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Although chaotic signals are considered to have great potential applications in radar and communication engineering,
their broadband spectrum makes it difficult to design an applicable amplifier or an attenuator for amplitude conditioning.
Moreover, the transformation between a unipolar signal and a bipolar signal is often required. In this paper, a more intelli-
gent hardware implementation based on field programmable analog array (FPAA) is constructed for chaotic systems with
complete amplitude control. Firstly, two chaotic systems with complete amplitude control are introduced, one of which has
the property of offset boosting with total amplitude control, while the other has offset boosting and a parameter for partial
control. Both cases can achieve complete amplitude control including amplitude rescaling and offset boosting. Secondly,
linear synchronization is established based on the special structure of chaotic system. Finally, experimental circuits are con-
structed on an FPAA where the predicted amplitude control is realized through only two independent configurable analog
module (CAM) gain values.

Keywords: complete amplitude control, amplitude rescaling, offset boosting, linear synchronization

PACS: 05.45.–a, 05.45.Ac, 05.45.Xt DOI: 10.1088/1674-1056/26/12/120501

1. Introduction

Chaotic signals have great potential applications in radar
and communication engineering because of their broadband
frequency spectrum.[1–20] However, this introduces a corre-
sponding challenge to signal-conditioning since it is difficult
to construct an amplifier or a polarity conversion circuit with
a broadband frequency response. The chaotic signal usually
cannot meet the amplitude requirement for practical applica-
tions. Polarity conversion is also critical since some integrated
circuits require either unipolar or bipolar signals. Although
some effort has been made to realize amplitude control for
chaotic signal through total amplitude scaling and partial am-
plitude scaling,[21–24] the polarity control of chaotic signal has
not received the same attention despite being essential in elec-
tronic engineering.[25–28]

Offset boosting is associated with the DC component of
the variable, and our study shows that one or more variables
in a chaotic system can obtain offset boosting by introduc-
ing a new constant.[26] Consequently the conversion between
a unipolar chaotic signal and a bipolar signal can be realized

by a single DC source or a control rheostat rather than a com-
plicated hardware peripheral unit. Foregoing research has al-
lowed us to realize a system with complete amplitude control
by using amplitude scaling and offset boosting. As shown in
Fig. 1, the signal modulator is replaced by two controllers for
amplitude rescaling and offset boosting, giving complete con-
trol of the chaotic signals for chaos application systems.
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Fig. 1. Application system with chaos.

In this paper, a whole linear control of chaotic signals is
explored through amplitude and offset control in a single sys-
tem, and a linear synchronization between two systems is de-
scribed. We consider two cases of complete amplitude control

∗Project supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology, China (Grant No. 2016205),
the Natural Science Foundation of the Jiangsu Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJB120004), the Priority Academic
Program Development of Jiangsu Higher Education Institutions, and the Natural Science Foundation of Hebei Province, China (Grant No. A2015108010).

†Corresponding author. E-mail: goontry@126.com; chunbiaolee@nuist.edu.cn
© 2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

120501-1

http://dx.doi.org/10.1088/1674-1056/26/12/120501
mailto:goontry@126.com; chunbiaolee@nuist.edu.cn
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 26, No. 12 (2017) 120501

where offset boosting can be accompanied by total amplitude
control or partial amplitude control. In Section 2, we give two
examples to show complete amplitude control through a dy-
namical analysis. In Section 3, the linear synchronization of
these types of chaotic systems is studied. In Section 4, we
design the corresponding circuits giving corresponding attrac-
tors, where they can be amplified or shifted with two separate
single control units. The conclusion is given in the last section.

2. Offset boosting with amplitude control
2.1. Offset boosting with total amplitude control

In this type of chaotic system, offset boosting can be used
to realize the transition between a unipolar signal and a bipolar
signal. This is done by adding a constant, while total ampli-

tude control can be used to realize a whole signal rescaling
through a single coefficient. A few variable-boostable chaotic
systems[34] meet this condition, such as chaotic systems Sprott
J, Sprott P[35] and JD0,[36] where the nonlinearity resides in a
single quadratic term, giving a coefficient for amplitude rescal-
ing. Take Sprott J for example,

ẋ = az,
ẏ =−by+ z,
ż =−x+ y+my2 + c.

