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The famous Lorenz system is studied and analyzed for a particular set of parameters origi-
nally proposed by Lorenz. With those parameters, the system has a single globally attracting
strange attractor, meaning that almost all initial conditions in its 3D state space approach the
attractor as time advances. However, with a slight change in one of the parameters, the chaotic
attractor coexists with a symmetric pair of stable equilibrium points, and the resulting tri-
stable system has three intertwined basins of attraction. The advent of 3D printers now makes
it possible to visualize the topology of such basins of attraction as the results presented here
illustrate.
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1. Introduction

When the parameters of a system of ordinary differ-
ential equations are changed, bifurcations typically
occur where the solution switches from chaotic to
nonchaotic or where the attractor becomes a repel-
lor. For systems that have attractors, when param-
eters change, the shapes of both the attractors and
their basins of attraction will change correspond-
ingly. It is relatively easy to visualize and describe
the attractor and its basin when there is only a
single attractor, but the situation becomes com-
plicated when the system is multistable with two
or more coexisting attractors, each with its own
basin of attraction and often with a fractal bound-
ary between the basins.

The Lorenz [1963] system as originally pro-
posed is given by

dx

dt
= σ(y − x)

dy

dt
= x(ρ − z) − y

dz

dt
= xy − βz

(1)

with σ = 10, ρ = 28, and β = 8/3.
With this set of parameters, the system has a

single globally attracting attractor, meaning that
almost all points in the space, except a zero mea-
sure set of points, will be attracted to it. Basins
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of attraction can be classified into four types
[Sprott & Xiong, 2015] according to the portion
of the state space that is occupied by the basin.
According to this classification, the globally attract-
ing Lorenz attractor is Class 1a, and such a basin
is relatively rare among chaotic systems.

Yorke and Yorke [1979] long ago pointed out
that when the parameter ρ is reduced from 28 to
the range (24.06, 24.74) with σ = 10 and β =
8/3, the unstable equilibria at the center of the
wings become stable while the strange attractor
continues to exist. Thus the Lorenz system becomes
tristable with three coexisting attractors, each with
its basin of attraction. The basins for such a three-
dimensional multistable state are intertwined and
hard to visualize, and that is the main motivation
for this work.

2. Tristability of the Lorenz System

Basins of attraction for three-dimensional systems
are usually examined in cross-section, and Figs. 1
and 2 show such plots for the Lorenz system with
(σ, ρ, β) = (10, 24.4, 8/3). Figure 1 is in the plane
z = 23.4, and Fig. 2 is in the plane x = y, both cho-
sen to pass through the stable equilibrium points.
In the figures, the black lines represent the chaotic
attractor, and the two black dots are the two sta-
ble equilibrium points. There is a third unstable
equilibrium point at the origin, shown as a small

Fig. 1. Cross-section of three attractors (black) and their
basins in the plane z = 23.4 for ρ = 24.4.

Fig. 2. Cross-section of three attractors (black) and their
basins in the plane x = y for ρ = 24.4. The unstable equilib-
rium point at the origin is shown as a small black circle.

open circle at the lower center of Fig. 2. The light
blue area is the basin of the chaotic attractor,
while the green and yellow areas are the basins of
the respective stable equilibrium points. From the
cross-sections, the basins are seemingly isolated, but
a basin must be everywhere connected in space.
Thus the basins must be connected in some kind
of three-dimensional spiral structure since they are
not connected in either plane shown in the figures.

From the two cross-sections, several features of
the basins can be observed. The three basins appear
to fill the space, except for a set of measure zero,
consisting of the basin boundaries and the unstable
equilibrium point. This is expected since the Lorenz
system had a globally attracting strange attrac-
tor before the parameter change. The basins of the
two equilibrium points are symmetric and invariant
under the transformation (x, y, z) → (−x,−y, z)
as expected from the form of the equations. How-
ever, the two cross-sections are insufficient to visu-
alize how the three basins are intertwined in three
dimensions.

3. 3D Visualizing and 3D Printing

If a point in a given space as time advances moves
toward and finally stays on an attractor, then that
point belongs to a set of points called the basin of
attraction of that attractor. While it may take a
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long time for the point in the basin to reach the
attractor, a relatively shorter time is needed for a
point to move to the neighborhood of the attractor
and keep tending to it. The task can be reduced to
two steps: first, calculating the basin, and second,
visualizing its shape and form.

Currently there is no general method to deter-
mine the basin of attraction directly from the sys-
tem of equations, and so it is necessary to test each
point in state space as an initial condition and cal-
culate numerically where it goes as time advances.
Of course, it is impractical to test every point in a
three-dimensional space, and so it is necessary to
make some simplifications and approximations.

