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In 1979, Moffatt pointed out that the conventional treatment of the simplest self-exciting
homopolar disc dynamo has inconsistencies because of the neglect of induced azimuthal eddy
currents, which can be resolved by introducing a segmented disc dynamo. Here we return to
the simple dynamo system proposed by Moffatt, and demonstrate previously unknown hidden
chaotic attractors. Then we study multistability and coexistence of three types of attractors in
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the autonomous dynamo system in three dimensions: equilibrium points, limit cycles and hidden
chaotic attractors. In addition, the existence of two homoclinic orbits is proved rigorously by the
generalized Melnikov method. Finally, by using Poincaré compactification of polynomial vector
fields in three dimensions, the dynamics near infinity of singularities is obtained.

Keywords : Homopolar disc dynamo; hidden attractor; multistability and coexistence; homoclinic
orbit; dynamics at infinity.

1. Introduction

To the extent that they have been known to exist,
complex dynamical behaviors with stable equilib-
ria have mostly been considered to be impossible.
In this connection it is interesting to recall, for
instance, how the presence of an unstable equi-
librium point plays an essential role in Shilnikov’s
famous criterion for the onset of chaos [Shilnikov,
1965; Silva, 1993]. From a computational point of
view, this allows one to use numerical methods, in
which after transients have decayed, a trajectory,
starting from a point of an unstable manifold in the
neighborhood of an unstable equilibrium, reaches
an attractor and identifies it.

The study of chaotic systems is an important
and yet difficult task in the theory of nonlinear
dynamical systems. There is a long history for
the study of related topics. However, the con-
cept of a “hidden attractor” was introduced in the
mid-20th century in connection with discussions
among leading scientists of the field about prob-
lems associated with polynomial systems, embed-
ded oscillations, global stability, etc. [Leonov &
Kuznetsov, 2013]. The problem of analyzing hidden
periodic oscillations first arose in the second part of
Hilbert’s 16th problem, which considered the num-
ber and mutual disposition of limit cycles in two-
dimensional polynomial systems [Hilbert, 1901].
Hidden oscillations appear naturally in systems
without equilibria, describing various mechanical
and electromechanical models with rotation, and
electrical circuits with cylindrical phase space [Som-
merfeld, 1902; Blekhman et al., 2007; Eckert & Som-
merfeld, 2013].

During the last few years, more complex hidden
attractors, in particular hidden chaos, have been
studied by many researchers. For example, hidden
chaotic attractors are attractors in systems with
no equilibria or with only one stable equilibrium
(a special case of the multistability: coexistence

of attractors in multistable systems). A rapidly
growing number of studies have been published
in which hidden chaotic attractors are shown to
exist in the absence of any form of equilibrium
point or in the presence of only stable equilibrium
points (see, e.g. [Wei, 2011; Wei & Yang, 2011,
2012; Wang et al., 2012; Wang & Chen, 2012, 2013;
Jafari et al., 2013; Wei et al., 2015a; Wei et al.,
2015b]). Therefore, systems that exhibit complex
nonlinear dynamical behavior do not need to dis-
play an unstable equilibrium. In addition, multi-
stability can be inconvenient in various practical
applications [Leonov et al., 2015a]. From a compu-
tational perspective, it is natural to suggest the clas-
sification of attractors in [Leonov et al., 2012], which
is based on the simplicity of finding their basins of
attraction in phase space. Hidden attractors arise
in connection with various fundamental problems
and applied models. Hidden periodic oscillations
and hidden chaotic attractors have been studied
in applied models [Andrievsky et al., 2013; Leonov
et al., 2014; Zhusubaliyev et al., 2015; Leonov et al.,
2015b; Kuznetsov et al., 2015; Kuznetsov et al.,
2016; Wei et al., 2016; Kiseleva et al., 2016].

The present interest in hidden attractors moti-
vates us to ask whether chaotic states can be
observed in the homopolar dynamo without unsta-
ble equilibria. The purpose of the present paper is
to examine and study the hidden chaos, homoclinic
orbits and dynamics near infinity in a self-exciting
homopolar disc dynamo, proposed by Moffatt in
1979 [Moffatt, 1979], which was not yet then com-
pletely well understood. The possibility of the
existence of hidden chaotic attractors in the disc
dynamo is confirmed. We also discuss the mech-
anisms responsible for maintaining the oscillatory
dynamics in the homopolar disc dynamo and pro-
vide an overview of the distribution in 2D param-
eter space. What leads to the generation of hidden
attractors is demonstrated by two unstable periodic
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solutions from a Hopf bifurcation near the stable
equilibria. In addition, by using the generalized
Melnikov method, the existence of homoclinic orbits
is proved. Finally, we also give a complete descrip-
tion of its dynamics on the Poincaré sphere at
infinity by using the Poincaré compactification of
a polynomial vector field in R3, showing that there
are indeed orbits which escape to, or come from,
infinity, instead of going towards the attractors.

2. Description of the Self-Exciting
Homopolar Disc Dynamo and
Related Problems

The self-exciting homopolar dynamo is one of the
simplest models of the self-excitation of a mag-
netic field by moving conductors. It is often used
to illustrate the dynamo action that is thought to
lie behind the generation of the magnetic fields of
the Earth, the Sun and other cosmic bodies [Mof-
fatt, 1978; Beck et al., 1996]. In its simplest form,
originally considered by Bullard [1955], the dynamo
consists of a solid metal disc which rotates about an
axis, perpendicular to the disc, and a wire twisted
around it, and connected through sliding contacts
to the rim and the axis of the disc.