(1)

When a = b = 2, m = 1, and c = 0, system (1) is chaotic
with Lyapunov exponents (0.0787, 0,−2.0787) and a Kaplan–
Yorke dimension of DKY = 2.0379. The phase trajectory is
shown in Fig. 2.
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Fig. 2. (color online) Strange attractor of system (1) with a = b = 2, m = 1, and c = 0 and initial conditions (x0, y0, z0) = (−1,0.3,0) in (a) x–y plane, (b)
x–z plane, and (c) y–z plane.
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Fig. 3. (color online) Regulated amplitudes and offsets and the Lyapunov exponents of system (1) with initial condition (4, 0, −1/5):
(a) amplitude rescaling with constant Lyapunov exponents and (b) offset regulating with constant Lyapunov exponents.
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Here the parameter m is a total amplitude controller while

the parameter c is an offset boosting controller. To show this,

let c = 0 and x = u/m, y = v/m, z = w/m to obtain new equa-

tions in the variables u, v, w, which are identical to system (1)

with m = 1; while fixing the parameter m and letting x = u+c,

y= v, and z=w to obtain new equations with variables u, v, w,

which are identical to system (1) where c = 0. Therefore, the

coefficient m controls the amplitude of all variables accord-

ing to 1/m while the constant c controls the offset level of the

variable x. Therefore, chaotic signal x in system (1) can obtain

complete amplitude control through the coefficient m and the

constant c.

As shown in Fig. 3, when a = b = 2, the amplitude of

the signal x is inversely proportional to the parameter m, and

the offset can be regulated to be proportional to controller c

without changing the Lyapunov exponents.

The relationship between offset control and amplitude

rescaling can be used to transform a bipolar signal to a unipo-

lar signal by adjusting the depth of offset boosting according

to the signal amplitude. In order to increase the amplitude

through the amplitude parameter, a larger boosting controller

is required correspondingly. Once the boosting controller is in-

troduced into the system, the amplitude controller will conse-

quently modify the depth of boosting. Specifically, in Eq. (1),

variable substitutions x = (u− c)/m, y = v/m, and z = w/m

result in new equations with variables u, v, w,which are identi-

cal to Eq. (1) with c = 0 and m = 1. Therefore, the amplitude

controller m modifies the depth of variable boosting according

to c/m (as shown in Fig. 4), while the absolute distance be-

tween two attractors caused by the offset controller becomes

independent of the amplitude parameter. The interaction be-

tween the amplitude controller and the offset controller allows

signal x to be positive, negative, or have both polarities on any

desired scale. This can be identified in Fig. 4 by the attrac-

tors located on the negative half x axis (blue), positive half x

axis (red) or in the whole x axis (cyan and green with different

amplitudes).
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Fig. 4. (color online) Chaotic attractors with different amplitude rescal-
ing and offset controlling with initial conditions (x,y,z) = (1,0,−0.2):
(a) in x–y and (b) x–z plane.

2.2. Offset boosting with partial amplitude control

New variable-boostable cases with partial amplitude con-
trol were found by an exhaustive computer search.[29] One of
these cases has global attraction leading to a simple imple-
mentation since the initial conditions do not need to be revised
accordingly, 

ẋ = ayz,
ẏ = 1−mz2,

ż = x+ yz+ c.
(2)

When a = 1, m = 1, and c = 0, system (2) is chaotic with Lya-
punov exponents (0.1271, 0, −0.5526) and a Kaplan–Yorke
dimension of DKY = 2.2299. The phase trajectory in different
planes is shown in Fig. 5.
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Fig. 5. (color online) Strange attractor of system (2) with a = 1, m = 1, and c = 0 and initial conditions (x0,y0,z0) = (1,1,−1) in (a) x–y plane, (b)
x–z plane, and (c) y–z plane.
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Here the parameter m is a partial amplitude controller
while the parameter c is an offset boosting controller. To
show this, we take c = 0 and x = u/

√
m, y = v, z = w/

√
m

to obtain new equations in variables u, v, w, which are iden-
tical to system (2) with m = 1. Therefore, coefficient m con-
trols the amplitude of variables x and z according to 1/

√
m

while leaving the amplitude of y unchanged. The variable x
is boosted along the x-axis according to the constant c. Nega-
tive c boosts the variable in the positive direction, while pos-
itive c draws the variable backward in the negative direction.
To show this, we fix the parameter m and let x = u–c, y = v,
z = w to obtain new equations in the variables u, v, w, which

are identical to system (2) with c = 0. A pre-fixed boost-
ing controller will be modified by the amplitude controller
according to 1/

√
m, thus influencing the transformation be-

tween the bipolar and the unipolar signal. When the param-
eter m and c vary, system (2) has the same Lyapunov ex-
ponents as indicated by the shifted and rescaled equilibrium
points of saddle-foci (−c,0,±1/

