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Abstract Periodic trigonometric functions are intro-
duced in 2-D offset-boostable chaotic flows to gener-
ate an infinite 2-D lattice of strange attractors. These
2-D offset-boostable chaotic systems are constructed
based on standard jerk flows and extended tomore gen-
eral systems by exhaustive computer searching. Two
regimes ofmultistability with a lattice of strange attrac-
tors are explored where the infinitely many attractors
come from a 2-D offset-boostable chaotic system in
cascade or in an interactive mode.

Keywords Offset boosting · Multistability ·
Infinitely many attractors

1 Introduction

Multistability in a dynamical system poses a threat in
practical engineering applications because the behavior
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of the system cannot be guaranteed, since the system
may unpredictably visit its various solutions depend-
ing on the initial conditions. For this reason, multista-
bility has recently been extensively studied, including
symmetric multistability [1–8], asymmetric multista-
bility [8–10], conditional symmetricmultistability [11–
13], delay or hysteresis-inducedmultistability [14–18],
driving-inducedmultistability [19], and extrememulti-
stability [20–23]. On the other hand, multistabilitymay
have applications to understanding memory [15,16],
and it can enhance the performance of secure commu-
nications when chaos is used to conceal information
since the initial conditions can provide an additional
secret key.

A multistable system can have multiple attractors,
even infinitely many attractors (a special case of which
is known as extreme multistability [20–23]), or hidden
attractors [24–31] which cannot be found using initial
conditions in the neighborhood of an equilibrium. An
unbounded solution can also be regarded as an attrac-
tor. Li et al. [12] proposed a method for constructing
multistable systems with conditional symmetry or with
an infinite one-dimensional chain of strange attractors.
In this paper, we give a general method for construct-
ing 2-D offset-boostable chaotic flows, after which the
method is extended to the production of an infinite 2-D
lattice of strange attractors by the modulation of offset-
boostable variables. The advantage of this class of sys-
tem is that it produces infinitely many attractors in a
plane, and each lattice site can contain multiple attrac-
tors.
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2 Infinite 2-D lattice of attractors from offset
boosting in cascade

Definition 2.1 Define a dynamical system Ẋ = F(X)

= ( f1(X), f2(X), . . . , fN (X))(X = (x1, x2, . . . , xN ))

as a 2-D offset-boostable system [11–13] if there exist
two variables xi , x j where xi = ui + ci , x j = u j +
c j , xm = um (here 1 ≤ i, j,m ≤ N ∈ Z+, i �=
j,m ∈ {1, 2, . . . , N } \{i, j}), and the corresponding
system U̇ = F(U )(U = (u1, u2, . . . , uN )) recovers
its governing equation except for two additional con-
stants allowing offsets of xi and x j .

Theorem 2.1 A2-Doffset-boostable systemconstruct-
ed from the system

⎧
⎨

⎩

ẋ = F(y),
ẏ = G(z),
ż = f (ẋ, ẏ, x)

(1)

will produce infinitely many identical attractors if sys-
tem (1) has a bounded solution (an attractor) for one
period and if the functions F(y) and G(z) are periodic.

Proof 2.1 Since the functions F(y) and G(z) are peri-
odic, suppose p1 and p2 are their respective periods,
i.e., F(y) = F(y + p1), and G(z) = G(z + p2). For
x = u, y = v + kp1, z = w + lp2 (k, l ∈ Z). Then
system (1) becomes

⎧
⎨

⎩

u̇ = F(v),

v̇ = G(w),

ẇ = f (u̇, v̇, u).

(2)

System (2) is identical to system (1), indicating that
introducing the constants kp1 and lp2 does not change
the dynamics of system (1) but gives corresponding

offset boosting in the dimensions of y and z which con-
sequently gives birth to infinitely many attractors on a
lattice in the y–z plane. Furthermore, the attractors can
merge to make one attractor that stretches to infinity,
but then the individual attractor would be unbounded.
The time derivatives on the right-hand side of Eqs. (1)
and (2) can be easily removed, but they will be retained
in what follows to emphasize the mechanism of offset
boosting.