Model dynamos have been extensively investi-
gated in the past as an aid to understanding the
generation of magnetic fields and their reversals
in astrophysical bodies. In 1979, Moffatt pointed
out that the conventional treatment of the simplest
such model [Moffatt, 1979], the self-exciting Bullard
dynamo [Knobloch, 1981; Hide et al., 1996; Moroz
et al., 1998; Priede & Avalos-Zúñiga, 2013], was
not self-consistent because it neglected the currents
associated with the radial diffusion of the magnetic
field, and so introduced a segmented disc dynamo
in which this effect could be included in a sim-
ple way. This dynamo is described by the following
system of nondimensionalized ordinary differential
equations:


ẋ = r(y − x),

ẏ = mx − (1 + m)y + xz,

ż = g[1 + mx2 − (1 + m)xy].

(1)

Here x(t) and y(t) denote the magnetic fluxes due to
radial and azimuthal current distributions respec-
tively, z(t) is the angular velocity of the disc, the
dot denoting differentiation with respect to time,

g measures the applied torque, and r and m are pos-
itive constants that depend on the electrical prop-
erties of the circuit.

System (1) has the equilibrium states E1,2 =
(±1,±1, 1), which exist for any parameter values.
It is easy to see the invariance of (1) under the
transformation (x, y, z) → (−x,−y, z), namely the
system has reflected symmetry around the z-axis.
Therefore, we only consider the dynamics of E1.
The Jacobian matrix of system (1), evaluated at
the equilibrium E1 is

J(E1) =




−r r 0

1 + m −1 − m 1

g(−1 + m) g(−1 − m) 0




and its corresponding characteristic equation is

2gr + (g + gm)λ + (1 + m + r)λ2 + λ3 = 0. (2)

According to the Routh–Hurwitz criterion since
r, g,m are all real positive parameters, the charac-
teristic polynomial (2) has three roots with negative
real parts under the following conditions:

m ≥ 1 or m < 1, r <
(m + 1)2

1 − m
. (3)

Note that the negative characteristic value cor-
responds to the contraction direction while the pos-
itive real parts of the conjugate pair of complex
characteristic values correspond to the prolongation
direction in the Smale map, if it exists. Based on
the above discussions, the following property can
be easily verified.

Proposition 2.1. Let r > 0, g > 0, m > 0 and
r0 = (m+1)2

1−m . Then, system (1) has two equilibria:

E1,2(±1,±1, 1).

Furthermore,

(i) if m ≥ 1 or m < 1, r < r0, then the equilibria
E1,2 are locally asymptotically stable nodes, or
node-foci, at each of which the stable manifolds
W s(E1,2) are three-dimensional;

(ii) if m < 1, r > r0, then the equilibria E1,2 are
saddle-foci, at each of which the stable manifold
W s(E1,2) is one-dimensional and the unstable
manifold W u(E1,2) is two-dimensional.

By combining Proposition 2.1(i)–(ii) and the
eigenvalue structures from (2) of the linearized sys-
tem of system (1) at their corresponding equilibria,
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as discussed above, one arrives at the following
result:

Proposition 2.2. Denoting r0 = (m+1)2

1−m , system (1)
with parameters

(r, g,m) ∈ Ω1 = {(r, g,m) | g > 0,m ≥ 1 or

g > 0,m < 1, 0 < r < r0}
is not diffeomorphic to, and so is not topologi-
cally equivalent to, any known three-dimensional
autonomous chaotic system in the form of (1) with
parameters

(r, g,m) ∈ Ω2 = {(r, g,m) | g > 0,m < 1, r > r0}.
Compare this with the term “hidden oscilla-

tions”, introduced in connection with the classic
discussion of Hilbert–Kolmogorov type problems
[Hilbert, 1901]. The questions include (i) what are
the possible mechanisms of birth for hidden chaotic
attractors, (ii) do the associated bifurcation scenar-
ios display particular features, and (iii) do systems
of this type arise in connection with concrete prac-
tical problems [Leonov & Kuznetsov, 2013].

Until a few years ago, chaotic systems with
only stable equilibria were commonly rejected as
impossible. Therefore, Moffatt made the following
statement about system (1) “When r < (1 −
m)−1(l +m)2, it seems probable that all trajectories
tend to one of the two equilibrium points” [Mof-
fatt, 1979]. However, for parameters (r,m, g) =
(10, 0.75, 20) and initial values (0.3, 2.9, 0.1), it is

known analytically that system (1) has two stable
equilibria with 3D stable and no unstable mani-
folds. Numerical simulations show trajectories from
the initial data given in Fig. 1. Basins of attrac-
tion for system (1) with only stable equilibria versus
selected parameters and initial values are shown in
Fig. 2. The plots show a cross-section in the planes
which contain the two stable equilibrium points,
indicated in black and their corresponding basins
of attraction in green and yellow with the basin for
the strange attractor in light blue. The black lines
in the blue region are a cross-section of the strange
attractor.

In addition, Fig. 4 shows the distribution of
dynamical behaviors for system (1) in the (r,m)-
plane. As previously noted, g does not affect the sta-
bility of two equilibria, and will be set 20 in Fig. 3.
The red regions represent parameter sets that pro-
duce chaotic solutions. The green regions repre-
sent the stable regions, and the light blue regions
represent periodic behavior. Note, however, that
several regions display coexisting attracting states
of different types.