√
m) with fixed eigenvalues

(−0.7709,0.3855±1.5639i) as shown in Fig. 6. For a = 1,
and m = 4, the amplitude of the variables x and z are scaled
by 1/2 while the amplitude of variable y remains the same as
shown in Fig. 7. When the offset-boosting controller c varies,
the attractor shifts along the x axis.
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Fig. 6. (color online) Regulated amplitudes and offsets and the Lyapunov exponents of system (2) with initial condition (1, 1, −1): (a) amplitude rescaling
with constant Lyapunov exponents (b) offset boosting with constant Lyapunov exponents.
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3. Linear synchronization
In addition to the complete amplitude control of the

chaotic signal in a single chaotic system as mentioned above,
it may also be necessary to obtain a similar linear control in
a synchronization system[29,32–36] where the chaotic signal of
the driven system is the linear transformation of the one from
the driving system. This is defined as “linear generalized syn-
chronization” or “linear synchronization”.[37,38] In the follow-
ing, we construct a synchronization system of this type.

Theorem 1 Suppose that a chaotic driving system 𝑥 is
described by,

𝑥̇=𝐴𝑥+𝑓(𝑥), (3)

where 𝑥 ∈𝑅𝑛 is the state vector of the system, while
𝐴 ∈𝑅𝑛×𝑛 is a constant matrix, 𝑓 :𝑅𝑛→𝑅𝑛 is Lipschitz
continuous, that is, there exist positive constants l such that
| f (w)− f (v)| ≤ l||w− v||, w,v ∈ Rn. The driven system 𝑦 can
obtain a linear general synchronization[29,30] with the driving
system,

𝑦̇ =𝐾𝐴𝐾−1 (𝑦−𝐵)+K𝑓
(
𝐾−1 (𝑦−𝐵)

)
+𝑢, (4)

where 𝐾 = diag(k1k2, . . . ,kn), 𝐵 = (b1b2, . . . ,bn), and the
controller is 𝑢=− η𝑒, here 𝜂̇= θ𝑒T𝑒,(θ > 0), the error vec-
tor is defined as 𝑒= 𝑦−(𝐾𝑥+𝐵).

Proof From the error vector and systems (3) and (4), it
yields

𝑒̇ = 𝑦̇−𝐾𝑥̇=𝐾𝐴𝐾−1𝑒

+𝐾
(
𝑓
(
𝐾−1 (𝑦−𝐵)

)
−𝑓 (𝑥)

)
−𝜂𝑒.

Choose

𝑉 =
1
2
𝑒T𝑒+

1
2θ

(𝜂−𝜂∗)2,

then

𝑉̇ = 𝑒T𝑒̇+(𝜂−𝜂∗) 𝜂̇/θ = 𝑒T𝐾𝐴𝐾−1𝑒

+𝑒T𝐾
(
𝑓
(
𝐾−1 (𝑦−𝐵)

)
−𝑓 (𝑥)

)
−𝜂∗𝑒T𝑒

≤ ||𝐾𝐴𝐾−1||𝑒T𝑒+ 𝑙𝑒T𝑒−𝜂∗𝑒T𝑒

=
(
||𝐾𝐴𝐾−1||+ 𝑙−𝜂∗

)
𝑒T𝑒=−𝑒T𝑒,

where ‖ · ‖ denotes the l2-norm. Therefore, the driving sys-
tem and the driven system can finally go to synchronization.
Here 𝜂∗= ||𝐾𝐴𝐾−1||+ 𝑙+1. Here the elements in matrix
K and matrix B represent the slope and intercept of the lin-
ear function, which is determined by the relation between two
groups of synchronized variables. Theoretically, the control
parameters ki and bi can be set arbitrarily. The synchroniza-
tion performance is related with the coefficient θ positively.

Specifically, for system (2), the driving system can be
written as 

ẋ1 = ax2x3,

ẋ2 = 1−mx2
3,

ẋ3 = x1 + x2x3 + c.

(5)
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We construct the driven system as
ẏ1 = k1a(y2−b2)(y3−b3)k−1

2 k−1
3 −ηe1,

ẏ2 = k2− k2m(y3−b3)
2k−2

3 −ηe2,

ẏ3 = k3k−1
1 (y1−b1)+ k−1

2 (y2−b2)(y3−b3)+ k3c−ηe3.

