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Using a systematic computer search, four simple chaotic flows with cubic nonlinearities were
found that have the unusual feature of having a curve of equilibria. Such systems belong to a
newly introduced category of chaotic systems with hidden attractors that are important and
potentially problematic in engineering applications.
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1. Introduction

It is widely recognized that mathematically sim-
ple systems of nonlinear differential equations can
exhibit chaos. With the advent of fast computers,
it is now possible to explore the entire parame-
ter space of these systems with the goal of finding
parameters that result in some desired characteris-
tics of the system [Sprott, 2010].

Recent research has involved categorizing peri-
odic and chaotic attractors as either self-excited or
hidden [Bragin et al., 2011; Leonov & Kuznetsov,
2010, 2011, 2013a, 2013b, 2014; Leonov et al., 2011,
2012; Leonov et al., 2014; Leonov et al., 2015a,
2015b; Sharma et al., 2015a, 2015b]. A self-excited
attractor has a basin of attraction that is associ-
ated with an unstable equilibrium, whereas a hidden

attractor has a basin of attraction that does not
intersect with small neighborhoods of any equi-
librium points. The classical attractors of Lorenz,
Rössler, Chua, Chen, Sprott systems (cases B to S)
and other widely-known attractors are those excited
from unstable equilibria. From a computational
point of view this allows one to use a numerical
method in which a trajectory that started from a
point on the unstable manifold in the neighborhood
of an unstable equilibrium, reaches an attractor and
identifies it [Leonov et al., 2011]. Hidden attractors
cannot be found by this method and are impor-
tant in engineering applications because they allow
unexpected and potentially disastrous responses to
perturbations in a structure like a bridge or an air-
plane wing.
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The chaotic attractors in dynamical systems
without any equilibrium points, with only stable
equilibria, or with a line of equilibria are hidden
attractors. That is the reason such systems are
rarely found, and only recently such examples have
been reported in the literature [Jafari & Sprott,
2013, 2015; Jafari et al., 2013; Molaie et al., 2013;
Jafari et al., 2014; Kingni et al., 2014; Lao et al.,
2014; Pham et al., 2014a; Pham et al., 2014b; Pham
et al., 2014c; Pham et al., 2014d; Jafari et al., 2015a;
Jafari et al., 2015b; Pham et al., 2015; Shahzad
et al., 2015; Sprott et al., 2015; Tahir et al., 2015;
Goudarzi et al., 2016; Jafari et al., 2016; Kingni
et al., 2016; Wang & Chen, 2013; Gotthans &
Petržela, 2015; Wei, 2011; Wei et al., 2014; Wei &
Zhang, 2014; Wei et al., 2015].

In this paper, we introduce a new category
of chaotic systems with hidden attractors: systems
with a curve of equilibrium. Although in such sys-
tems the basin of attraction may intersect the
curve equilibrium in some sections, there are usu-
ally uncountably many points on the curve that lie
well outside the basin of attraction of the chaotic
attractor, and thus it is impossible to identify the
chaotic attractor for sure by choosing an arbitrary
initial condition in the vicinity of the unstable equi-
libria. In other words, from a computational point
of view these attractors are hidden, and knowledge
about the equilibria does not help in their local-
ization. The goal of this paper is to describe a
new category of hidden attractor and expand the
list of known mathematically simple hidden chaotic

Table 1. Four simple chaotic flows with curve equilibrium.

Case Equations Parameters Equilibrium LEs DKY (x0, y0, z0)

CE1 ẋ = z a = 2 Circle 0.0653 2.0794 0

ẏ = −z(y2 + xz) x2 + y2 = 1 0 0.8

ż = x2 + y2 − 1 + z(y2 − az2 + x) z = 0 −0.8227 0.61

CE2 ẋ = −z Hyperbola 0.1250 2.1658 0.75

ẏ = z(z2 − 1) x2 − y2 = 1 0 −0.9

ż = x2 − y2 − 1 + z(y2 − z2) z = 0 −0.7538 0

CE3 ẋ = az a = 0.6 Two parallel lines 0.0345 2.0391 0

ẏ = z(by2 + cxz) b = 0.3 y = ±1 0 0.7

ż = y2 − 1 − xyz c = 0.5 z = 0 −0.8817 −1.3

CE4 ẋ = −az a = 2 Parabola 0.1433 2.0164 0.23

ẏ = −z3 y = −x2 0 3.89

ż = x2 + y + z(z − xy) z = 0 −8.7143 2

attractors. Thus we perform a systematic computer
search for chaos in three-dimensional autonomous
systems with cubic nonlinearities which have been
designed so that there will be a curve equilibrium,
and we ensure that the curve equilibrium cannot be
made to vanish by reduction to a system of lower
dimension.