From Figs. 1 and 2, the basins of the two equi-
librium points appear to be symmetric under the
transformation (x, y, z) → (−x,−y, z) as can be
simply proven. Call the basin a set B, and since
all points in the basin go to the equilibrium point
according to the equations, call the equilibrium
point A. Then we have a function f : A → B,
which in this case is Eq. (1). We have B = f−1(A).
Let T be the transformation sending (x, y, z) to

(−x,−y, z). Then the other equilibrium point which
is symmetric to A is T (A), and the basin B′ of it is
B′ = f−1 ◦ T (A). Since functions f and T are com-
mutative, B′ = f−1 ◦ T (A) = T ◦ f−1(A) = T (B).
Therefore, the symmetry of the two equilibrium
points applies to their basins as well. Note that this
proof is based on the existence of the two equilib-
rium points. Systems that are not rotationally sym-
metric will generally not have symmetric basins.
Furthermore, the basin of the strange attractor is
the complementary set to the basins of the two equi-
librium points in the whole space, meaning that no
points in the space will escape to infinity. This helps
us to subdivide the regions. Studying the basin of
one of the equilibrium points is sufficient to under-
stand the entire system since the basin of other equi-
librium point will be symmetric with it, and the
basin of the strange attractor will be the remainder
of the space.

Since the basins extend to infinity, it is neces-
sary to limit the exploration to some finite portion
of the space, here taken as −100 to 100 in each of
the variables (x, y, z). Points in that subspace are

Fig. 3. Each of the examined points that belong to the basin is marked as a blue dot in space. Millions of discrete blue dots
dispersed in the space give a rough shape of the basin. The space is (x, y, z) all from −100 to 100. This graph is plotted using
MATLAB.
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randomly chosen for testing. Taking each chosen
point as an initial condition, the differential equa-
tions are solved with the fourth-order Runge–Kutta
MATLAB ode45 code. Ode45 is an accessory code
for solving differential equations with an adaptive
step size chosen to limit the error at each step to
less than 10−7. If the trajectory of a given initial
condition comes within a distance 2 of an equilib-
rium point, the initial condition is assumed to be in
the basin of that point attractor. About five million
points are tested, and Fig. 3 shows in a MATLAB
window those points that are in the basin of one of
the equilibrium points.

Since 3D printing requires the object to be solid
and connected, the collection of isolated points is
too dilute for actual printing. Therefore, a method
was used to transfer the discrete points into a 3D
printable solid. Since the basin extends to infinity
in one direction, the rectangular space that con-
tains the points was divided into 100 × 50 × 50
boxes. If a box contains at least one point belong-
ing to the basin, that box is counted. If a box
does not contain a point, then it is ignored. This
is a 3D generalization of the way images consist-
ing of finitely many points are displayed in 2D on
a computer screen by illuminating only those pix-
els that contain a point. We transfer the discrete
point clouds into a 3D printable solid that is com-
posed of small rectangular boxes. The boundary of
the solid is then extracted by the “Marching Cube”
method [Lorensen & Cline, 1987] as implemented in
MATLAB through the function “isosurface().” The

Fig. 4. The basin of attraction of one of the stable equi-
librium points as solidified and displayed in Meshlab. The
formerly discrete points have been transformed into a con-
nected solid body that is 3D printable.

Fig. 5. A photograph of the basin of one of the stable equi-
librium points after 3D printing. The actual object is small
and light, and thus can be easily held and viewed from dif-
ferent angles.

extracted surface is represented by a 3D triangle
mesh whose nodal and connectivity information is
written to the output file via MATLAB functions
following the standard STL format [Grimm, 2004].
The obtained STL file is then ready for 3D print-
ing. By this method the shape of the basin becomes
a bit rougher, but it still gives a good represen-
tation as shown in Fig. 4, which is produced by a
program called “Meshlab” that can visualize files in
STL format. Printing all the boxes that are included
gives the 3D printed solid whose photograph is in
Fig. 5. The basins of the two equilibrium points are
twisted and entangled as shown by the photograph

Fig. 6. A photograph of the basins of the two equilibrium
points (red and black) after 3D printing. The basins are
twisted and intertwined. The rest of the empty space is the
basin of the chaotic attractor.

1750128-4

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



August 2, 2017 15:37 WSPC/S0218-1274 1750128

3D Printing — The Basins of Tristability in the Lorenz System

in Fig. 6. The rest of the “blank” space is the basin
of the chaotic attractor.

4. Conclusion

The Lorenz system is one of the most famous
chaotic systems, but its tristable form is not widely
known. This paper describes a method for using a
3D printer to directly visualize the basins of attrac-
tion of this system. The method is easily general-
ized to other systems and provides a new means for
visualizing basins of attraction for 3D flows. The
method should be of interest to chaos researchers
as well as artists and others who have never seen
basins of attraction displayed in such a direct way.

References

Grimm, T. [2004] User ’s Guide to Rapid Prototyping
(Society of Manufacturing Engineers), p. 55.

Lorenz, E. N. [1963] “Deterministic nonperiodic flows,”
J. Atmos. Sci. 20, 130–141.

Lorensen, W. E. & Cline, H. E. [1987] “Marching cubes:
A high resolution 3D surface construction algorithm,”
ACM Comput. Graph. 21, 163–169.

Sprott, J. C. & Xiong, A. [2015] “Classifying and quan-
tifying basins of attraction,” Chaos 25, 083101-1–7.

Yorke, J. & Yorke, E. [1979] “Metastable chaos: The
transition to sustained chaotic behavior in the Lorenz
model,” J. Stat. Phys. 21, 263–277.

1750128-5

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.


	1 Introduction
	2 Tristability of the Lorenz System
	3 3D Visualizing and 3D Printing
	4 Conclusion

