous
responses to perturbations in a structure like a
bridge or aircraft wing. The classical attractors
of Lorenz [Lorenz, 1963], Rössler [Rössler, 1976],
Chen [Chen & Ueta, 1999], Sprott (cases B to S)
[Sprott, 1994], and other well-known attractors are
excited from unstable equilibria. Thus, one can find
these attractors by starting a trajectory from a
point on the unstable manifold in the neighbor-
hood of an unstable equilibrium [Leonov et al.,
2011].

One of the interesting topics in nonlinear
dynamics that was recently proposed is perpet-
ual points [Prasad, 2015a; Dudkowski et al., 2015;
Prasad, 2015b; Jafari et al., 2015a]. It has been
shown that these points can be used to locate hid-
den attractors and to find coexisting attractors in
multistable systems [Prasad, 2015a].

∗Author for correspondence

1750023-1

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
03

/2
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218127417500237


March 2, 2017 16:27 WSPC/S0218-1274 1750023

F. Nazarimehr et al.

In this note, we introduce some chaotic flows
with four different structural features from the
viewpoint of fixed points (equilibria) and perpetual
points. We believe that this categorization can help
researchers to investigate the common and uncom-
mon features between fixed points (equilibria) and
perpetual points and the possible roles of both of
them in forming strange attractors.

In the next section we describe perpetual points
in a simple way. Section 3 introduces (a) a chaotic
system that has simultaneous fixed points and a
perpetual point, (b) a new chaotic flow with a
fixed point but without any perpetual points, (c)
a chaotic system with perpetual points but without
any fixed points, and (d) a chaotic system with nei-
ther fixed points nor perpetual points, thus showing
that neither fixed points nor perpetual points are
needed for a system to exhibit chaos. Finally, Sec. 4
gives conclusions.

2. Perpetual Points

In a general dynamical system, we have

v1 = ẋ1 = f1(x1, x2, . . . , xn)

v2 = ẋ2 = f2(x1, x2, . . . , xn)
...

vn = ẋn = fn(x1, x2, . . . , xn)

(1)

x1, x2, . . . , xn are dynamical variables (states),
v1, v2, . . . , vn are the time derivatives of the
states (velocities) and f1(X), f2(X), . . . , fn(X) are
the evolution equations (velocity vectors). The
fixed points of the above system are points
(x∗

1, x
∗
2, . . . , x

∗
n) at which the velocities of all states

are zero. The fixed points are an important struc-
tural feature of systems [Prasad, 2015a; Ott, 2002;
Strogatz, 2014].

As shown in the following equations, accelera-
tion is the time derivative of velocity

a1 = ẍ1 = ẋ1
∂f1

∂x1
+ ẋ2

∂f1

∂x2
+ · · · + ẋn

∂f1

∂xn

= v1
∂f1

∂x1
+ v2

∂f1

∂x2
+ · · · + vn

∂f1

∂xn

a2 = ẍ2 = ẋ1
∂f2

∂x1
+ ẋ2

∂f2

∂x2
+ · · · + ẋn

∂f2

∂xn

= v1
∂f2

∂x1
+ v2

∂f2

∂x2
+ · · · + vn

∂f2

∂xn

...

an = ẍn = ẋ1
∂fn

∂x1
+ ẋ2

∂fn

∂x2
+ · · · + ẋn

∂fn

∂xn

= v1
∂fn

∂x1
+ v2

∂fn

∂x2
+ · · · + vn

∂fn

∂xn

(2)

where a1, a2, . . . , an are the second derivatives of the
states (accelerations). Perpetual points are points
like (x∗

1, x
∗
2, . . . , x

∗
n) at which all the accelerations

are zero but the velocities are not [Prasad, 2015a].

3. Four Categories of Chaotic Flows
Depending on the Existence of
Fixed Points and Perpetual
Points

3.1. A chaotic flow with fixed
points and perpetual points

Jafari and Sprott in [Molaie et al., 2013] introduced
simple chaotic systems with a line of equilibria.
They were inspired by the structure of the con-
servative Sprott case A system. Equation (3) is a
mathematical form of the first one of those simple
systems with only six terms.

