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A novel chaotic system is explored in which all terms are quadratic except for a linear function.

The slope of the linear function rescales the amplitude and frequency of the variables linearly

while its zero intercept allows offset boosting for one of the variables. Therefore, a free-controlled

chaotic oscillation can be obtained with any desired amplitude, frequency, and offset by an easy

modification of the linear function. When implemented as an electronic circuit, the corresponding

chaotic signal can be controlled by two independent potentiometers, which is convenient for con-

structing a chaos-based application system. To the best of our knowledge, this class of chaotic

oscillators has never been reported. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4997051]

For many years, engineering applications for chaos have

been considered and described. However, due to their

finite word length, chaotic signals generated by digital

technology are of limited use. Even with analog electron-

ics, it is still difficult to provide an engineering-applicable

chaotic oscillator with special requirements of frequency,

amplitude, and polarity. Although hundreds of dissipa-

tive chaotic systems have been described and studied, lit-

tle attention has been given to finding systems that permit

simple and continuous adjustment of the signal without

encountering undesirable bifurcations and variations of

the power spectrum. Therefore, it is important to find

even one example of a chaotic oscillator with free and

unlimited control of its frequency, amplitude, and polar-

ity by means of simple adjustable resistors.

I. INTRODUCTION

Chaos has attracted great interest in theoretical physics

and corresponding engineering fields. Chaos exists widely in

nature and society, and it has broad application in engineering

for its noise-like property, broadband frequency spectrum, and

sensitivity to initial conditions. Specifically, chaos has great

advantage in image encryption,1–3 secure communication,4–6

and weak signal detection.7,8 However, for the same reason, it

is difficult to design a suitable amplifier with polarity conver-

sion and broad bandpass characteristics. Specifically, amplify-

ing or attenuating a chaotic signal may require extra hardware

and pose risks to its bandpass characeristics;9–14 and even

more challengingly, some integrated circuit chips require a

transformation between a bipolar and a unipolar signal, while

the offset control (OC) of the chaotic signal is also vital for

chaos applications. As shown in Fig. 1, a suitable signal con-

trol unit can replace the signal modulator in chaos-based

application systems because it provides efficient frequency

control,15,16 amplitude rescaling,17,18 and offset boosting.19,20

Based on the above considerations, a chaotic oscillator

with the free control of amplitude/frequency and offset is

attractive for engineering applications where proper ampli-

tude, frequency, or the offset level can be obtained by simple

control knobs. Some work has been done towards this end.

Chaotic systems with invariable Lyapunov exponents have

the property of amplitude control (AC).21,22 Chaotic flows

with a single nonquadratic term15,16 have an intrinsic

amplitude-frequency controller (AFC) in the constant or

coefficient of the nonquadratic linear term, and some chaotic

flows provide offset control (OC) by the introduction of a

new constant in any of the governing equations.19,20 Inspired

by the results in Refs. 19 and 20, we give here another case

of a chaotic system with both amplitude-frequency control

and offset control (known collectively as free control), which

means that the chaotic signal can be freely controlled in its

various aspects including amplitude, frequency, and polarity.

That means the system proposed here can provide a full self-

modulation of AFC and OC. The model description is given

in Sec. II, the dynamical analysis including amplitude-

frequency control and offset control is provided in Sec. III,

and the circuit realization is described in Sec. IV. Some other

known dynamical systems with the same properties are men-

tioned in the discussion and conclusions.

II. MODEL DESCRIPTION

In searching for a chaotic system with the free control of

amplitude, frequency, and offset, a simple general structure

(1) is designed based on the quadratic nonlinearity
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_x ¼ a1y2 þ a2z2 þ a3yz;

_y ¼ a4y2 þ a5z2 þ a6yz;

_z ¼ a7y2 þ a8z2 þ a9yzþ a10x:

8><
>:

(1)

In System (1), the coefficient a10 of x in the z-dimension is

an amplitude-frequency controller, while an additional con-

stant term can also be introduced in the z-dimension for off-

set boosting for the variable x. Many chaotic candidates were

found from an exhaustive computer search, one simple

example of which is

_x ¼ yz;

_y ¼ y2 � az2 þ yz;

_z ¼ by2 þ F xð Þ:

8><
>:

(2)

When a¼ 8.5, b¼ 0.5, F(x)¼ x, System (2) is chaotic with

Lyapunov exponents (0.0417, 0, �0.9575) and Kaplan-

Yorke dimension DKY¼ 2.0436. The strange attractor is

asymmetric, as shown in Fig. 2. The cross section of the

attractor in the plane z¼�0.4 is nearly one-dimensional,

and the basin of attraction shown as red in Fig. 3 indicates

that System (2) has a relatively large unbounded (white)

region. According to the classification in Ref. 23, the basin is

Class-3 in which an arbitrary point at a distance r from the

attractor has a probability P of being in the basin given

approximately by P¼ 16/r in the limit of large r. This

implies that the basin is essentially two-dimensional at large

distances from the attractor. The attractor is self-excited

since its basin is adjacent to the equilibrium point shown as a

small green dot in Fig. 3.