As an example, consider the chaotic memory oscil-
lator MO4 [32] given by

...
x + 0.5ẍ + ẋ = x(x − 1)

which can be changed according to ẋ = y + m, ẏ =
z + n, ż + 0.5ẏ + ẋ = x(x − 1) to give offset boosting
with an identical strange attractor displaced in y and z
by distances m and n, respectively, but with the same
Lyapunov exponents (0.0938±0.0001, 0,−0.5938) as
for m = n = 0. This suggests that one might replace
y + m with a function that is periodic in y and z + n
with one that is periodic in z without destroying the
chaos. Indeed, it is found that the system

⎧
⎨

⎩

ẋ = sin(y),
ẏ = 1.05 sin(z),
ż = −ẋ − 0.5ẏ − x + x2

(3)

gives chaos with Lyapunov exponents (0.0890 ±
0.0001, 0,−0.5808) and a Kaplan–Yorke dimension
of 2.1534 in one period and with a bounded solu-
tion. Therefore, according to Theorem 2.1, system
(3) will have an infinite 2-D lattice of strange attrac-
tors. Figure 1a shows nine of the coexisting attrac-
tors when the initial conditions are selected according
to (0, 0.1 − 2kπ, 0 + 2lπ (−1 ≤ k, l ∈ Z ≤ 1)). Fig-
ure 1b shows that the time-averaged values of y and
z on the various attractors are proportional to k for
−50 ≤ k = l ∈ Z ≤ 50while the average of x remains
unchanged as expected. Figure 2 confirms that the Lya-

Fig. 1 Lattice of strange
attractors from system (3). a
Coexisting strange attractors
when initial conditions are
(0, 0.1 + 2kπ, 0 + 2lπ
(−1 ≤ k, l ∈ Z ≤ 1)), b
regulated offset when initial
conditions are
(0, 0.1 − 2kπ, 0 + 2kπ
(−50 ≤ k ∈ Z ≤ 50))
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Fig. 2 Lyapunov exponents
of system (3) with different
initial conditions. a
(0, 0.1 + 2kπ, 0
(−50 ≤ k ∈ N ≤ 50)), b
(0, 0.1, 0 + 2kπ
(−50 ≤ k ∈ N ≤ 50))

Fig. 3 Bifurcations of
system (4) with initial
conditions (0, y0, 0) when
a = 1.05, b varies in [0.525,
1.125]. a Lyapunov
exponents, b bifurcation
diagram showing the
maxima of y

punov exponents are independent of initial conditions
as expected. For easy illustration, in the following we
take k = l when plotting the regulated offsets and cor-
responding Lyapunov exponents.

System (3) can be written in standard formwith four
sine functions as

⎧
⎨

⎩

ẋ = sin(y),
ẏ = a sin(z),
ż = − sin(y) − b sin(z) − x + x2

(4)

where a = 1.05, b = 0.525. This system is asym-
metric with a rate of volume contraction given by the
Lie derivative, ∇V = ∂ ẋ

∂x + ∂ ẏ
∂y + ∂ ż

∂z = −b cos(z),
indicating that the damping bsin(z) is periodic, but this
is not an essential ingredient for producing infinitely
many attractors as will be shown later. System (4)
has two series of saddle-foci P1 = (0, kπ, lπ),
P2 = (1, kπ, lπ) (k, l ∈ N ) . When b varies in [0.525,
1.125], system (4) experiences typical period-doubling
bifurcations for different initial conditions as shown
in Fig. 3. All the attractors including limit cycles and
point attractors are arranged in a lattice in the 2-
D phase space of y and z. At b = 1, the equilib-

rium point P1 = (0, kπ, lπ) (k, l = 2N ) changes
its stability to a stable node with critical eigenvalues
of (−1, 0 ± 1.0247i), showing this equilibrium under-
goes a Hopf bifurcation.