2.1. Coexistence of stable equilibria
and hidden attractor

In order to study the effect of the parameter r on
the dynamics of the 3D system, we fix the param-
eters m = 0.75, g = 20, and vary r in the interval
8 ≤ r ≤ 15. In particular, we find there are no
unstable equilibria in the region r ∈ [8, 12.25).
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Fig. 1. Phase diagram of the system (1) with only stable equilibria when parameters (a, m, g) = (10, 0.75, 20) and initial
values (0.3, 2.9, 0.1).
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(a) (b)

Fig. 2. Basins of attraction for the system (1) with only stable equilibria for parameters (r, m, g) = (10, 0.75, 20) and initial
values (0.3, 2.9, 0.1) on (a) z = 1 and (b) x = y.

Fig. 3. Regions of various dynamical behaviors in system (1)
as a function of the bifurcation parameters r and m. The
chaotic regions are shown in red, the stable regions are shown
in green, and the periodic regions are shown in blue.

Fig. 4. The largest Lyapunov exponents, Kaplan–Yorke
dimensions, and bifurcation diagrams of system (1) versus
parameter r ∈ [8, 15) and two sets of initial points: initial
values (0.3, 2.9, 0.1) (red); initial values (1, 1, 1.75) (green).
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It is well known that certain dynamical proper-
ties of system (1) can be analyzed through both its
Lyapunov exponent spectrum and bifurcation dia-
grams. Bifurcation diagrams obtained by scanning
the interval around the r ∈ [8, 15] with different ini-
tial conditions ((0.3, 2.9, 0.1) (red), resp., (1, 1, 1.75)
(green)). At both ends, the bifurcation diagram dis-
plays chaotic dynamics (Fig. 4, bottom picture).
The red shows larger regions of parameter space
in which the system (1) has hidden chaotic dynam-
ics. The largest Lyapunov exponent for r ∈ [8, 15]
using initial values (0.3, 2.9, 0.1) is shown in red in
Fig. 4 (top picture), while that for initial conditions
(1, 1, 1.75) is shown in green. We observe that for
r ∈ [9, 12.151], in which equilibria E1,2 are stable,
the behavior of system (1) is completely different
for the two sets of initial conditions. The Kaplan–
Yorke dimension (Dky) is plotted in Fig. 4 (mid-
dle picture) [Kuznetsov et al., 2014; Leonov et al.,
2015a; Kuznetsov, 2016]. These features show the
region of hysteresis and coexisting attractors.

Related open problems about ergodicity or mix-
ing property of the Moffatt’s system (1) would be
to understand the properties of hidden chaos. The
LEs are calculated using Wolf’s method to run the
orbit for a time of 4e7 using a fourth-order Runge–
Kutta integrator with an adaptive step size (which
usually takes about a day on a fast PC), and we
check that all the quoted digits are reproduced for
at least two arbitrarily chosen initial conditions in
the basin of the attractor.

3. Study of Hidden Attractors from
a Simple Linear Transformation

When coexisting attractors occur in a system,
engineers and scientists are usually interested in
obtaining the basins of attraction of the different
attracting sets, defined as the set of initial points
whose trajectories converge on the given attrac-
tor. In Sec. 3.1, we find that the behavior not only
depends on the value of the system parameters but
also on the initial conditions.

Under the following linear transformation




x1 = x − k1,

y1 = y − k2,

z1 = z − k3,

system (1) becomes


ẋ1 = r(y1 − x1) + r(k2 − k1),

ẏ1 = m(x1 + k1) − (1 + m)(y1 + k2)

+ (z1 − k3)(x1 + k1),

ż1 = g[1 + m(x1 + k1)2

− (1 + m)(x1 + k1)(y1 + k2)],

(4)

where ki �= 0 (i = 1, 2, 3) are three constants. The
Hartman–Grobman theorem states that the local
behavior of an autonomous dynamical system in the
neighborhood of an hyperbolic equilibrium is qual-
itatively the same as (i.e. topologically equivalent
to) the behavior of its linearization near this equilib-
rium. No matter how the values ki �= 0 (i = 1, 2, 3)
change, the characteristic equations of system (4)
and system (1) have same eigenvalues at corre-
sponding equilibria.

We now consider the impact of translating
the coordinates when the initial conditions (x0, y0,
z0) = (1, 1, 1.75) and system parameters r = 10,
m = 0.75, g = 20 do not change. In particular,
when ki �= 0 (i = 1, 2, 3) the system (4) [which is
topologically equivalent to system (1)] has only two
stable equilibria and has no chaotic dynamics. This
can be confirmed by calculating the Lyapunov expo-
nents to give: L1 = −0.0332, L2 = −0.0332, L3 =
−11.6836. We next give some numerical results to
show the dynamics of the system (4).

Although system (4) has only two hyperbolic
stable equilibria, the transformed system is chaotic
globally for certain parameter ki (i = 1, 2, 3)
choices. It is apparent that system (1) with two sta-
ble equilibria that were once thought to be unusual,
may in fact, be rather common, and belongs to the
class of chaotic systems with hidden attractors. It
is worth noting that coexisting attractors and the
fractal basins may not be observed in a controlled
experiment where system parameters are smoothly
varied. In such instances the initial condition and
coordinate transformation for each parameter value
are the final condition (or state) for the previous
parameter and the trajectories are therefore locked
onto only one of the attracting sets.