ẋ = y

ẏ = −x + yz

ż = −x − 15xy − xz.

(3)

By setting the right-hand side of these equations to
zero, the fixed points are given by

ẋ = y = 0 → y = 0

ẏ = −x + yz = 0 → x = 0

ż = −x − 15xy − xz = 0.

(4)

Having x = 0 and y = 0, ż will be zero independent
of the value of z, and thus there is a line of equilibria
at (0, 0, z) with eigenvalues (z+

√
z2−4
2 , z−√

z2−4
2 , 0)

and no other equilibria. Calculation of the perpet-
ual points gives the following equations

ẍ = ẏ = −x + yz = 0

ÿ = −ẋ + ẏz + yż = −y − xy − 15xy2 − xyz = 0

z̈ = −ẋ − 15ẋy − 15xẏ − ẋz − xż

= −y − 15y2 − yz + x2 + 15x2y + x2z = 0.
(5)

The solution of these equations has two real val-
ues, one of which is the line of equilibria, and the
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Fig. 1. The strange attractor and its projections for system (3) with initial conditions (0, 0.5, 0.5).

other is the only perpetual point of the system,
given approximately by (−0.4675, 0.2185,−2.1391).
Projections of the strange attractor are shown in
Fig. 1. Lyapunov exponents are a measure of diver-
gence of nearby trajectories. The positive largest
Lyapunov exponent is often considered as an indi-
cation of chaotic behavior [Hilborn, 2000; Sprott,
2003]. In other words, the sensitive dependence on
initial conditions is one of the basic features of chaos
and Lyapunov exponents provide quantitative mea-
sures of response sensitivity of a dynamical sys-
tem to small changes in initial conditions [Skokos,
2010]. There are different methods for calculating
Lyapunov exponents which sometimes result in dif-
ferent values [Kuznetsov et al., 2014a; Kuznetsov &
Leonov, 2005; Kuznetsov et al., 2014b; Leonov &
Kuznetsov, 2007; Leonov et al., 2016; Leonov, 2016;
Leonov & Mokaev, 2016; Kuznetsov et al., 2016a;
Leonov & Kuznetsov, 2015]. Lyapunov exponents of
the system calculated using Wolf’s algorithm [Wolf
et al., 1985] (with initial conditions (0, 0.5, 0.5) and
computation time 60 000) are (0.0717, 0,−0.5232),
and the Kaplan–Yorke dimension is 2.1371. We
believe that the Wolf algorithm has acceptable
results with enough calculation time for Lyapunov

exponents. In this and the following figures, the
local largest Lyapunov exponent is mapped into a
color palette, with red indicating the most positive
value and blue the most negative value, and the blue
line or dots are the positions of the fixed points.

3.2. A chaotic flow with a fixed
point but without any perpetual
points

In the search for a chaotic flow with a fixed point
but without any perpetual points, we designed a
flow with cubic nonlinearities [Eq. (6)] in which
there is only one fixed point and no perpetual
points:

ẋ = y

ẏ = z

ż = −x − 4x2y − x2z.

(6)

It has one fixed point in the origin:

ẋ = y = 0

ẏ = z = 0

ż = −x − 4x2y − x2z = 0 → x = 0

(7)
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with eigenvalues (1
2 +

√
3

2 i, 1
2 −

√
3

2 i,−1). Applying
Eq. (2) for calculation of perpetual points gives

ẍ = ẏ = z = 0

ÿ = ż = −x − 4x2y = 0

z̈ = −ẋ − 8xyẋ − 4x2ẏ − 2xzẋ − x2ż

= −y − 8xy2 = 0.

(8)

Setting the right-hand side of the above equations
to zero gives the solution

x = y = z = 0. (9)

Since the only solution is a fixed point, there are no
perpetual points. Projections of the strange attrac-
tor are shown in Fig. 2. Lyapunov exponents of this
system are (0.1642, 0,−0.6399) (with initial condi-
tions (0, 1, 0.7) and computation time 60 000), and
the Kaplan–Yorke dimension is 2.2566.

