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Strange attractors have been extensively studied, but the same is not true for strange repellors.
Some time-reversible systems have repellors that mirror their corresponding attractors and that
exchange roles when time is reversed. In this paper, a conversion operator is introduced by
which an easy transformation can be constructed between such a time-reversible system with
an attractor/repellor pair and an irreversible one with a pair of attractors, or vice versa, thus
expanding the list of such examples.
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1. Introduction

Most systems of ordinary differential equations with
dissipation are irreversible with an attractor in for-
ward time and unbounded solutions in reversed
time as expected from the Second Law of Ther-
modynamics. However, there are also examples of
dissipative systems that are time-reversible with an
attractor/repellor pair that exchange roles when
time is reversed [Hoover, 1995; Hoover et al., 1996;
Sprott, 2015]. Many systems are also bistable with
a symmetric pair of attractors in forward time
[Sprott, 2014a, 2014b; Xu et al., 2016; Bao et al.,

2016; Li & Sprott, 2014a; Lai & Chen, 2016a;
Galias & Tucker, 2013; Zhang et al., 2015]. Here
we provide a general method whereby symmetric
time-reversible systems with an attractor/repellor
pair can be converted into a bistable irreversible sys-
tem in which the repellor becomes an attractor, and
vice versa. Practical applications of the idea include
a time-reversal mirror (or phase conjugate array)
implemented to spatially and temporally refocus an
incident acoustic field back to its origin [Kuper-
man et al., 1998] and the time-reversal process
that recombines the temporal multipath resulting
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Fig. 1. Relation between attractors and repellors.

in reduced bit errors for underwater acoustic com-
munication [Edelmann et al., 2001].

We show here that there are relations between
irreversible and time-reversible dissipative systems
and that the introduction of a plane of equilibria can
convert one type of system into the other, thereby
converting an attractor into a repellor, or vice versa
as shown in Fig. 1. Four types of chaotic systems are
considered, including monostable and multistable
asymmetric and symmetric systems.

In Sec. 2, we propose a general approach for
bridging an attractor and a repellor. In Sec. 3, we
show examples in which a symmetric attractor/
repellor pair in a time-reversible system is converted
into a symmetric pair of strange attractors and the
converse in which systems with a symmetric pair of
strange attractors are converted into systems with
a symmetric attractor/repellor pair. In Sec. 4, we
show examples in which a conditionally symmet-
ric pair of strange attractors is converted into an
attractor/repellor pair in an asymmetric system.
Discussion and conclusions are given in the last
section.

2. An Approach for Bridging
Attractors and Repellors

An attractor in a dynamical system may corre-
spond to a repellor in another system. Some of the
attractors can be transformed into repellors when
an operation is applied to the governing equations.
If a dynamical system has an attractor located in

a subspace, the attractor can be transformed into
a repellor by a suitable plane of equilibria. For
example, if a dynamical system Ẋ = F (X), (X =
(x1, x2, . . . , xN )) has an attractor with at least one
positive definite variable xi, the derived system with
a plane of equilibria Ẋ = F (X)p, (p = −sgn(xi))
can produce a repellor, which can be proved by a
variable substitution. Some (if not all) the attrac-
tors in a dynamical system can be transformed into
repellors by this means. In principle, there is noth-
ing about the method that requires the system to
be symmetric. However, symmetric or asymmet-
ric systems have different regimes of multistability,
which provide different classes of coexisting attrac-
tors for this transformation. Symmetric systems
may have coexisting symmetric pairs of attractors,
while asymmetric systems may have conditional
symmetry and coexisting conditionally symmetric
attractors where conditional symmetry is defined
in [Li et al., 2017].

Definition 2.1. Define a dynamical system Ẋ =
F (X) = (f1(X), f2(X), . . . , fN (X)), (X = (x1,
x2, . . . , xN )) as a conditionally symmetric time-
reversible system if there exists a variable substitu-
tion: u1 = −x1, u2 = −x2, . . . , uk = −xk, ui = xi,
uj = xj + cj , s = −t (here k, i ∈ Z+, i ∈ {k + 1,
k + 2, . . . , N}\{j}) satisfying U̇ = F (U), (U =
(u1, u2, . . . , uN )). Here some variables are reversed
along with the reversed time, and k ≤ N − 1 since
there must exist at least one variable for offset
boosting.