Figure 5 shows the dynamical regions in the 2D
parameter spaces (k1–k2) and (k1–k3) of system (4)
for ki ∈ [−10, 10] (i = 1, 2, 3). The ten distinct
green regions in the (k1–k2)-plane correspond to
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Fig. 5. Dynamical regions of system (4) with initial values (1, 1, 1.75) (left and right dynamics correspond to (k1, k2) ∈
[−10, 10] × [−10, 10] and (k1, k3) ∈ [−10, 10] × [−10, 10], respectively). Green regions mean stable steady states, while red
regions mean hidden chaotic attractors.

stable steady states, while the red regions corre-
spond to hidden chaotic attractors. In the k1–k3-
plane, there are only two distinct green regions. For
each point in this plot, it was necessary to search for
initial conditions that give bounded solutions and
then to estimate the largest Lyapunov exponent for
each point. The criterion used was to assume that
Lyapunov exponents in the range (−0.001, 0.001)
are periodic (limit cycles), while those that are
more negative correspond to stable equilibria (point
attractors, shown in green), and those that are more
positive correspond to chaotic (hidden attractors,
shown in red).

4. Study of Hidden Attractors from
Hopf Bifurcation

As far as we know, the simplest way to create a peri-
odic orbit is through a Hopf bifurcation. The anal-
ysis of the codimension-one Hopf bifurcation about
an equilibrium, using the center manifold theorem
is presented in [Kuznetsov, 2014].

4.1. An outline of the Hopf
bifurcation methods

Suppose that the characteristic equation of sys-
tem (1) has a pair of pure imaginary roots ±iω

(ω ∈ R
+). For convenience, we take k = m + 1. It

is easy to show that when

r = r0 =
(m + 1)2

1 − m
=

k2

2 − k
,

Eq. (2) yields

λ1 =
2k

k − 2
< 0, λ2,3 = ±

√
gki,

where 1 < k < 2 (0 < m < 1). Summarizing, we
have the following proposition:

Proposition 4.1. Define

T =
{

(r, g, k) | r > 0, g > 0,

r = r0 =
k2

2 − k
, 1 < k < 2

}
,

then the Jacobian matrix of system (2) at E1 has
one negative real eigenvalue 2k

k−2 and a pair of purely
imaginary eigenvalues ±√

gki.

Taking r as the Hopf bifurcation parameter, the
transversal condition

Re(λ′(r0))|λ=
√

gki =
g(2 − k)3

2k[g(k − 2)2 + 4k]
> 0
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is also satisfied. Therefore, we have the following
theorem:

Theorem 4.2 [Existence of Hopf Bifurcation]. If
(r, g,m) ∈ T and m varies and passes through the
critical value r0 = (m+1)2

1−m , system (1) undergoes
Hopf bifurcations at each equilibrium state E1,2.

The rest of this section is concerned with show-
ing the projection method described in [Sotomayor
et al., 2007a, 2007b; Mello & Coelho, 2009] for the
calculation of the first Lyapunov coefficient, l1, asso-
ciated with the Hopf bifurcation. Consider the dif-
ferential equation

Ẋ = f(X,µ), (5)

where X ∈ R
3 and µ ∈ R

3 are respectively vec-
tors representing phase space variables and control
parameters. Assume that f is in a class of C∞ in
R

3 ×R
3. Suppose that (5) has an equilibrium point

X = X0 at µ = µ0. Denote the variable X − X0 by
X and expand

F (X) = f(X,µ0), (6)

as

F (X) = AX +
1
2
B(X,X) +

1
6
C(X,X,X)

+
1
24

D(X,X,X,X)

+
1

120
E(X,X,X,X,X) + O(‖X‖6),

(7)

where A = fx(0, µ0) and, for i = 1, 2, 3,

B(X,Y ) =
3∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣∣
ξ=0

XjYk,

C(X,Y,Z) =
3∑

j,k,l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

XjYkZl,

etc., and similar expressions exist for D and E.
Suppose that A has a pair of complex eigenval-
ues on the imaginary axis: λ2,3 = ±i w0 (w0 > 0),
and these eigenvalues are the only eigenvalues
whose real parts are zero. Let T c be the generalized
eigenspace of A corresponding to λ2,3. Let p, q ∈ R

3

be vectors such that

Aq = iw0q, AT p = −iw0p, 〈p, q〉 = 1, (8)

where AT is the transpose of the matrix A. Any
vector y ∈ T c can be represented as y = wq + wq,

where w = 〈q, y〉 ∈ C. The two-dimensional center
manifold associated with the eigenvalues λ2,3 can be
parameterized by w and w, by means of an immer-
sion of the form X = H(w, w), where H : C

2 → R
3

has a Taylor expansion of the form

H(w, w) = wq + wq +
∑

2≤j+k≤5

1
j!k!

hjkw
jwk

+ O(|w|6),
with hjk ∈ C

3 and hjk = hkj. Substituting this
expression into (6) we obtain the differential equa-
tion

Hww′ + Hww′ = F (H(w, w)),

where F is given by (6). The complex vectors hij

are obtained solving the system of linear equations
defined by the coefficients of (6), taking into account
the coefficients of F , so that system (6), on the chart
w for a central manifold, is written as follows

ẇ = iw0w +
1
2
G21w|w|2 +

1
12

G32w|w|4 + O(|w|6),

where Gij ∈ C. The first Lyapunov coefficient can
be written as

l1 =
1
2

ReG21, (9)

where G21 = 〈p,C(q, q, q) + B(q, h20) + 2B(q, h11)〉.