System (2) has chaotic and periodic oscillations over a

range of the bifurcation parameters a and b. Figure 4 shows

the regions of chaos (C) and periodicity (P) in the ab-plane

for initial conditions (�0.4, �0.4, �0.4). No evidence for

multistability (coexisting attractors) was found anywhere in

the ab-plane. When F(x)¼ x, System (2) has one equilibrium

point at (0, 0, 0) with the characteristic equation k3¼ 0, and

thus eigenvalues (0, 0, 0), which implies that the origin is a

center, but it is nonlinearly unstable. For F(x)¼mxþ n, the

equilibrium moves to (�n/m, 0, 0), but the stability does not

change since the characteristic equation and eigenvalues

remain the same,17 implying invariance of the dynamics

with respect to the parameters m and n.

FIG. 2. Strange attractor of System (2)

with a¼ 8.5, b¼ 0.5, and F(x)¼ x for

initial conditions (�1, �1, �1).

FIG. 3. Cross section of the basin of attraction for System (2) with a¼ 8.5,

b¼ 0.5, and F(x)¼ x in the plane z¼�0.4.

FIG. 4. Dynamical regions of System (2) with F(x)¼ x and initial conditions

(�0.4, �0.4, and �0.4).

FIG. 1. Diagram of an application system based on chaos.
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There is no chaotic solution of general equation (1), if the

only term in the z-equation is linear because the coefficient of

the linear term determines only the amplitude and frequency

of the variables, and thus, the dynamics is solely governed by

the other two dimensions. To prove this, in Eq. (1), when

a7¼ a8 ¼ a9¼ 0, _z ¼ a10x, so _x ¼ 1
a10

€z¼ a1y2 þ a2z2 þa3yz,

which means that _z ¼ f y; zð Þ and _y ¼ a4y2 þ a5z2 þ a6yz
¼ g y; zð Þ indicating that System (1) degenerates into a two-

dimensional system.

III. CHAOTIC SIGNAL CONTROL BY A LINEAR
FUNCTION

When F(x)¼mxþ n, the new introduced coefficient m
controls the amplitude and frequency of the chaotic sig-

nal15,16 while the constant n provides an offset allowing a

transformation between a bipolar signal and a unipolar

signal. As shown in Fig. 5, when m¼ 1, chaotic signals in

red are of low frequency; when m¼ 4 and 8, chaotic sig-

nals in green and pink increase their frequency along with

an increase in the amplitude. When the constant n changes

from 0 to 4 or to �8, the average level of x changes

correspondingly, while the average level of z remains

the same, indicating that n is an offset booster for the vari-

able x. A more clear identification of this is seen in the

phase trajectory, where it is controlled and shifted by these

two parameters with different frequency spectra as shown

in Fig. 6.

We can prove the free control of amplitude/frequency

scaling and offset boosting theoretically and give a further

demonstration with the linearly scaled Lyapunov exponent

spectrum. As an illustration, making a simultaneous ampli-

tude, frequency, and the offset control of Eq. (2) where

F(x)¼ x by the transformation x ! (xþ n/m)/m, y !y/m, z
!z/m, t! mt, then Eq. (2) becomes

_x ¼ yz;

_y ¼ y2 � az2 þ yz;

_z ¼ by2 þ mxþ n:

8><
>:

(3)

Thus, if the coefficient m of the linear term x in the z-equa-

tion changes, it will rescale the amplitude and frequency

according to m while the constant n will boost the offset of

the variable x according to n/m in the negative direction.

Figure 7 shows that when the coefficient m varies, the

Lyapunov exponents are rescaled proportionally along with

the modified frequency and amplitude of the chaotic sig-

nals. Figure 8 shows that the offset controller n will only

change the average value of the signal x but will not influ-

ence the dynamics of the chaotic system, leading to the

same Lyapunov exponents.

FIG. 5. Chaotic signals with different

controllers: (a) x(t) and (b) z(t).

FIG. 6. Controlled phase trajectory (a) strange attractor in the x-y plane (b)

the frequency spectrum of the signal jxj.

FIG. 7. Amplitude-frequency control with linearly rescaled Lyapunov expo-

nents and amplitude when a¼ 8.5, b¼ 0.5, n¼ 0 for F(x)¼mxþ n when m
varies in [0, 10]: (a) Lyapunov exponents (b) average of absolute value sig-

nals jxj, jyj, and jzj.