We can also select other trigonometric functions
such as the tangent function,

⎧
⎨

⎩

ẋ = 1.1 tan(y),
ẏ = 0.9 tan(z),
ż = −ẋ − 0.5ẏ − x + x2.

(5)

In this case, the attractors are arranged with a period
of π . Comparing Fig. 4 with Fig. 1 shows that
the spaces between adjacent attractors shrink, and
the time-average of the variables y and z are also
changed.

For a symmetric system, a symmetric pair of attrac-
tors can be obtained when the symmetry of the solu-
tion is broken [1–6]. For example, the system MO5,
...
x + 0.7ẍ + ẋ = x(1 − x2) can be changed to ẋ =
y + m, ẏ = z + n, ż + 0.7ẏ + ẋ = x(1 − x2) for 2-
D offset boosting with the same Lyapunov exponents
(0.1380 ± 0.0001, 0,−0.8380). When two sine func-
tions are introduced,
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Fig. 4 Lattice of strange
attractors from system (5). a
Coexisting attractors when
initial conditions are
(0, 0.1 + kπ, 0 + lπ
(−1 ≤ k, l ∈ Z ≤ 1)), b
regulated offset when initial
conditions are
(0, 0.1 − kπ, 0 + kπ
(−50 ≤ k ∈ Z ≤ 50))

Fig. 5 The symmetric
strange attractor becomes a
symmetric pair in system
(6). a a = 1.55, b = 1.1, b
a = 5, b = 1.1

⎧
⎨

⎩

ẋ = a sin(y),
ẏ = b sin(z),
ż = −ẋ − 0.7ẏ + x − x3,

(6)

system (6) preserves the dynamics of the original sys-
tem. For a = 1.55, b = 1.1, system (6) also gives
a symmetric strange attractor with Lyapunov expo-
nents (0.1122 ± 0.0001, 0,−0.8120) and a Kaplan–
Yorke dimension of 2.1382. For a = 5, b = 1.1,
the solution is a symmetric pair of strange attrac-
tors as shown in Fig. 5 with Lyapunov exponents
(0.1587 ± 0.0001, 0,−0.8795) and a Kaplan–Yorke
dimension of 2.1804. The Lyapunov exponents of the
coexisting attractors are larger than those of the sym-
metric attractor, which is different from the other sys-
tems [1–6]. All the attractors can be replicated in a lat-
tice using altered initial conditions as shown in Fig. 6.
The method can be applied in other jerk systems [33–
38] including those with coexisting attractors such as
the models proposed by Kengne et al. [33,34] in which
there are four coexisting attractors. The revised ver-
sions for giving infinitely many attractors can be ẋ =
3 sin(0.2y), ẏ = 8.7 sin(0.2z), ż + ẏ + ar ẋ = ax(1−
x2) and ẋ = 6 sin(0.1y), ẏ = 21 sin(0.1z), ż + ẏ +
σγ ẋ = σ(x − ε sinh(ρx)). When a = 18, r = 0.725

or σ = 9.3, γ = 2, ρ = 4.0485, ε = 2.682 × 10−4,
there are four coexisting attractors at each lattice,which
are symmetric pairs of limit cycles and strange attrac-
tors.

Thomas introduced the concept of labyrinth chaos
[39–41] to describe 3-D cyclically symmetric periodic
systems that are conservativewith a trajectory thatwan-
ders chaotically over the entire space. A variant of his
system that is dissipative and that satisfies the condi-
tions of Theorem 2.1 is given by

⎧
⎨

⎩

ẋ = sin(y),
ẏ = sin(z),
ż = 0.442x − sin(z),

(7)

and this is perhaps the simplest such example. System
(7) has an infinite 2-D lattice of thin strange attractors as
shown in Fig. 7 with Lyapunov exponents (0.0263 ±
0.0001, 0,−0.5403) and a Kaplan–Yorke dimension
of 2.048. There are also limit cycle solutions, but for
most values of the parameters, the attractors aremerged
into a single attractor that extends to infinity despite
having zeromeasure in the 3-D state space in contrast to
Thomas’ labyrinth which is conservative and has finite
measure. The colors in Fig. 7 indicate the local largest
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Fig. 6 Coexisting attractors
of system (6) with initial
conditions
(0, 0 + 2kπ,±0.1 +
2lπ (−1 ≤ k, l ∈ Z ≤ 1). a
Nine attractors when
a = 1.55, b = 1.1, b
eighteen attractors when
a = 5, b = 1.1