2. Simple Chaotic Flows with a
Curve Equilibrium

In the search for chaotic flows with a curve equi-
librium, we were inspired by the structure of the
Gotthans–Petržela system which has a circle of
equilibria [Gotthans & Petržela, 2015], which is the
first chaotic system with a curve of equilibria

ẋ = az, ẏ = z(bx + cz2),

ż = x2 + y2 − r2 + z(dx).
(1)

We consider a general parametric form of
Eq. (1) with cubic nonlinearities of the form

ẋ = a1z, ẏ = zf1(x, y, z),

ż = g(x, y, z) + zf2(x, y, z),

f1 = (a2x + a3y + a4z + a5x
2 + a6y

2 + a7z
2

+ a8xy + a9xz + a10yz + a11)

f2 = (a12x + a13y + a14z + a15x
2 + a16y

2

+ a17z
2 + a18xy + a19xz + a20yz + a21).

(2)
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As can be seen, this system can have an equi-
librium in g(x, y, 0) = 0 which can be set as any
desired curve in the xy-plane.

An exhaustive computer search was done con-
sidering millions of combinations of different curves
(g(x, y) = 0), coefficients a1 through a21 and initial
conditions, seeking dissipative cases for which the
largest Lyapunov exponent is greater than 0.001.
For each case that was found, the space of coef-
ficients was searched for values that are deemed
“elegant” [Sprott, 2010], by which we mean that as

many coefficients as possible are set to zero with the
others set to ±1 if possible or otherwise to a small
integer or decimal fraction with the fewest possible
digits. Cases CE1–CE4 in Table 1 are four simple
cases found in this way.

In addition to the cases in the table, dozens
of additional cases were found, but they were
either equivalent to one of the cases listed by some
linear transformation of variables, or they were
more complicated cases with additional inessential
terms.

Fig. 1. State space plots of the cases in Table 1.
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All these cases are dissipative with attrac-
tors projected onto various planes as shown in
Fig. 1. The equilibria, Lyapunov exponents, and
Kaplan–Yorke dimensions are shown in Table 1
along with initial conditions that are close to the
attractor. As is usual for strange attractors from
three-dimensional autonomous systems, the attrac-
tor dimension is only slightly greater than 2.0,
the largest of which is CE2 with DKY = 2.1658,
although no effort was made to tune the param-
eters for maximum chaos. All the cases appear
to approach chaos through a succession of period-
doubling limit cycles, a typical example of which is
shown in Fig. 2.

Figure 3 shows a cross-section in the xy-plane
at z = 0 of the basin of attraction for the two
attractors for the typical case CE2. Initial condi-
tions in the light blue region are attracted to the

Fig. 2. Lyapunov exponents, Kaplan–Yorke dimension, and
local maxima of x for case CE4 showing a typical period-
doubling route to chaos.

Fig. 3. Cross-section of the basins of attraction of the two
attractors in the xy-plane at z = 0 for case CE2. Initial con-
ditions in the light blue region lead to the strange attractor,
and those in the red region lead to the hyperbolic curve of
equilibrium shown in yellow, a portion of which for y > −0.2
is stable.

strange attractor, and those in the red region are
attracted to a point on the hyperbolic curve of equi-
librium shown in yellow, only the portion of which
for y > −0.2 is stable. Those points on the yellow
curve that lie in the red region are outside the basin
of the strange attractor as required for the strange
attractor to be hidden.

Note that the two parallel lines equilibria in
CE3 is a limiting case of a hyperbola curve.

3. Conclusion

In conclusion, it is apparent that simple chaotic
systems with a curve equilibrium that seem to be
rare, may in fact be rather common. These systems
belong to the newly introduced class of chaotic sys-
tems with hidden attractors.
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