4.2. Hopf bifurcation of system (1)

In this section, we study the stability of E1 under
the conditions r = r0 = (m+1)2

1−m = k2

2−k . Using
the notation of the previous section, the multilin-
ear symmetric functions can be written as

B(X,Y ) = (0,X1Y3 + X3Y1, 2gmX1Y1

− g(1 + m)X1Y2 − g(1 + m)X2Y1),
(10)

C(X,Y,Z) = (0, 0, 0). (11)

From (8), we have

q =

(
k

g(−2+ k)+ 2
√

gki
,
−i

√
g(−2+ k)+ k3/2

g(−2+ k)
√

k + 2
√

gki
, 1

)
,

p =
(

1
2
(−2 + k)

√
g

k
i,−1

2

√
gki,

1
2

)
.
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The complex vectors h11 and h20 are

h11 =
(
− k2

g[g(−2 + k)2 + 4k]
,− k2

g[g(−2 + k)2 + 4k]
,− 2(−2 + k)k

g(−2 + k)2 + 4k

)
,

h20 = (h201, h202, h203),

where

h201 =
k2[3

√
g(g(−2 + k)2 − 7k)(−2 + k) + 2i

√
k(28g − 5k − 28gk + 7gk2)]

3g[
√

g(−2 + k) + i
√

k]2[
√

g(−2 + k) + 2i
√

k]3
,

h202 =

√
k(−2i

√
g(−2 + k) + k(3/2))(3g(−2 + k)2 − 10k − 22i

√
gk + 11i

√
gk3)

3g[
√

g(−2 + k) + i
√

k][
√

g(−2 + k) + 2i
√

k]3
,

h203 =
2
√

k(3g(3/2)k(5/2) + 12
√

g3k − 8
√

gk3 + 2igk(−10 + 5k + 6i
√

gk))
3[
√

g(−2 + k) + 2i
√

k][g(−2 + k) + 2i
√

gk]2
.

The complex coefficient G21 defined in (5) takes the form

G21 = − 2k5/2[3ig(−2 + k)2 − 4ik + 12
√

gk − 6
√

gk3]
3
√

g[g(−2 + k)2 + 4k][g(−2 + k)2 − 6i
√

gk + k(−2 + 3i
√

gk)]
.

We then have the following theorem:

Theorem 4.3. Consider system (1) with r > 0, g > 0, 0 < m < 1. The first Lyapunov coefficient associated
with the equilibria E1,2 is given by

l1 =
1
2

ReG21 =
2g(1 + m)3(1 − 3m + 3m2 − m3)

[1 + g(−1 + m)2 + m][(g(−1 + m)2 + 4(1 + m)]2
> 0. (12)

Then the equilibria E1,2 of the three-parameter fam-
ily of differential equations (1) undergo a transver-
sal Hopf bifurcation when r = r0 = (m+1)2

1−m . More
specifically, when r < r0, but near to r0, there exist
two unstable limit cycles around the asymptotically
stable equilibria E1,2.

The sign of the first Lyapunov coefficient is
determined by the sign of the numerator of (12)
since the denominator is positive. Observe that the
first Lyapunov coefficient is positive, which means
there are no degenerate Hopf bifurcation. In addi-
tion, what is interesting is to further find out the
kind of dynamical behaviors system (1) has at infin-
ity when m > −1, m = −1, or m < −1, which is
the main focus of the report in Sec. 6.

4.3. Hidden attractors and
numerical simulations

In this section, we present some numerical simula-
tions of system (1) for several values of the parame-
ters. The main purpose is to illustrate the creation
of unstable limit cycles through the Hopf bifurca-
tions at the equilibria E1,2 (proved to occur in the

previous subsections), and to demonstrate the exis-
tence of the hidden chaotic attractor.

For g = 20 and m = 0.75, system (1) has two
stable equilibria when r < 12.25. Note that for
these parameter values, we have the Hopf bifurca-
tion value r0 = 12.25. According to Theorem 4.3,
system (1) undergoes a Hopf bifurcation when the
parameter r crosses the critical value r = r0, and
two unstable periodic orbits emerge from E1 and E2

with r < r0 and r near r0, respectively. Choosing
initial values (1, 1.05, 1.75) near the equilibrium E1,
we take r = 12.145 < r0, and an unstable periodic
orbit exists near the stable equilibrium E1. Simi-
larly, there is also an unstable periodic orbit exist-
ing with initial conditions (−1,−1.05, 1.75) near the
stable equilibrium E2. Furthermore, when the ini-
tial value moves away from the above two sets, hid-
den chaotic attractors emerge from the unstable
periodic orbits that arose in the Hopf bifurcation.

We can conclude that unstable periodic solu-
tions can be found near the stable equilibria point
E1,2 for r < r0. This unstable periodic solution leads
to the generation of hidden chaotic attractors. All
results can be displayed in Fig. 6.
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Fig. 6. Phase diagrams of the system (1) versus parameters (r, m, g) = (12.145, 0.75, 20). Red orbit means hidden chaotic
attractor (HD1) with initial values (−1.2,−1.2, 1.2) near stable equilibrium E2 (−1,−1, 1); Green orbit means hidden chaotic
attractor (HD2) with initial values (1.2, 1.2, 1.2) near stable equilibrium E1 (1, 1, 1); Blue orbit means unstable periodic solu-
tion (UP1) with initial values (1, 1.05, 1.75) near stable equilibrium E1 (1, 1, 1) from Hopf bifurcation; Black orbit means
unstable periodic solution (UP2) with initial values (−1,−1.05, 1.75) near stable equilibrium E2 (−1,−1, 1) from Hopf
bifurcation.

4.4. Unstable periodic orbits

The chaotic attractor can be thought of as a con-
catenation of unstable periodic orbits (upos) of dif-
ferent periods. We are able to extract such orbits
by constructing a Poincaré section through the z
equilibrium value of z = 1, following the method of
Hénon [1982].