Definition 2.2. Define a dynamical system Ẋ =
F (X) = (f1(X), f2(X), . . . , fN (X)), (X = (x1,
x2, . . . , xN )) as a symmetric time-reversible system
if there exists a variable substitution: u1 = −x1,
u2 = −x2, . . . , uk = −xk, ui = xi, s = −t (here
k, i ∈ Z+, i ∈ {k + 1, k + 2, . . . , N}) satisfying
U̇ = F (U), (U = (u1, u2, . . . , uN )). Here some vari-
ables are reversed along with the reversed time,
specifically, if k = N , all the variables will be
reversed in the corresponding domain of time.

Definition 2.3. Define a dynamical system Ẋ =
F (X) = (f1(X), f2(X), . . . , fN (X)), (X = (x1,
x2, . . . , xN )) as symmetric if there exists a variable
substitution: u1 = −x1, u2 = −x2, . . . , uk = −xk,
ui = xi (here k, i ∈ Z+, i ∈ {k + 1, k + 2, . . . , N})
satisfying U̇ = F (U), (U =(u1, u2, . . . , uN )). Specif-
ically, for a three-dimensional dynamical system,
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Ẋ = F (X), (X = (x1, x2, x3)): If xi = −ui (i ∈
{1, 2, 3}) is subject to the same governing equation,
the system is reflection symmetric; if xi = −ui,
xj = −uj , xk = uk (i, j ∈ {1, 2, 3}, i �= j, k ∈
{1, 2, 3}\{i, j}) is subject to the same governing
equation, the system is rotationally symmetric. If
x1 = −u1, x2 = −u2, x3 = −u3 is subject to the
same governing equation, the system is inversion
symmetric [Sprott, 2014a; Li & Sprott, 2016].

Theorem 2.1. A symmetric time-reversible dynam-
ical system can be transformed into a symmetric
system by introducing a plane of equilibria with an
odd function.

Proof. Suppose there is a symmetric time-
reversible dynamical system,




dx1

dt
= f1(x1, x2, . . . , xn)

dx2

dt
= f2(x1, x2, . . . , xn)

...

dxn

dt
= fn(x1, x2, . . . , xn).

(1)

According to Definition 2.1, there exists a trans-
formation, u1 = −x1, u2 = −x2, . . . , um = −xm,
uk = xk, s = −t (here m,k ∈ Z+, k ∈ {m + 1,m +
2, . . . , n}) subject to the equation




du1

ds
= f1(u1, u2, . . . , un)

du2

ds
= f2(u1, u2, . . . , un)

...

dun

ds
= fn(u1, u2, . . . , un).

(2)

Thus fj(x1, x2, . . . , xn) = fj(u1, u2, . . . , un), (j = 1,
2, . . . ,m); fk(x1, x2, . . . , xn) = −fk(u1, u2, . . . ,
un), (k ∈ {m + 1,m + 2, . . . , n}). Suppose there
exists an odd function g(x1, x2, . . . , xm) that satis-
fies the condition g(−x1,−x2, . . . ,−xm) = −g(x1,
x2, . . . , xm), introducing an odd function as in
Eq. (3) can preserve the basic dynamics of sys-
tem (1) since it only adds a plane of equilibria to
the original system,




dx1

dt
= f1(x1, x2, . . . , xn)g(x1, x2, . . . , xm)

dx2

dt
= f2(x1, x2, . . . , xn)g(x1, x2, . . . , xm)

...

dxn

dt
= fn(x1, x2, . . . , xn)g(x1, x2, . . . , xm).

(3)

Make a substitution of variables for Eq. (3): u1 =
−x1, u2 = −x2, . . . , um = −xm, uk = xk (here m,

k ∈ Z+, k ∈ {m + 1,m + 2, . . . , n}). Then duj

dt =
d(−xj)

dt = −d(xj)
dt = −fj(x1, x2, . . . , xn)g(x1, x2, . . . ,

xm) = fj(x1, x2, . . . , xn)g(−x1,−x2, . . . ,−xm) =
fj(u1, u2, . . . , un)g(u1, u2, . . . , um)(j = 1, 2, . . . ,m);
while duk

dt = dxk
dt = fk(x1, x2, . . . , xn)g(x1, x2, . . . ,

xm) = −fk(x1, x2, . . . , xn)g(−x1,−x2, . . . ,−xm) =
fk(u1, u2, . . . , un)g(u1, u2, . . . , um), (m,k ∈ Z+, k ∈
{m + 1,m + 2, . . . , n}). Therefore, the following
equation is obtained,



du1

dt
= f1(u1, u2, . . . , un)g(u1, u2, . . . , um)

du2

dt
= f2(u1, u2, . . . , un)g(u1, u2, . . . , um)