Fig. 7 Lattice of coexisting strange attractors for system (7)
when the initial conditions of y and z vary in [−10, 10]. (Color
figure online)

Lyapunov exponent with red being most positive and
blue being most negative.

3 Constructing chaotic flows with 2-D offset
boosting

3.1 Offset boosting in cascade

Theorem 3.1 A jerk flow
...
x = (x, ẋ, ẍ) can be trans-

formed to a 2-D variable-boostable system [12,13] by
introducing two other variables y and z according to

⎧
⎨

⎩

ẋ = y,
ẏ = z,
ż = f (ẋ, ẏ, x).

(8)

Offset boosting of the variables y and z can be obtained
by introducing extra constants in the first twoequations.

Proof 3.1 Let x = u, y = v + m, z = w + n, where
u, v, w are state space variables, while m and n repre-
sent the new introduced constants,

⎧
⎨

⎩

u̇ = v + m,

v̇ = w + n,

ẇ = f (u̇, v̇, u).

(9)

Since f (u̇, v̇, u) depends only on the time derivative
of u and v, which are not altered by the constants m
and n, and does not depend on w, Eq. (9) in its jerk
representation is identical to the jerk form of Eq. (8)
and thus has the same dynamics while providing offset
boosting of the variables y and z.

In jerk flows, the offset boosting is produced in cas-
cade, where the offset boosting is based on the preced-
ing variable. The simplest case of this type is JD0 [42],
...
x = −2.02ẍ + ẋ2 − x which can be modified to be a
three-dimensional systemwith 2-D offset boosting of y
and z : ẋ = y+m, ẏ = z+n, ż = −2.02 ẏ+ ẋ2−x . As
another example, the simplest cubic jerk system pro-
posed by Malasoma [32,38],

...
x = −2.03ẍ + x ẋ2 − x

can be modified to be ẋ = y + m, ẏ = z + n, ż =
−2.03ẏ+x ẋ2−x . Chaoticmemory oscillators [32] can
be transformed for offset boosting as well. For exam-
ple, MO0,

...
x + 0.6ẍ + ẋ = |x | − 1 can be modified to

be ẋ = y + m, ẏ = z + n, ż + 0.6ẏ + ẋ = |x | − 1.
In general, when controlling the offset by introducing a
constant, the initial conditionsmust be adjusted accord-
ingly to remaining the basin of the attractor since most
of the chaotic systems are not global attracting.

Although conservative systems do not have attrac-
tors, they can exhibit chaos. It is proved that the Nosé–
Hoover oscillator [42,43], ẋ = y, ẏ = yz − x, ż =
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Fig. 8 2-D offset-boostable
strange attractors

1− y2 can be written in jerk form [44] and thus admits
2-D offset boosting in this type of conservative system,
but this will not be further discussed.

3.2 Offset boosting in interactive mode

The above offset boosting is of the cascade type, where
the boosting of y is realized in the x dimension while
the boosting of z is realized in the y dimension.Another
regime called offset boosting in interactivemode can be
explored by computer search, where the offset boosting
of two variables depends on a constant in the other vari-
able. Specifically, if the offset boosting of x is obtained
in the y dimension while the offset boosting of y needs
to be realized in the x dimension, the general simplified
equation is

⎧
⎨

⎩

ẋ = a1y + a2z + a3z2,
ẏ = a4x + a5z + a6z2,
ż = a7 ẋ + a8 ẏ + a9z + a10z2 + a11.

