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Abstract Transitions from one dynamical regime to
another one are observed in many complex systems,
especially biological ones. It is possible that even a
slight perturbation can cause such a transition. It is
clear that this can happen to an object when it is close
to a tipping point. There is a lot of interest in find-
ing ways to recognize that a tipping point (in which a
bifurcation occurs) is near. There is a possibility that
in complex systems, a phenomenon known as “criti-
cal slowing down” may be used to detect the vicinity
of a tipping point. In this paper, we propose Lyapunov
exponents as an indicator of “critical slowing down.”

Keywords Critical transition - Early-warning signal -
Lyapunov exponent - Chaos

1 Introduction

Transitions from one dynamical regime to another one
are observed in complex systems such as dynamical
disease, brain response to flickering light, climate, and
financial markets [1-3]. Such “regime shifts” can be
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the result of a massive external shock, or a stepwise
change in the conditions. However, it is also possible
that a slight perturbation can invoke a massive shift to a
contrasting and lasting state. It is clear that this can hap-
pen to an object when it is close to a tipping point. As
tipping points can have large consequences and make
major changes to the system’s behavior, there is much
interest in finding ways to recognize that a bifurcation
is near. There is a possibility that in complex systems,
a phenomenon known as “critical slowing down” can
be used to detect the vicinity of a tipping point [1-4].
Close to the tipping point, the return to equilibrium
from small perturbations will become slower because
the basin of attraction becomes shallower. Recent stud-
ies suggest that critical slowing down typically causes
an increase in the variance and temporal autocorrela-
tion of fluctuations in the system states [4]. Figure |
shows the variation of variance and autocorrelation at
lag-1.

Chaos is a common feature in complex dynami-
cal systems. Many systems from fields such as biol-
ogy and economics exhibit chaos, and the study of
such systems and their signals has progressed in recent
decades. There has been an increasing interest in ana-
lyzing neurophysiology from a nonlinear and chaotic
systems viewpoint in recent years [6—16]. It has been
claimed that many biological systems, including the
brain (both in microscopic and macroscopic aspects)
[17-23] and the heart [24,25], have chaotic properties.
This is true as well for the atmosphere [26], voice sig-
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Fig. 1 i Bifurcation diagram in a bistable system. ii SD (blue
plot) and autocorrelation at lag-1 (green plot) [5]. (Color figure
online)

nals [27], and electronic circuits [28,29]. For a dynami-
cal system, sensitivity to initial conditions is quantified
by Lyapunov exponents. Lyapunov exponents show the
intrinsic instability of trajectories in a system and are
computed as the average rate of exponential conver-
gence or divergence of trajectories that are nearby in
the phase space. In two trajectories with nearby initial
conditions on an attracting manifold, when the attrac-
tor is chaotic, the trajectories diverge, on average, at an

exponential rate characterized by the largest Lyapunov
exponent. A discrete-time system with all negative Lya-
punov exponents will have an attracting fixed point or
periodic cycle and will not present chaotic behavior
[30-33]. Lyapunov exponents can determine the flex-
ibility of attractors in response to external perturba-
tions. In other words, calculation of Lyapunov expo-
nents locally along the attractor shows where a system
ignores an external signal and where it responds to it
[34-39]. For illustrating the mathematical definition of
Lyapunov exponent, consider two points in a space, X
and X + A Xp. It is useful to study the mean exponen-
tial rate of divergence of two initially close orbits using
the formula,

1 AX(Xop,t
A= lim _mM (1
t—oo |AXp]
|AXo—0]

This number is the Lyapunov exponent “A” and is used
for distinguishing between the various types of orbits
[40]. To illustrate the properties of nonlinear dynamical
systems, the Lyapunov exponent has a crucial role [32].
Many approaches have been proposed to compute this
measure based on system equations and time series [33,
40-42]. In this paper, we suggest the largest Lyapunov
exponent as an indicator of tipping points. We show
how sensitivity to initial conditions and recovery rate
from small perturbations are connected.

2 Lyapunov exponent as a prominent
early-warning signal

In this paper, Lyapunov exponent is proposed as a
prominent early-warning signal for predicting critical
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transitions. However, there are some major challenges
that make this indicator hard to use. Computing Lya-
punov exponents based on observed signals is difficult.
It requires a long time series that is as clean as pos-
sible (noise is a serious problem for calculating Lya-
punov exponents) [25,43,44]. The first step in calcu-
lating Lyapunov exponent is reconstruction of phase
space from a time series. Then, Lyapunov exponents
can be calculated using this reconstructed phase space
[45-48]. In the rest of this section, the idea of antic-
ipating tipping points is illustrated by two biological
models and one ecological model.