...

dun

dt
= fn(u1, u2, . . . , un)g(u1, u2, . . . , um),

(4)

which means that system (3) is a symmetric system.
�

Theorem 2.2. A symmetric dynamical system can
be transformed into a symmetric time-reversible
system by introducing a plane of equilibria with an
odd function.

Proof. Suppose there is a symmetric system



dx1

dt
= f1(x1, x2, . . . , xn)

dx2

dt
= f2(x1, x2, . . . , xn)

...

dxn

dt
= fn(x1, x2, . . . , xn).

(5)

1750149-3

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
10

/1
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 5, 2017 10:54 WSPC/S0218-1274 1750149

C. Li & J. C. Sprott

According to Definition 2.3, there exists a trans-
formation: u1 = −x1, u2 = −x2, . . . , um = −xm,
uk = xk (here m,k ∈ Z+, k ∈ {m+1,m+2, . . . , n})
subject to the equation




du1

dt
= f1(u1, u2, . . . , un)

du2

dt
= f2(u1, u2, . . . , un)

...

dun

dt
= fn(u1, u2, . . . , un).

(6)

Suppose there exists an odd function g(x1,
x2, . . . , xm) that satisfies the condition g(−x1,
−x2, . . . ,−xm) = −g(x1, x2, . . . , xm), when a plane
of equilibria is introduced as in the following,



dx1

dt
= f1(x1, x2, . . . , xn)g(x1, x2, . . . , xm)

dx2

dt
= f2(x1, x2, . . . , xn)g(x1, x2, . . . , xm)

...

dxn

dt
= fn(x1, x2, . . . , xn)g(x1, x2, . . . , xm).

(7)

Following the proof of Theorem 1, Eq. (7) is a sym-
metric time-reversible system. �

For the case of conditional symmetry, we get
the same conclusion from the above proof. From
the above analysis, we conclude that the difference
between a symmetric irreversible system and a sym-
metric time-reversible system is only an operator
of a plane of equilibria (g(x1, x2, . . . , xm) = 0). If
a symmetric time-reversible system can retain its
basic dynamics when a plane of equilibria is intro-
duced, it becomes an irreversible system, and the
attractor/repellor pair becomes a pair of coexisting
attractors which can be selected by choosing appro-
priate initial conditions. The choice of where to put
the plane is optional, but to preserve the symme-
try, the most natural choice for p = g(x, y, z) is one
of the three orthogonal planes through the origin.
For example, taking p = ±mx or p = ±m sgn(x)
and multiplying all the equations by p introduces a
plane of equilibria at x = 0 into the original sys-
tem. Generally, the plane of equilibria should not

intersect the original attractor, and even when it
does not, there is no guarantee that the attrac-
tor will survive the transformation. However, since
there is a parameter m that can be adjusted, a
suitable transformation can often be found. In this
paper, we take the examples from [Sprott, 2015] and
[Li et al., 2017] for easy demonstration.

3. Symmetric Systems and Their
Time-Reversible Versions

3.1. Repellor becomes an attractor

Case A. Inversion-Invariant System

A symmetric time-reversible system can be con-
verted into a regular symmetric bistable system in
which the attractor/repellor becomes a symmet-
ric pair of attractors. A simple symmetric time-
reversible inversion-invariant system is




ẋ = 1 + yz,

ẏ = −xz,

ż = y2 + ayz.

(8)

According to Theorem 2.1, when a plane of equi-
libria is introduced, here p = z, the inversion-
invariant time-reversible system (8) becomes a
bistable inversion-invariant system as




ẋ = (1 + yz)p,

ẏ = −xzp,

ż = (y2 + ayz)p.

(9)

Now the invisible repellor becomes an accessible
attractor that coexists with the original attractor
as shown in Fig. 2. We can also prove the follow-
ing: system (8) is time-reversible with inversion-
invariant symmetry [Sprott, 2015], and the revised
system (9) has a plane of equilibria z = 0 when
p = z. The transformation (x, y, z, t) → (−x,−y,
−z, t), converts system (9) into an identical equa-
tion. Therefore, according to Definition 2.3, sys-
tem (9) has inversion invariant symmetry.