FIG. 8. Offset control with the same Lyapunov exponents when a¼ 8.5,

b¼ 0.5, m¼ 1 for F(x)¼mxþ n when n varies in [�5, 5]: (a) Lyapunov

exponents and (b) average of signals x, y, and z.
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IV. CIRCUIT IMPLEMENTATION

The above system is desirable for providing signals in

chaos-based applications where appropriate amplitude and

polarity are necessary for signal processing. Furthermore,

when considering the hardware limitations in the circuit

design, since the above system provides easy control for

amplitude, frequency, and polarity, the circuit implementation

becomes more convenient without any requirement of linear

transformation for pre-scaling to avoid saturating the analog

multipliers and operational amplifiers. In Fig. 2, we see that

all of the signals, x, y, and z oscillate in the interval (�1.5,

1.5). Therefore, we can begin the circuit design from the origi-

nal equation without considering the control knobs. From Eq.

(2), we design the analog circuit shown in Fig. 9 where the

circuit equations in terms of the circuit parameters are

_x ¼ 1

R1C1

yz;

_y ¼ 1

R2C2

y2 � 1

R4C2

z2 þ 1

R3C2

yz;

_z ¼ 1

R6C3

y2 þ 1

R5C3

xþ 1

R9C3

Vdd:

8>>>>>>><
>>>>>>>:

(4)

The circuit includes three channels to realize the integra-

tion, addition, and subtraction of the state variables x, y, and

z, respectively. The operational amplifier OPA404/BB and

its peripheral circuit perform the addition, inversion, and

integration, and the analog multiplier AD633/AD performs

the nonlinear product operation. The state variables x, y, and

z in Eq. (4) correspond to the state voltages of the three

channels, respectively. For the system parameters a¼ 8.5,

FIG. 9. Electronic circuit schematic of System (2) where F(x)¼mxþ n (m¼ 1, n¼ 0).

083101-4 Li et al. Chaos 27, 083101 (2017)



b¼ 0. 5, m¼ 1, and n¼ 0, the circuit element values are

R1¼R2 ¼R3¼ 40 kX, R4¼ 4.7 kX, R5¼R9¼ 400 kX,

R6¼ 80 kX and R7¼R8¼ 100 kX, Vdd¼ 0 (or R9¼1). We

select the capacitors C1¼C2 ¼C3¼ 1 nF to obtain a stable

phase portrait which only affects the time scale of the oscil-

lation. Figure 10 shows the phase portraits observed on the

oscilloscope. Unlike other chaotic oscillators, a potentiome-

ter R5 is used to control the amplitude/frequency. By this

knob, we can adjust the signals x, y, and z for any desired

voltages and frequencies. With a decrease in R5, the ampli-

tude and frequency of all variables increase accordingly. The

polarity control of the signal x can be implemented by the

adjustable DC source in the last dimension. The correspond-

ing phase trajectories and signals are shown in Figs. 11 and

12 when the controllers are adjusted.

V. DISCUSSION AND CONCLUSIONS

A new class of chaotic oscillators with free control of

amplitude, frequency, and offset is proposed in this paper,

where two parameters in the linear function rescale the

amplitude/frequency and boost the offset of the signal x inde-

pendently. These controls only require two independent

potentiometers or a variable resistor and an adjustable DC

source, which is convenient for chaotic signal adjusting in

engineering applications. Other simple cases of chaotic sys-

tems with free control are _x ¼ �3y2 þ 0:85z2; _y ¼ y2 þ yz;
_z ¼ �y2 þ F xð Þ and _x ¼ yz; _y ¼ 0:13y2 � z2 þ yz; _z ¼ 2z2

þF xð Þ, where F(x)¼mxþ n, and the coefficients m and n
have the same function as demonstrated earlier. Note that

these newly found systems are based on the exhaustive com-

puter searching, but degree modification18 of the structure in

the dynamical system may provide another approach to find

systems with free control since the absolute value function

and signum function can return the necessary degree balance.

Since the new type of chaotic system with free control can

provide chaotic signals with any desired amplitude,

FIG. 10. Phase portrait of chaotic

System (2) when F(x)¼mxþn (m¼ 1,

n¼ 0) (a) x-y plane, (b) x-z plane, and

(c) y-z plane. Volt/div¼ 0.1 in channel

1 and Volt/div¼ 0.2 in channel 2.

FIG. 11. Phase portrait of chaotic System (2) (F(x)¼mxþ n) in the x-y
plane (a) m¼ 4, n¼ 4 (b) m¼ 8, n¼�8. Volt/div¼ 0.5 in channel 1 and

Volt/div¼ 1 in channel 2.

FIG. 12. Chaotic signals x(t) and z(t)
from System (2). Volt/div¼ 0.5 in chan-

nel 1 and Volt/div¼ 1 in channel 2.
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frequency, and polarity, it should have a broad application in

chaos-based information systems.
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