(10)

After an exhaustive computer search, eight simple
chaotic cases restricted to no more than seven terms
were found with attractors as shown in Fig. 8. Four
cases (OB3, OB4, OB8) have a parameter for total

amplitude control, where there is a single quadratic
term [45–48]. The basic properties including equilib-
ria, eigenvalues, and Lyapunov exponents are shown in
Table 1. All the cases are asymmetric in x and y, which
makes it difficult to introduce symmetric trigonometric
functions for replicating the attractors.

4 Infinite 2-D lattice of attractors from offset
boosting in interactive mode

Two-dimensional offset-boostable chaotic systems in
interactivemode can also produce an infinite 2-D lattice
of attractorswhen the time derivatives on the right-hand
side are preserved, which follows the same proof as
Theorem 2.1. Take OB4 for example,

⎧
⎨

⎩

ẋ = y − az,
ẏ = x − z,
ż = bẋ − cz + z2.

(11)

When a = 0.26, b = 1.64, c = 0.3, system (11) has
chaotic solutions as shown in Table 1. When the first
dimension is substituted into the last dimension, system
(11) becomes
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Table 1 2-D offset-boostable chaotic flows in interactive mode

Cases Equations Parameters Initial
conditions

Equilibria Eigenvalues Lyapunov
Exponents

OB1
⎧
⎨

⎩

ẋ = y,
ẏ = x + az,
ż = −ẋ − bẏ + z2 − c

a = 4.98 −0.86 −7.0428, 0,
1.4142

−0.6367, 0.3631 ±
2.0762i

0.0942

b = 0.55 −6.4 0

c = 2 1.46 7.0428, 0,
−1.4142

0.4309, −4.5581,
−1.4402

−0.8376

OB2
⎧
⎨

⎩

ẋ = y,
ẏ = x − az + bz2,
ż = cẋ + ẏ + z

a = 1.65 −2 0, 0, 0 −0.7940, 0.0720 ±
1.1199i

0.0626

b = 0.1 1.4 0

c = 1.3 −2.12 −0.7125

OB3
⎧
⎨

⎩

ẋ = y + az,
ẏ = x,
ż = −ẋ − bẏ + cz − z2

a = 2 0.3 0, 0, 0 −0.6591, 0.3296 ±
1.7105i

0.0371

b = 1.8 −2 0

c = 2 1 0, −4, 2 0.4395, −1.6064,
−2.8331

−0.8769

OB4
⎧
⎨

⎩

ẋ = y − az,
ẏ = x − z,
ż = bẋ − cz + z2

a = 0.26 −0.1 0, 0, 0 0.3114,−0.5189 ±
0.8330i

0.0488

b = 1.64 0 0.3, 0.078, 0

c = 0.3 −0.25 0.3 −0.4002, 0.1369 ±
0.8549i

−0.3115

OB5
⎧
⎨

⎩

ẋ = y − z,
ẏ = x − az,
ż = bẋ + cz2 − 1

a = 1.9 0.35 1.9, 1, 1 −0.6265, 0.3132 ±
1.7591i

0.0876

b = 2 1.25 −1.9, −1, −1 0

c = 1 −0.74 0.4266, −2.6719,
−1.7547

−0.7573

OB6
⎧
⎨

⎩

ẋ = y + az2,
ẏ = x + bz,
ż = −cẏ + z − 1

a = 1.64 −0.3 −5.82,
−1.64, 1

−1.5450, 0.1085 ±
0.7972i

0.0937

b = 5.82 −6.18 0

c = 0.4 0.97 −1.4216

OB7
⎧
⎨

⎩

ẋ = y + z + az2,
ẏ = x,
ż = −bẏ − z + cz2

a = 2.1 0.05 0, 0, 0 0.8266,
−0.9133±0.6130i

0.0737

b = 0.7 −6.82 0, −15.625,
2.5

0

c = 0.4 2.56 −0.1387, 0.5694 ±
2.6237i

−0.3489

OB8
⎧
⎨

⎩

ẋ = y + az − z2,
ẏ = x + bz,
ż = −ẏ + cz

a = 1.38 0 0, 0, 0 −1.5078, 0.0939 ±
0.8089i

0.0331

b = 2.32 1 0

c = 1 1 −1.3531

⎧
⎨

⎩

ẋ = y − az,
ẏ = x − z,
ż = by − (ab + c)z + z2.