Note that sometimes we can construct a plane
of equilibria based on the existing terms. For exam-
ple, in Eq. (8), three of five terms include the vari-
able z, so we can multiply the constant term of 1
and the quadratic term of y2 by sgn(z) to make the
system symmetric about the z = 0 plane, and such
a modification often preserves the chaos, perhaps
requiring a readjustment of the parameters.
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(a) (b)

Fig. 2. Coexisting attractors of system (9) with a = 2 when the repellor becomes an attractor.

Case B. Rotationally-Invariant System

The simplest time-reversible rotationlly-invariant
system is the Sprott D system [Sprott, 1994]. The
system with a minor transformation of variables is




ẋ = y + z,

ẏ = −x,

ż = ax2 + yz.

(10)

When a = 3, the corresponding strange attrac-
tor has Lyapunov exponents (0.1027, 0,−1.3198).
System (10) is invariant under the transfor-
mation (x, y, z, t) → (x,−y,−z,−t), giving a
time-reversed dynamic that is symmetric with
the one for forward time but rotated by 180◦.
According to Theorem 2.1, introducing a plane
of equilibria, i.e. p = z, the time-reversible
rotationally-invariant system (10) becomes the fol-
lowing bistable rotationally-invariant system




ẋ = (y + z)p,

ẏ = −xp,

ż = (ax2 + yz)p.

(11)

System (11) has a coexisting symmetric pair of
attractors with rotational symmetry as shown in
Fig. 3. The symmetric repellor becomes an attractor
when the plane of equilibria is introduced. The new
introduced plane of equilibria can also be obtained
from p = sgn(z).

Since the special case of the Nosé–Hoover ther-
mostated oscillator has a strange attractor/repellor
pair coexisting with a set of nested invariant tori
that are symmetric about the y- and the z-axes,
the plane of equilibria y = 0 or z = 0 will “cut”
the attractor. Therefore, the direct introduction of
a plane of equilibria cannot transform the repel-
lor into an attractor since the repellor lies in the
basin of the attractor. However, the attractor can
be shifted to be positive or negative in z or y, and
then introducing a plane of equilibria will transform
the repellor into an attractor. When the z variable
is boosted positive by ẏ = −x− y(z− 8 sgn(z)), the
new introduced plane of equilibria p = sgn(z) will
give coexisting strange attractors, one of which is
from the original overlapped repellor. The newly
introduced term −8 sgn(z) is for offset boosting,
which is applied instead of constant −8 for not
destroying the property of time-reversible rotational

(a) (b)

Fig. 3. Coexisting attractors of system (11) with a = 3 when the repellor becomes an attractor.
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(a) (b)

Fig. 4. Coexisting attractors of system (13) with a = 2 when the repellor becomes an attractor.

symmetry. Note that since the rate of volume con-
traction is revised to be −(z−8 sgn(z)) whose aver-
age is not zero, the coexisting torus disappears.

Case C. Reflection-Invariant System

A time-reversible symmetric system was proposed
[Sprott, 2015], which is invariant under the trans-
formation (x, y, z, t) → (x, y,−z,−t) showing a
dynamic that is symmetric with the one for forward
time but reflected about the z = 0 plane,




ẋ = −yz,

ẏ = (ax + y + z2)z,

ż = x − x3.

(12)

When a = 2, system (12) has a strange
attractor/repellor pair with Lyapunov exponents
(0.0892, 0,−1.2270). According to Theorem 2.1,
introducing a plane of equilibria, i.e. p = −sgn(z),
the time-reversible reflection-invariant system (12)
becomes the bistable reflection-invariant system,




ẋ = −yzp,

ẏ = (ax + y + z2)zp,

ż = (x − x3)p.

(13)

System (13) has a symmetric pair of coexisting
attractors with reflection symmetry as shown in
Fig. 4, whose basins of attraction are shown in
Fig. 5. The symmetric repellor returns when the
plane of equilibria is introduced. Note that the
basins have a simple symmetric structure rather
than fractal.