3.3. A chaotic flow without any
fixed points but with perpetual
points

One of the simplest dissipative examples of chaotic
flows with no equilibria is the Wei system [Wei,

2011] which is a modification of the Sprott case D
system in [Sprott, 1994] [Eq. (10)].

ẋ = −y

ẏ = x + z

ż = 2y2 + xz − 0.35.

(10)

Applying Eq. (2) to calculate the perpetual points
gives

ẍ = −ẏ = −x − z = 0

ÿ = ẋ + ż = −y + 2y2 + xz − 0.35 = 0

z̈ = 4yẏ + ẋz + xż

= 4y(x + z) − yz + 2xy2 + x2z − 0.35x = 0.
(11)

Thus this system has the perpetual points(
0,

5 +
√

95
20

, 0

)
,

(
0,

5 −√
95

20
, 0

)
. (12)

Projections of the strange attractor are shown
in Fig. 3. The Lyapunov exponents of this sys-
tem are (0.0776, 0,−1.5008) (with initial conditions

Fig. 2. The strange attractor and its projections for system (6) with initial conditions (0, 1, 0.7).

1750023-4

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
03

/2
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 2, 2017 16:27 WSPC/S0218-1274 1750023

Categorizing Chaotic Flows from the Viewpoint of Fixed Points and Perpetual Points

Fig. 3. The strange attractor and its projections for system (10) with initial conditions (0, 0.37, 1).

(0, 0.37, 1) and computation time 60 000), and the
Kaplan–Yorke dimension is 2.0517.

3.4. A chaotic flow without any
fixed points and without any
perpetual points

Consider the Nosé system [Hoover et al., 2016]
[Eq. (13)] which has conservative tori surrounded
by a chaotic sea:

ẋ =
y

z2
, ẏ = −x,

ż = w, ẇ =
y2

z3
− 2

z
.

(13)

This system does not have any fixed points or per-
petual points. Setting the right-hand side of these
equations to zero shows that there is a conflict
between the first and last equations as follows:

ẋ =
y

z2
= 0 → y = 0

ẇ =
y2

z3
− 2

z
= 0 → −2

z
= 0.

(14)

Hence, this system does not have any fixed points.
For calculating perpetual points, Eq. (2) applied to
the system gives

ẍ =
ẏz2 − 2yzż

z4
=

−xz2 − 2yzw

z4

= 0 → xz = −2yw

ÿ = −ẋ = − y

z2
= 0 → y = 0

z̈ = ẇ =
y2

z3
− 2

z
= 0 → −2

z
= 0

ẅ =
2yẏz3 − 3z2ży2

z6
+

2ż
z2

=
−2yxz3 − 3z2wy2

z6
+

2w
z2

= 0.

(15)

This system does not have any perpetual points,
but it has a chaotic solution for initial condi-
tions (3, 3, 1, 0). Some projections of the chaotic sea
are shown in Fig. 4. The system is conservative
with Lyapunov exponents (0.0019, 0, 0,−0.0019)
(for initial conditions (3, 3, 1, 0) and computation
time 60 000).
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Fig. 4. Some projections of the chaotic sea of the 4D system (13) with initial conditions (3, 3, 1, 0).

4. Conclusion

Categorizing dynamical systems into systems with
or without perpetual points is a new topic in nonlin-
ear dynamics. This paper studies the application of
perpetual points in the existence of strange attrac-
tors. It reviews four types of chaotic flows: flows
having fixed points and a perpetual point, flows
with a fixed point but without perpetual points,
flows with no fixed points but with perpetual points,
and finally flows with neither fixed points nor per-
petual points. In other words, systems in all four
combinations of having or not having fixed points
and perpetual points can show chaotic behavior.
Thus, the existence of strange attractors cannot be
demonstrated by the existence of fixed points and
perpetual points. These categories may be useful for
further research on perpetual points.
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