If we introduce a new variable Z = z − 1, then
the revised equilibrium states become (x, y, Z) =
(±1,±1, 0), and we take the Poincaré section as

S = {(x, y) : Z = 0, Ż > 0, x > 0}.
In order to extract the upos, we integrated sys-
tem (1) for 60 000 time units with a time step of
0.001 sec, discarded the first 100 sec as representing
transients. The criterion for choosing close returns
on the Poincaré section S was:

‖Zi − Zj‖ < ε,

where Zh = (xh, yh, Zh) and h = i, j are the ith
and jth intersections on S. We chose both ε = 0.005
and ε = 0.001 to compare the histograms of unsta-
ble periodic orbits, and to select typical examples
of upos of lowest period. By following the method
of Hénon [1982], we can ensure that the trajectories
land precisely on the Poincaré section by rewrit-
ing (1) with Z as the independent variable, instead

of t. We then integrate the revised system for one
step from Zη to Z = 0, where tη is the time just
before Z changes sign.

Because of the reflectional symmetry of sys-
tem (1), if (x, y, z) is a trajectory, then so is
(−x,−y, z). Figure 7 shows the phase portraits of
three of the lowest order upos, together with a plot
of the hidden attractor on which these upos are
inserted. We label the orbits from a knowledge of
their individual time series as follows. If the trajec-
tory falls in x > 0, we label that part symbolically
as R, while if the trajectory falls in x < 0, we label
it as L. We show each of the three upos in a differ-
ent color, so that they are easily identifiable on the
hidden attractor, shown in Fig. 7(d).

Here RpLq means the trajectory oscillates p
times around the (x, y) = (1, 1) equilibrium state,
before oscillating q times around the (x, y) =
(−1,−1) state. Figure 7(a) shows an example of
an RL upo of period 2.855 sec in blue, while
Fig. 7(b) shows an R2L2 upo of period 6.55 sec
in red. Figure 7(c) shows an RLRL2 upo with
period 6.884 sec in black. Finally in Fig. 7(d), we
show these three orbits are placed on the hidden
attractor. The yellow trajectories correspond to ini-
tial conditions (x, y, z) = (1.2, 1.2, 1.2), while the
green trajectories correspond to initial conditions
(x, y, z) = (−1.2,−1.2, 1.2).
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Fig. 7. The phase portraits of three upos of system (1) in the (x, y)-planes, together with their locations on the hidden chaotic
attractor. Specifically (a) shows an RL upo with period 2.855 sec, (b) shows an R2L2 upo of period 6.55 sec, (c) shows an
RLRL2 upo with period 6.884 sec and (d) shows the hidden attractor and its reflectionally symmetric partner, together with
the three upos of (a)–(c).

5. Existence of Homoclinic Orbits

In order to analyze the existence of homoclinic
orbits of system (5), we introduce the general-
ized Melnikov method developed by Wiggins and
Holmes [1987, 1988].

Consider the following system:


ẋ = f1(x.y, z) + εg1(x, y, z),

ẏ = f2(x.y, z) + εg2(x, y, z),

ż = εg3(x, y, z),

(13)

where 0 < ε 
 1, and fi(x·y, z) (i = 1, 2), gi(x·y, z)
(i = 1, 2, 3) are sufficiently smooth functions. We

make the following assumptions on the unperturbed
system when ε = 0:

Assumption H1. System (13)ε=0 is a one-
parameter family of planar Hamiltonian systems
with Hamiltonian function H(x, y, z),



ẋ = f1(x.y, z) =
∂H

∂y
,

ẏ = f2(x.y, z) = −∂H

∂x
,

ż = 0.

(14)
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Assumption H2. For each value of z in some open
interval J ⊂ R, (14) has a one-parameter fam-
ily of periodic orbits, qα,z(t), α ⊂ L(z) ⊂ R,
with a homoclinic orbit qα0(t) to a hyperbolic sad-
dle point γ(z) = (x(z), y(z)). Let T (α, z) be the
period of qα,z(t). Assume that limα→α0 T (α, z) =
∞, dT (α, z)/dα �= 0 for (α, z) ∈ (L(z), J), where
L(z) is an open interval in R.

Writing the scalar Melnikov function for the
existence of homoclinic orbits

M0(z) =
∫ +∞

−∞

(
f1g2 − f2g1 +

∂H

∂z
g3

)
(qα0,z(t), z)dt

− ∂H

∂z
(γ(z), z)

∫ +∞

−∞
g3(qα0,z(t), z)dt.

(15)

Then the following results in [Wiggins & Holmes,
1988] hold.

Lemma 5.1. Suppose that the homoclinic orbit
of (13)ε depends on a scalar parameter z ∈ K ⊆ R

and there exists a point z0 ∈ K such that

M0(z0) = 0,
∂M0(z)

∂z

∣∣∣∣
z=z0

�= 0. (16)

Then for ε �= 0 sufficiently small, there exists a non-
transverse homoclinic orbit of (13)ε near µ0.

Under the transformation z → z − m, sys-
tem (1) becomes


ẋ = r(y − x)

ẏ = −(1 + m)y + xz

ż = g + gmx2 − g(1 + m)xy.

(17)

Introducing the rescaling:

x → rx

ε
√

g(1 + m)
, y → − ry

ε2
√

g(1 + m)
,

z → rz

ε2
, t → εt

r
, ε =

1√
g
,

system (17) becomes


ẋ = −y − εx,

ẏ = −xz − ε
1 + m

r
y,

ż = xy + ε

(
m

1 + m
x2 +

1
r2

)
.

(18)

Therefore, we only need to establish the existence
of homoclinic orbits in system (18).