3.2. Attractor becomes a repellor

Similarly, a bistable symmetric system can be trans-
formed into a symmetric time-reversible system

when a proper plane of equilibria is introduced. To
demonstrate this idea, we introduce a new plane
of equilibria into three systems of different symme-
try. Note that since a plane of equilibria will “cut”
the attractor and consequently destroy the original
strange attractor, the parameter should be adjusted
before introducing the equilibria so that the dynam-
ics of the system in forward time is preserved.

Case A. Inversion-Invariant System
A system with inversion-invariant symmetry was
studied by Coullet et al. [1979],




ẋ = y,

ẏ = z,

ż = −z − ay − x3 + bx.

(14)

Fig. 5. Basins of attractors at z = 0 for system (13).
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(a) (b)

Fig. 6. The repellor returns in place of one of the attractors of system (15) with a = 2.1 and b = 2.

When a = 2.1, b = 2, system (14) has a symmetric
pair of coexisting strange attractors [Sprott, 2014].
According to Theorem 2.2, introducing a plane of
equilibria p = x into system (14) gives a time-
reversible system with inversion-invariant symme-
try, as can be proved by an invariant transformation
(x, y, z, t) → (−x,−y,−z,−t),




ẋ = yp,

ẏ = zp,

ż = (−z − ay − x3 + bx)p.

(15)

The corresponding attractor and repellor are shown
in Fig. 6. When p = −x, the attractor will become a
repellor, and the repellor becomes an attractor. The
new introduced function can also be p = ±sgn(x).

Case B. Rotationally-Invariant System
A classic rotationally-invariant system is the Lorenz
system [Lorenz, 1963; Li & Sprott, 2014a],




ẋ = a(y − x),

ẏ = −xz + cx − y,

ż = xy − bz.

(16)

This system is invariant under the transforma-
tion (x, y, z) → (−x,−y, z), corresponding to a

180◦ rotation about the z-axis. When a = 0.12,
b = −0.6, c = 0, system (16) has a symmetric
pair of coexisting attractors. According to Theo-
rem 2.2, introduction of a plane of equilibria p = x
in system (16) will separate the coexisting attrac-
tors into an attractor and a repellor as shown in
Fig. 7, and the new system (17) is a time-reversible
system with rotationally-invariant symmetry. Sim-
ilarly, when p = −x, the attractor and the repellor
will exchange. The newly introduced function can
also be p = ±sgn(x),




ẋ = a(y − x)p,

ẏ = (−xz + cx − y)p,

ż = (xy − bz)p.

(17)

Case C. Reflection-Invariant System
A variant of the Rössler attractor with reflection
symmetry [Li et al., 2015] is invariant under the
transformation (x, y, z) → (x, y,−z), corresponding
to symmetry about the z = 0 plane,




ẋ = −y − z2,

ẏ = x + ay,

ż = b sgn(z) + z(x − c).

(18)

(a) (b)

Fig. 7. The repellor returns in place of one of the attractors of system (17). Here a = 0.12, b = −0.6, c = 0, and the initial
condition is (0.8,−3, 0).
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(a) (b)

Fig. 8. The repellor returns in place of one of the coexisting attractors of system (19). Here a = b = 0.2, c = 2.5, and the
initial condition is (0, 0, 1).

When a = b = 0.2, c = 2.5, system (18) has a
symmetric pair of coexisting single-scroll strange
attractors. According to Theorem 2.2, the newly
introduced plane of equilibria p = sgn(z) will sepa-
rate the coexisting attractors into an attractor and
a repellor as shown in Fig. 8. If p = z, both the
attractor and the repellor are limit cycles. Revising
the plane of equilibria to p = −sgn(z) or p = −z
causes the attractor and the repellor to interchange,




ẋ = (−y − z2)p,

ẏ = (x + ay)p,

ż = (b sgn(z) + z(x − c))p.

(19)

When a symmetric system only has a single sym-
metric attractor, the introduction of a plane of equi-
libria can convert the attractor into a repellor. The
chaotic system VB15 is such an example [Li &
Sprott, 2016],




ẋ = (az − yz)p,

ẏ = (z2 − by)p,

ż = (x − z)p.

(20)

When a = 4, b = 0.4, p = 1, system (20) has a
single chaotic attractor with rotational symmetry
located in the subspace with positive y. When a
plane of equilibria is introduced, here p = −sgn(y),
system (20) has an invisible repellor.

