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ABSTRACT In this paper, we modify the Sprott M chaotic system to provide infinitely many co-existing
attractors by replacing the offset boosting parameter with a periodic function giving what we call a self-
reproducing system. Consequently, a chaotic signal with either polarity can be obtained by selecting
different initial conditions. Various periodic functions are introduced in the same offset-boostable system for
producing coexisting attractors. We used a field programmable analog array to construct a programmable
chaotic circuit, and the predicted attractors were observed on an oscilloscope.

INDEX TERMS Field programmable analog array (FPAA), infinitely many attractors, offset boosting,
polarity control.

I. INTRODUCTION
Chaos exists widely in nature and engineering. Scientists
and engineers have made great effort for chaos applications
rather than chaos suppression. When the problem of syn-
chronization between two chaotic systems was theoretically
solved [1]–[6], it set off another surge in chaos-based engi-
neering [7]–[12]. Specifically, chaotic signals and systems are
widely used in image encryption [13]–[15], secure communi-
cations [16], [17], weak signal detection [18], [19], and Radar
systems [20, p. 22]. A natural question is how to generate a
chaotic signal with suitable polarity given that some hardware
only allows unipolar or bipolar signals. This is not an easy
question since the broadband of chaotic signals may pose
risks to the traditional polarity convertor with its bandpass
characteristics. To solve this problem, we turn back to system
design. Two special regimes of chaotic systems may accom-
plish our goals. For an offset-boostable system [23]–[25],
polarity control can be realized by modulating an extra DC-
power source; while for a self-reproducing system [25],
the selection of initial conditions may give the chaotic signal
any desired polarity. The latter method is based on a self-
reproducing system with many coexisting chaotic attractors

with the same Lyapunov exponents in the solution space,
which can be extracted using different initial conditions.

Here the multistability is a virtue for polarity control. In
contrast, it is often problematic in engineering applications.
Scientist and engineers have found that multistability exists
in many physical systems, such as a gas laser [26], a delayed
system [27], a biological system [28], atoms [29], a lactose
utilization network [30], fiber lasers [31], phosphorylation
systems [32], electroencephalograms [33], neural networks
[34], ice sheets [35], and even in semiconductor superlat-
tices [36]. The symmetric structure of these systems allows
them to have a pair of coexisting attractors [37]–[47]. It is
relatively rare to find coexisting attractors in asymmetric
systems [48]–[50]. We find that systems with offset boosting
[25], where the average of one of the signals can be controlled
by a constant, can produce infinitely many attractors when
replaced by a slowly changing periodic signal. Recognizing
the connection between the chaotic signal with a desired
polarity and multistability motivates the design of a chaotic
systemwith infinitely many attractors. In this way, the needed
unipolar or bipolar chaotic signal can be obtained by selecting
a proper attractor with initial conditions. By this method,
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the complex hardware for polarity control is unnecessary.
Note that unlike other references [51]–[54], here infinitely
many attractors refer to the coexisting infinitely many attrac-
tors with the same shape of a unified Lyapunov exponent
spectrum.

Field Programmable Analog Array (FPAA) technology
has the advantages of both hardware and software, which is
reliable and flexible and has the advantage of fast response,
rapid prototyping, adaptation, and reduced cost or simplicity
of design for the programmable architecture [55], [56]. FPAA
provides such a workbench for circuit realization especially
since it is more convenient for analog chaotic circuit design,
and therefore recently FPAA is becoming more popular and
is used in many applications such as system modeling, signal
processing, fault-tolerance, and computing feature extraction.
In this paper, we give an example of constructing chaotic
systems with infinitely many strange attractors based on the
newest integrated circuit technique of FPAA. In Section II,
the mechanism for polarity control by constructing a self-
reproducing system with infinitely many attractors is ana-
lyzed. In Section III, infinitely many attractors are coined in
a simple offset-boostable system. In Section IV, the system
is implemented on an FPAA along with different non-zero
initial conditions. Conclusions and discussion are given in the
last section.

II. APPROACHES FOR POLARITY CONTROL
As we mentioned, for the broadband frequency spectrum
of a chaotic signal, the polarity transformation cannot be
realized by traditional methods. A variable-boostable sys-
tem [23]–[25] can output chaotic signals with any desired
offset, and correspondingly can provide unipolar or bipolar
chaotic signals. We call this class of system offset-boostable.
In this case, the polarity control is realized by a variable
DC voltage in the circuit which corresponds to a constant in
the dynamical system equations. By introducing a periodic
function of one of the variable into the offset-boostable sys-
tem, as shown in Fig. 1, the system is converted into a self-
reproducing system producing infinitely many attractors. The
polarity control is realized by an attractor selection, which
locates in the solution space with different offset and can
be probed using different initial conditions. In a dynamical
system initial condition refers to the initial value for an
established solutionwhile in an electronic oscillator the initial
condition refers to the initial voltage in the capacitor or the
initial current in the inductor. The scheme can be understood
from the following definitions.
Definition 1: Define a differential dynamical system Ẋ =

F(X ) (X = (x1, x2, . . . , xn) , 1, 2, . . . , n ∈ N ) as an
offset-boostable system if there exists a variable substi-
tution yk = xk − ck subjected to Ẏ = F (Y ) +
D(Y = (y1, y2, . . . , yn) ,C = (c1, c2, . . . , cn) ,D =

(d1, d2, . . . , dn)). Here when k ∈ {i1, i2, . . . , im(1 ≤ i1 <

i2 < · · · < im ≤ n, ck is non-zero constant but when
k ∈ {1, 2, . . . , ni1, i2, . . . , im, ck is zero.