When ε = 0, system (18) can be seen as a three-
dimensional generalized Hamiltonian system

d

dt




x

y

z


 =




0 0 −y

−z 0 0

y 0 0






x

0

1


 = J




∂H

∂x

∂H

∂y

∂H

∂z




,

with Hamiltonian function

H(x, y, z) = z +
x2

2
= A (19)

and Casimir function

C(x, y, z) = y2 + z2 = ρ2.

Let ρ > 0 and make a polar-coordinate transforma-
tion 



x = x,

y = ρ cos
(
θ − π

2

)
,

z = ρ sin
(
θ − π

2

)
,

(20)

then (18) becomes


ρ̇ = −ε

[
ρ
1 + m

r
sin2θ + cos θ

(
m

1 + m
x2 +

1
r2

)]
,

θ̇ = x + ε

[
sin θ

ρ

(
m

1 + m
x2 +

1
r2

)

+
1 + m

r
sin θ cos θ

]
,

ẋ = −ρ sin θ − εx.

(21)

The following result can then be obtained.

Theorem 5.2. Let 5(3 − m)r − 3(1 + m)2 > 0.
Then, for ε sufficiently small near the two homo-
clinic orbits Γh± of system (21)ε=0, system (21)
possesses two nontransverse homoclinic orbits near

y2 + z2 = ρ2
∗,

where

ρ∗ =
15(1 + m)

2r[5(3 − m)r − 3(1 + m)2]
.
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Proof. According to (19) and (20), system (21)ε = 0 is Hamiltonian system with Hamiltonian function
H(x, r, θ) given by

H(x, r, θ) =
x2

2
− ρ cos θ = A.

Therefore, it is easy to find that, when A = ρ, there are two homoclinic orbits Γ1
h± of (21)ε=0 connecting

the saddle point (ρ, π, 0), whose parametric expressions{
θh(t) = ±2 arctan(sinh

√
ρt),

xh(t) = ±2
√

ρ(sech
√

ρt).
(22)

By mean of (21) and (22), the Melnikov function

M(ρ) =
∫ +∞

−∞

[
−x2

h(t) + sin2θh(t)
(

m

1 + m
x2 +

1
r2

)
+ ρ sin2θh(t) cos θh(t)

1 + m

r

]
dt

+
∫ +∞

−∞
cos θh(t)

[
ρ
1 + m

r
sin2θ + cos θ

(
m

1 + m
x2 +

1
r2

)]
dt

+
∫ +∞

−∞

[
ρ
1 + m

r
sin2θ + cos θ

(
m

1 + m
x2 +

1
r2

)]
dt

=
4

r2√ρ
+

8m
√

ρ

3(1 + m)
− 8

1 + m

√
ρ +

8(1 + m)
√

ρ

5r
,

implies that

M(ρ∗) = 0,
∂M

∂ρ

∣∣∣∣
ρ=ρ∗

�= 0,

when

ρ = ρ∗ =
15(1 + m)

2r[5(3 − m)r − 3(1 + m)2]
,

where 5(3 − m)r − 3(1 + m)2 > 0. Therefore,
by using Lemma 5.1, for ε sufficiently small near
the two homoclinic orbits Γ1

h± of system (21)ε=0,
it possesses two nontransverse homoclinic orbits.
From (18), (20) and (21), it follows that the con-
clusion in Theorem 5.2 hold. �

6. Infinity Dynamics by Poincaré
Compactification

Although the physical relevance of m in Sec. 2 has
m > 0, for mathematical completeness we explore
the whole range of possible values for m. In order
to study the behavior of the trajectories of the sys-
tem (1) near infinity, we will use the theory of
Poincaré compactification in R3 [Cima & Llibre,
1990; Llibre & Messias, 2009; Llibre et al., 2012].
Let the Poincaré ball S3 = {γ = (γ1, γ2, γ3, γ4) ∈
R4 | ‖γ‖ = 1} be the unit sphere, S+ = {γ ∈
S3, γ4 > 0} and S− = {γ ∈ S3, γ4 < 0} be the

northern and southern hemispheres, denote the
tangent hyperplanes at the point (±1, 0, 0, 0),
(0,±1, 0, 0), (0, 0,±1, 0), (0, 0, 0,±1) by the charts
Ui, Vi for i = 1, 2, 3, 4, where Ui = {γ ∈ S3, γi > 0},
Vi = {γ ∈ S3, γi < 0}. We only consider the chart
Ui, Vi for i = 1, 2, 3 for getting the dynamics at x,
y, z infinity.

In the charts U1 and V1

With the change of variables (x, y, z) = (w−1,
uw−1, vw−1), and t = wτ , the system (1) becomes


du

dτ
= −ru2w − muw → +ruw + mw − uw + v,

dv

dτ
= −ruvw − gmu + gw2 + rvw + gm − gu,

dw

dτ
= −ruw2 + rw2.

(23)

If w = 0, system (23) reduces to


du

dτ
= v,

dv

dτ
= −gmu + gm − gu.

(24)
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Fig. 8. Trajectories in the global phase portraits of sys-
tem (24) for m > −1.

Clearly, we can see that (24) is a Hamiltonian sys-
tem with the Hamiltonian function as

H =
1
2
v2 +

1
2
g(m + 1)u2 − gmu.

When m > −1 the system (24) has a center, and has
a saddle when m < −1 or has a parabolic orbit when
m = −1. The corresponding global phase portraits
of Eq. (24) are shown in Figs. 8–10.

The flow in the chart V1 is the same as the flow
in the chart U1 reversing time. Hence, the phase
portrait of system (1) on the infinite sphere at the
negative end point of the x-axis is shown in Figs. 8–
10, reversing the time direction.