Note that this method depends on whether the
repellor lies in the basin of the attractor. As men-
tioned above, the method works for cases where
the attractor and repellor are sufficiently isolated
since introducing the plane of equilibria between
them precludes the possibility of a single orbit con-
necting the repellor to the attractor because the
orbit cannot cross the plane [Jafari et al., 2016a;

Jafari et al., 2016b]. The dynamical behavior is
complicated since the attractor can be hidden if
it cannot be found from the neighborhood of any
equilibria [Leonov et al., 2011, 2012; Pham et al.,
2016a; Pham et al., 2016b; Wei et al., 2015]. Here a
newly introduced plane of equilibria can exchange
the role of a repellor and an attractor and make
the system multistable or monostable. We can con-
struct additional time-reversible symmetric systems
by starting with a system having a symmetric pair
of coexisting attractors and adding a multiplicative
term in all three equations to reverse the sign of
time without destroying the chaos.

4. Repellor in Asymmetric Systems

The introduction of a plane of equilibria can con-
vert an asymmetric system into a time-reversible
version, in which the attractor becomes a repellor.
Take the chaotic system VB6 as an example [Li &
Sprott, 2016],




ẋ = 1 − yz,

ẏ = az2 − yz,

ż = x.

(21)

When a = 0.22, system (21) has a strange attractor
located in the subspace with positive y.



ẋ = (1 − yz)p,

ẏ = (az2 − yz)p,

ż = xp.

(22)

When a plane of equilibria is introduced, p =
−sgn(y), the time-reversible version [Eq. (22)] has
an invisible repellor. Note that the plane of equilib-
ria introduced by p = sgn(y) can retain the attrac-
tor, which is unlike other cases mentioned in this
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(a) (b)

Fig. 9. The repellor returns in place of one of the coexisting attractors of system (23), initial condition (3,−1.5, 1) is for the
attractor.

paper with an attractor in both forward and back-
ward time.

When an asymmetric chaotic system has coex-
isting attractors in the same subspace (for exam-
ple, a subspace with a positive variable x), all these
attractors can be converted into repellors by a plane
of equilibria (correspondingly from the multiplica-
tive term p = −sgn(x)). However, if an asymmet-
ric chaotic system has coexisting attractors on both
sides of the introduced plane, the introduction of a
plane of equilibria will retain the attractors on one
side while forcing the attractors from the other side
to become repellors. Like the case with the sym-
metric system and the symmetric time-reversible
system, we can also obtain conditional symmetric
time-reversible systems. To see this clearly, take

the chaotic systems with conditional symmetry (a
special case of asymmetry) in [Li et al., 2017] as
examples. The case of conditional reflection sym-
metric system and its time-reversible version can
be expressed as,



ẋ = (y2 − 0.4z2)p,

ẏ = (−z2 − 1.75y + 3)p,

ż = (yz + (|x| − 3))p.

(23)

When p = 1, system (23) is the original system
with conditional reflection symmetry, but when a
plane of equilibria is introduced by p = sgn(z), the
attractor above the z = 0 plane can also be accessi-
ble while the other coexisting attractor becomes a
repellor as shown in Fig. 9. When p = −sgn(z), the

(a) (b)

Fig. 10. The repellor returns in place of one of the coexisting attractors of system (24), initial condition (3, 1, 0.5) is for the
attractor.
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attractor and the repellor will exchange. A similar
process can be introduced for the case of a condi-
tional rotationally symmetric system,




ẋ = (y2 − 1.22)p,

ẏ = 8.48zp,

ż = (−y − z + (|x| − 3))p.

(24)

Here p = sgn(x) introduces a plane of equilibria for
time reversal, and the attractor above the x = 0
plane survives while the other coexisting attractor
becomes a repellor as shown in Fig. 10.

5. Conclusions and Discussion

Repellors in dissipative dynamical systems are usu-
ally invisible and intangible. However, they can
often be revealed by introducing a plane of equilib-
ria that converts them into attractors, thereby mak-
ing the system multistable. Eight examples were
given to show how the transformations and their
inverse are executed. The method for converting a
system with coexisting attractors and repellors into
a system with coexisting attractors and vice versa
by introducing a plane of equilibria requires that the
attractor and repellor be sufficiently isolated, and it
requires choosing a suitable function for construct-
ing the plane of equilibria. Otherwise, the newly
introduced function may change the dynamics of
the original system. Fortunately, the signum func-
tion can be applied and works in almost all cases
since it only provides a polarity change without any
amplitude distortion.
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