(12)

However, system (12) is not a regular 2-D offset-
boostable system since offset boosting of the variable y
now introduces an additional constant in the last equa-
tion in addition to the first equation. However, Eq. (11)
can be changed to give an infinite lattice of attractors,

⎧
⎨

⎩

ẋ = d sin(y) − az,
ẏ = e sin(x) − z,
ż = bẋ − cz + z2.

(13)

When a = 0.26, b = 1.64, c = 0.3, d = 5,
e = 1.2, system (13) produces an infinite lattice of
strange attractors in the x–y plane with Lyapunov
exponents of (0.0606 ± 0.0001, 0,−0.3674) and a
Kaplan–Yorke dimension of 2.1650. System (13) has
four types of equilibria P = (kπ, lπ, 0) (k, l ∈ N ):
a series of saddle-foci of index-1 with eigenvalues
(0.6006,−0.6635 ± 1.5990i) when k = 2M, l =
2M (k, l, M ∈ N ), a series of saddle-foci of index-2
with eigenvalues (−2.1441, 0.7088 ± 0.5806i) when
k = 2M, l = 2M + 1 (k, l, M ∈ N ), a series of spiral
nodes of index-0with eigenvalues (−0.1274,−0.2995
±3.7462i) when k = 2M + 1, l = 2M (k, l, M ∈ N )
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Fig. 9 Regulated offset of
system (15) with initial
conditions
(−0.1−2kπ, 0+ kπ,−0.25
(−50 ≤ k ∈ Z ≤ 50). a
Regulated offset, b invariant
Lyapunov exponents

and a series of saddle nodes of index-1with eigenvalues
(3.4901,−0.1261,−4.0904) when k = 2M + 1, l =
2M +1 (k, l, M ∈ N ). System (13) is also asymmetric
with a rate of volume contraction∇V = ∂ ẋ

∂x + ∂ ẏ
∂y + ∂ ż

∂z =
−(ab + c) + 2z, indicating that the damping is inde-
pendent of x and y, which is different from the periodic
damping in the cascade case. Apparently the damping
must either be periodic in the plane of the lattice, or
it must be constant in the plane, which means that the
state space contraction is either periodic in the plane or
perpendicular to it.

Similarly, other trigonometric functions such as the
tangent function can be applied for reproducing attrac-
tors,
⎧
⎨

⎩

ẋ = d tan(y) − az,
ẏ = e tan(x) − z,
ż = bẋ − cz + z2.

(14)

⎧
⎨

⎩

ẋ = d tan(y) − az,
ẏ = e sin(x) − z,
ż = bẋ − cz + z2.

(15)

When a = 0.26, b = 1.64, c = 0.3, d = 1.75,
e = 1, system (14) give strange attractors with Lya-
punov exponents of (0.0700±0.0001, 0,−0.3409) and
a Kaplan–Yorke dimension of 2.2053.When a = 0.26,
b = 1.64, c = 0.3, d = 1.75, e = 1.1, system (15)
gives strange attractors with Lyapunov exponents of
(0.0829 ± 0.0001, 0,−0.3488) and a Kaplan–Yorke
dimension of 2.2377. When the initial conditions vary
in (−0.1 − kπ, 0 + kπ,−0.25 (−50 ≤ k ∈ Z ≤ 50),
the time-average of x and y change accordingly, while
system (15) has the same strange attractor with invari-
ant Lyapunov exponents as shown in Fig. 9. In system
(15) two kinds of trigonometric functions with differ-
ent period are applied for producing the infinite 2-D
lattice of strange attractors. The structure is different
from those where only a single trigonometric func-

tion is used. In this case, the coexisting attractors are
arranged in two dimensions with different intervals.