2.1 Brain response to flickering light

The first example is the model of brain response to flick-
ering light described in [49]. Periodic flashes of light

can be used to investigate dynamical properties of the
visual system. Crevier and Meister in 1998 proposed a
simple iterative model that can show the same bifurca-
tion as was observed in flicker vision of a salamander
[49]. Figure 2 shows a bifurcation diagram of the sala-
mander ERG with respect to changing flash frequency.
This model, proposed in [49], is given by
BC

+ Yk
1+y,f

L
Vky1 =€ It

C
1+ yl?+1

where f is the flash frequency, t is the time constant of
exponential decay, B is an amplification constant, C is
the stimulus contrast, y is the feedback variable, and x
is the amplitude of response to a flash. The model uses
nonlinear feedback to account for period doubling in

@)

Xk+1 =
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Fig. 4 a Bifurcation
diagram and b Lyapunov
exponent as a predictor of a‘“*

tipping points in ADD
attention model with respect
to changing A parameter
(B=5821,w =

1.487, wy = 0.2223)

Xinf

Lyapunov Exponent

5 10

the ERG response to periodic flashes. For more detail
about the model, see [49]. Figure3 shows when the
Lyapunov exponent reaches zero, there is a critical tran-
sition. Red lines identify some tipping points and their
Lyapunov exponents. Thus, we propose the Lyapunov
exponent as a prominent early-warning signal for pre-
dicting critical transitions.

2.2 Attention deficit disorder

The second example is an attention deficit disorder
(ADD) model proposed in [50]. Dopamine deficiency
is one of the causes of this disorder. The model uses
a simple nonlinear neuronal network which represents
the interactions of inhibitory and excitatory parts of
brain action and is given by

@ Springer

Xk+1 = B x tanh(wixg) — A x tanh(waxy) 3)

The Lyapunov exponent of this model demonstrates
that this measure can be a good predictor for tipping
points (Fig.4).

2.3 Consumption of resources

The third example is a continuous model of logistic
growth and consumption of resources with a control
variable grazing rate which is familiar from investiga-
tion of critical slowing down dynamics [5,51,52]. In
this model, resource biomass x grows logistically and
is harvested according to
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Fig. 5 a Bifurcation diagram of ecological model of growing
resource under harvesting. b Lyapunov exponent of the model

X cx?
dx:(rx(l—;)—m>dl (4)
where r is the growth rate, K is the population’s carry-
ing capacity, 4 is the half-saturation constant, and c is
the grazing rate. When c reaches the value ¢ = 2.904,
the ecosystem goes to an alternate state (critical transi-
tion) through a fold bifurcation. Part a of Fig. 5 depicts a
bifurcation diagram of the model. Application of Lya-
punov exponent as an early warning of critical tran-
sitions in the continuous model of growing resource
under harvesting is investigated in part b of Fig. 5. The
Lyapunov exponent goes close to zero as the bifurca-
tion approaches the tipping point.

In dynamical systems, sensitivity to initial condi-
tions is an important feature that shows complexity of
a system. Lyapunov exponents measure sensitivity to
initial conditions. If a small perturbation is assumed as
a change in initial conditions of a system, Lyapunov
exponents determine the rate of divergence or conver-
gence. The results show that the Lyapunov exponent is
a prominent predictor of critical transitions.

3 Discussion

In order to show the ability of Lyapunov exponent
in predicting tipping points, we compare it with the
entropy method. Entropy is a measure of unpredictabil-
ity [53]. In changing from one fixed point to another
one, irregularity of the state of the system increases
because of critical slowing down. Thus, the entropy
measure shows a meaningful change. However, in
many other bifurcation points like changing from
period two to period four, the entropy does not show
any monotonic change before the tipping point. Fig-
ure 6 shows the entropy of ADD model. Comparison of
Figs.4 and 6 describes that the entropy measure only
finds transitions from one fixed point to another one,
but the Lyapunov exponent depicts any transitions. On
the other hand, Lyapunov exponent approaches zero
before the parameter reaches the critical values. This
property makes Lyapunov exponent a very good indi-
cator of tipping points.

It is believed that Kolmogorov—Sinai entropy is the
sum of the positive exponents Lyapunov exponents,
which for a low-dimensional chaotic system is just the
largest LE since the others are zero or negative [44,54].
This measure can be considered in future works.

4 Conclusion

In this paper, we proposed Lyapunov exponents as
prominent early-warning signals for predicting criti-
cal transitions. However, computing Lyapunov expo-
nents based on observed signal needs long enough
time series, which should be as clean as possible.
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Fig. 6 a Bifurcation a

diagram and b entropy
measure in ADD attention
model with respect to
changing A parameter
(B=5821,w; =

1.487, wy = 0.2223)
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Application of Lyapunov exponent for anticipating tip-
ping points is illustrated by two biological models and
one ecological model. The results show that Lyapunov
exponents can be good predictors in different critical
transitions.
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