(6)

Here e1 = y1 − (k1x1 + b1),e2 = y2 − (k2x2 + b2),e3 = y3 −
(k3x3 + b3), η̇ = e2

1 + e2
2 + e2

3. Select a = m = c = 1, k1 =

−1,k2 = 2,k3 = 0.5,b1 = b2 = b3 = 1, choose the initial con-
ditions of the driving system (x10,x20,x30) and driven system
(y10,y20,y30) as (0.1, 0.1, 0.1) and (−0.1, 0.2, −0.1), η0 = 0,
two systems can obtain a linear synchronization as shown in
Fig. 8.

4. FPAA-based Circuit implementation
FPGA-based circuit implementation has the advantages

in both hardware and software, which is reliable, flexible
and has the advantage of fast response, rapid prototyping,
adaptation, reduced cost or simplicity of design for the pro-
grammable architecture.[39,40] Field programmable analog ar-
rays (FPAA) also provide such a workbench for circuit real-
ization, in particular it is more convenient to design the ana-
log chaotic circuits. Therefore recently FPAA has become
more and more popular, and it has been used in many areas,
such as system modeling, signal processing, fault-tolerant, and
computing feature extraction. Comparing with the technol-
ogy of Field–Programmable Gate Array (FPGA), it is not nec-

essary to make a discretization with the variables in FPAA.
Here in this paper we use the newest integrated circuit tech-
nique of FPAA to realize the system discussed above. An
Anadigm QuadApex development board with four AN231E04
chips[41–44] was used to construct a circuit implementation of
systems (1) and (2) and to experimentally verify the amplitude
control and offset boosting. Each chip contains four Config-
urable Analog Blocks (CABs) which perform the analog pro-
cessing through using the fully differentiable switched capac-
itor technology. Because the dpASP has a differential output
voltage level of ±3 V, amplitude rescaling is necessary. First,
System (1) was rescaled to x→ 12x, y→ 8y, z→ 8z as follows:

ẋ = 0.667az,
ẏ =−by+ z,
ż =−1.5x+ y+8my2 +0.125c.

(7)

Then system (2) was rescaled to x→ 4x, y→ 4y, z→ 4z as
follows: 

ẋ = 4ayz,
ẏ = 0.25−4mz2,

ż = x+4yz+0.25c.
(8)

The circuits were then constructed using Configurable Analog
Modules (CAMs) in AnadigmDesigner2 as shown in Fig. 9
and downloaded to the development board. CAM values for
systems (7) and (8) are given in Tables 1 and 2.

Fig. 9. (color online) Circuit implementations of system (7) and system (8) on AnadigmDesigner2.

The phase portraits for systems (7) and (8) are shown in Figs. 10 and 12, respectively. To observe offset boosting and
amplitude control in system (7), we changed Inputs 3 and 4 in SumDiff2. Offset boosting in system (8) can be observed by
changing Input 3 in SumDiff2. The signals were collected using an NI USB 6002 at a sample rate of 5 kHz after time scaling,
and are shown in Fig. 11 for system (7) and in Fig. 13 for system (8), respectively. Note that the linear synchronization can also
be proved by FPAA since the driving system and the driven system can be regarded as a higher-dimensional analog system. Here
in this paper, we emphasize the convenience of amplitude control and offset control obtained from this new technology.
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Table. 1. CAM parameters for system (7) circuit.
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Table. 2. CAM parameters for system (8) circuit.
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(a) (b) (c)

Fig. 10. (color online) Phase portraits of system (3): (a) x–y plane, (b) x–z plane, and (c) y–z plane.
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Fig. 11. (color online) Chaotic attractors of system (7) from circuit with different amplitudes rescaling and offset control in x–y and x–z planes.
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Fig. 12. (color online) Phase portrait of system (4) in (a) x–y plane, (b) x–z plane, and (c) y–z plane.
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5. Discussion and conclusions
We proposed a simple method for complete amplitude

control in a single chaotic system and established a linear syn-
chronization between two chaotic systems. Amplitude control
is associated with amplification, attenuation and polarity inver-
sion, which is important for signal conditioning and integrated
circuit selection in electronic engineering. To realize a simple,
convenient and reliable amplitude control of chaotic signals,
two coefficients in the dynamical equations are found to have
the function of rescaling and offset boosting. Those two inde-
pendent coefficients correspond to two separate rheostats (or
CAM gain values) which eliminate the need of a more com-
plicated circuit and enhance the flexibility of the constructed
circuit for chaos application. The proposed approach to the
complete amplitude control for chaotic signals is of great value
in chaos-based engineering applications.
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