5 Circuit simulations

The above systems can be realized electronically using
operational amplifiers and some special signal convert-
ers. The coexisting attractors occur in Pspice simu-
lations [35,36]. The summator, integrator, and phase
inverter can be realized with operational amplifiers,
and the nonlinear function can be produced by a sig-
nal generator which is a packaged unit in Pspice. In the
following we select a tangent signal generator to repro-
duce the coexisting attractors. From Eq. (5), the analog
circuit shown in Fig. 10 is governed by the equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = 1
R1C1

tan(y),

ẏ = 1
R2C2

tan(z),

ż = − 1
R4C3

tan(y) − 1
R3C3

tan(z) − 1
R5C3

x − 1
R6C3

x2,

(16)

The circuit has three lines to realize the integration,
addition, inversion, and subtraction of the state vari-
ables x, y, and z, which in Eq. (16) correspond to the
state voltages of the three operational amplifies, respec-
tively. We select OPA404/BB as the operational ampli-
fier, and the analog multiplier AD633/AD performs the
nonlinear product operation. For the system (5), the
circuit element values are R1 = R4 = 362 k�, R2 =
443 k�, R3 = 886 k�, R5 = 400 k�, R6 = 40 k� and
R7 = R8 = R9 = R10 = 100 k�, Vdd = 15V. We
select the capacitor C1 = C2 = C3 = 1nF to obtain a
stable phase portraitwhich only affects the time scale of
the oscillation. Figure 11 shows the coexisting attrac-
tors fromPspice, which are the same as shown in Fig. 4.
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Fig. 10 Electronic circuit
schematic of the system (5)

Fig. 11 Lattice of strange
attractors from system (5) in
Pspice when initial
conditions
(0, 0.1 + kπ, 0 + lπ
(−1 ≤ k, l ∈ Z ≤ 1))
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6 Conclusions and discussion

The method for constructing infinite 2-D lattices of
strange attractors has potential application in chaos-
based engineering such as secure communication and
weak signal detection, where initial conditions are
important for determining the dynamics of the sys-
tems. In chaos-based secure communication, the unpre-
dictability of the initial condition in the driving part of
the synchronization system can additionally enhance
the security of communication [49,50]. Chaos also has
potential application in weak signal detection because
chaotic systems are sensitive to certain signals and
immune to noise at the same time, while the multista-
bility with infinitely many attractors provides the pos-
sibility of intermittent transitions between order and
chaos which is helpful for signal detection [51,52].

Here infinite 2-D lattices of strange attractors are
obtained by 2-D offset boosting. Any of the attractors
can be extracted from the honeycomb-like array only
when a proper initial condition is given. Chaotic flows
with 2-Doffset boosting are classified into two regimes,
where the 2-D offset boosting is realized either in cas-
cade or in interactive mode. Two-dimensional offset-
boostable chaotic flows in the cascade mode are con-
structed based on standard jerk flows. New regimes
of 2-D offset-boostable chaotic flows in the interac-
tive mode are explored through exhaustive computer
searching.

Periodic trigonometric functions are introduced in
these systems giving infinitely many attractors in the
same sense as does the chaotic pendulum where they
are all the same attractor when viewed in cylindri-
cal coordinates. However, other aperiodic functions
(like truncated functions) or different combinations of
periodic functions can be introduced into the offset-
boostable variables in different dimensions so that the
lattice of attractors will be arranged in a finite way in
any/or both of the dimensions or with unequal inter-
vals. Furthermore, the method can be extended to lat-
tices in dimensions higher than 2 and/or with higher-
dimensional attractors based on systems with higher-
dimensional offset boosting. Furthermore, specific ape-
riodic functions can be introduced to construct an infi-
nite lattice of different attractors which will be reported
later. Finally, Hamilton energy is a new index for
the description of a dynamic system [53,54]. Since
the coexisting attractors have the same shape but are
located in different regions of space depending on ini-

tial conditions, an exhaustive analysis of the Hamilton
energy will be deferred to a later publication.
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