Fig. 9. Trajectories in the global phase portraits of sys-
tem (24) for m < −1.

Fig. 10. Trajectories in the global phase portraits of sys-
tem (24) for m = −1.

In the charts U2 and V2

Next, we study the dynamics of the system (1) at
infinity of the y-axis. Taking the transformation
(x, y, z) = (uw−1, w−1, vw−1), and t = wτ , the sys-
tem (1) becomes


du

dτ
= −mu2w + muw − ruw − u2v + rw + uw,

dv

dτ
= gmu2 − muvw − gmu + gw2

+ mvw − uv2 − gu + vw,

dw

dτ
= −muw2 + mw2 − uvw + w2.

(25)

If w = 0, system (25) reduces to


du

dτ
= −u2v,

dv

dτ
= gmu2 − gmu − uv2 − gu.

(26)

Clearly, the system (26) has a line of equilibrium
points u = 0. When m > −1 system (26) has a
center, it also has a saddle and two nodes when
m < −1 or has homoclinic loops when m = −1. The
corresponding global phase portraits of Eq. (26) are
shown in Figs. 11–13.

The flow in the chart V2 is the same as the flow
in the local chart U2. Hence, the phase portrait of
system (1) on the infinite sphere at the negative end
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Fig. 11. Trajectories in the global phase portraits of sys-
tem (26) for m > −1.

point of the y-axis is shown in Figs. 11–13, reversing
the time direction.

In the charts U3 and V3

Finally, we consider infinity along the z-axis. Let
(x, y, z) = (uw−1, vw−1, w−1), and t = wτ , the sys-
tem (1) becomes


du

dτ
= −gmu3 + gmu2 + gu2v

− guw2 − ruw + rvw,

dv

dτ
= −gmu2v + gmuv2 + guv2 − gvw2

+ muw − mvw − vw + u,

dw

dτ
= −gmu2w + gmuvw + guvw − gw3.

(27)

Fig. 12. Trajectories in the global phase portraits of sys-
tem (26) for m < −1.

Fig. 13. Trajectories in the global phase portraits of sys-
tem (26) for m = −1.

If w = 0, system (27) reduces to


du

dτ
= −gmu3 + gmu2v + gu2v,

dv

dτ
= −gmu2v + gmuv2 + guv2 + u.

(28)

Clearly, system (28) has a line of equilibrium points
u = 0. Furthermore, when m > −1, system (28) has
no equilibrium points. When m < −1, system (28)
has heteroclinic loops which connected the equilib-
rium points (0,± 1√

−g(m+1)
). When m = −1, sys-

tem (28) has parabolic orbits. The corresponding
global phase portraits of Eq. (26) are as shown in
Figs. 14–16.

Fig. 14. Trajectories in the local phase portraits of sys-
tem (28) for m > −1.
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Fig. 15. Trajectories in the local phase portraits of sys-
tem (28) for m < −1.

The flow in the chart V3 is the same as the flow
in the local chart U3. Hence, the phase portrait of
system (1) on the infinite sphere at the negative end
point of the z-axis is shown in Figs. 14–16, revers-
ing the time direction. Therefore, we can make the
following remark about dynamics at infinity on the
Poincaré sphere.

Remark 6.1. The phase portrait of system (1) on
the Poincaré sphere at infinity is as shown in
Figs. 17–19. There exist two centers at the front
hemisphere and the back hemisphere for m > −1,
two saddles at the left hemisphere and the right
hemisphere for m < −1, and homoclinic loops
at the front hemisphere and the back hemisphere
for m = −1.

Fig. 16. Trajectories in the local phase portraits of sys-
tem (28) for m = −1.

Fig. 17. Phase portrait of the system (1) on the Poincaré
sphere at infinity for m > −1.

Fig. 18. Phase portrait of the system (1) on the Poincaré
sphere at infinity for m < −1.

Fig. 19. Phase portrait of the system (1) on the Poincaré
sphere at infinity for m = −1.

1730008-16

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
03

/2
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 2, 2017 15:24 WSPC/S0218-1274 1730008

Detecting Hidden Chaotic Regions and Complex Dynamics

7. Conclusion

One key result of the work reported in this paper
is to show hidden chaotic attractors throughout the
parameter region which only admits stable equilib-
ria in the segmented disc dynamo, known as Moffatt
system [Moffatt, 1979]. In contrast we found hidden
chaotic solutions to occur well away from the sub-
critical Hopf bifurcation, which will have potential
applications in the field of disc dynamos.

We also discussed the mechanisms responsi-
ble for the particular dynamics and provided an
overview of various 2D parameter spaces. The hid-
den chaos of the Moffatt system has been analyzed
in detail, through discussions of the Hopf bifurca-
tion. Moreover, we proved that the Moffatt system
possesses homoclinic orbits, which implies a possi-
ble mechanism causing chaotic dynamics. By using
the Poincaré compactification for polynomial vector
fields in R3, we studied the dynamics of the Moffatt
system at infinity. In this sense, since the dynamics
are very sensitive to initial conditions it does not
seem that a numerical approach would allow us to
understand how the solutions reach infinity when
t → ∞.

Another form of complexity arises when two
or more asymptotically stable equilibrium points or
attracting sets coexist as the Moffatt system param-
eters are being varied. This is usually referred to
as coexisting attractors and when this occurs, the
trajectories of the system selectively converge on
either of the attracting sets depending on the ini-
tial state of the system. When coexisting attractors
occur, engineers and scientists are usually interested
in obtaining the basins of attraction of the different
attracting sets, defined as the set of initial points
whose trajectories converge on the given attractor
[Dudkowski et al., 2016].
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