FIGURE 1. Polarity control of chaotic signal from system design.

Definition 2: Define a differential dynamical system Ẋ =
F(X ) (X = (x1, x2, . . ., xn) , 1, 2, . . . , n ∈ N ) as a self-
reproducing system if it has many similar attractors (solution
sets are marked as S = S1 ∪ S2 . . . ∪ Sm(1, 2, . . . ,m ∈ N ))
with the same Lyapunov exponent spectrum when the initial
condition locates in the corresponding basins of attraction.
Theorem 3: A dynamical System (1) can be revised to

System (2) for self-reproducing,
ẋ1 = F1(x1, x2, . . . , xn),
ẋ2 = F2(x1, x2, . . . , xn),
. . . . . .

ẋn = Fn(x1, x2, . . . , xn).

(1)


ẋ ′1 = G1(x ′1, x

′

2, . . . , x
′
n),

ẋ ′2 = G2(x ′1, x
′

2, . . . , x
′
n),

. . . . . .

ẋ ′n = Gn(x ′1, x
′

2, . . . , x
′
n).

(2)

when the periodic functions are introduced into
Fi(x1, x2, . . . , xn)(i ∈ {1, 2, . . . , n) as: xk = gk

(
x ′k
)
,

(k ∈ {j1, j2, . . . , jm} , 1 ≤j1 < j2 < . . . < jm ≤ n) and
xk = x ′k , (k ∈ {1, 2, . . . , n}\ {j1, j2, . . . , jm}) supposing
System (2) still has a bounded solution.

Proof 4: Since gl1(xl1′) is a periodic function, there
exists a constant Pl1 and an integer Sl1 subject to
gl1
(
x ′l1 + SllPl1

)
= gl1

(
x ′l1

)
, l1 ∈ {j1, j2, . . . , jm}. Make a

variable substitution: x ′′l1 = x ′
l1

+ Sl1Pl1 ,

x ′′l2 = x ′
l2
, l2 ∈ {1, 2, .., n}\ {j1, j2, . . . , jm}, and the following

system is obtained,
ẋ ′′1 = G1(x ′′1 , x

′′

2 , . . . , x
′′
n ),

ẋ ′′2 = G2(x ′′1 , x
′′

2 , . . . , x
′′
n ),

. . . . . .

ẋ ′′n = Gn(x ′′1 , x
′′

2 , . . . , x
′′
n ).

(3)

Equation (3) equates to Eq. (2), which indicates that System
(2) is a self-reproducing system giving the same solution
except for a shift in phase space according to the period of
the new introduced function.

An offset-boostable system can be revised to be a self-
reproducing system when some of the offset-boostable vari-
ables are revised to be a periodic function if the bounded
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FIGURE 2. Strange attractor from System (4) with a = b = 1.7 and initial
conditions (−1, 0, −1+c).

FIGURE 3. Cross section of the basin of attraction for System (4) with a =
b = 1.7, c = 0 in the plane z = 0.

solution is preserved in one period. In this case, polarity
control of the chaotic signal can be realized only with an
initial condition rather than a DC voltage control. We will
give a demonstration in the following section.

III. SELF-REPRODUCING CHAOTIC SYSTEM WITH
INFINTELY MANY ATTRACTORS
As reported in [23]–[25] and [57], many systems have an
offset boosting property. The Sprott M system is an example
[57] where the variable z can be offset boosted by a new
introduced constant c in the x dimension,

ẋ = −z+ c,
ẏ = −x2 − y,
ż = a+ bx + y.

(4)

When a = b = 1.7 and c = 0, the system is chaotic
with corresponding Lyapunov exponents (0.044, 0, −1.044)
and Kaplan-Yorke dimension 2.042, as shown in Fig. 2. The
basin of attraction as shown in Fig. 3 shows a large region
with unbounded solutions. The system is asymmetric and has
two equilibrium points of saddle-foci: (2.406, −5.791, 0) is
of index-1 with eigenvalues (0.9074,−0.9537±1.5878i), and
(−0.706,−0.499, 0) is of index-2with eigenvalues (−1.3892,

FIGURE 4. Lyapunov exponents and average value of the variables for
initial conditions (1, −1, c) when c varies from −5 to 5.

FIGURE 5. Offset-boosting-based polarity converting with an offset
control c and initial conditions (1, −1, c).

0.1946±1.4842i). Here the constant c is available for offset
boosting of the variable z.
The constant c in the x equation only affects the average

level of the variable z. To show this, let x = u, y = v,
z = w+c to obtain new equations in the variables u, v, w that
are identical to System (4) with c = 0, as shown in Fig. 4.
It is shown that when the variable c increases in [−5, 5],
the average of the variable z increases accordingly while
the averages of x and y remain unchanged. This property
gives an opportunity to get a unipolar signal z as shown
in Fig. 5 where the constant c represents a DC voltage in
the circuit. To guarantee the desired oscillation, the initial
condition should shift in the z direction simultaneously, which
indicates that this offset-boosting-based polarity convertor
needs a DC voltage for offset control and also needs special
equipment for presetting the initial conditions. The constant
c can be hidden in a periodic function as a period for giving
such an offset boosting.

Self-reproducing systems [25] can be coined by intro-
ducing a periodic function into System (4). Consequently,
infinitely many attractors can be obtained if constant c turns
to be discrete numbers and is placed in a periodic function
of z. This will generate different attractors according to the
initial condition of the variable z without influencing its
basic dynamics. For example, a sinusoidal function can be
introduced into the first dimension as follows:

ẋ = f (z),
ẏ = −x2 − y,
ż = a+ bx + y,

(5)
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FIGURE 6. Strange attractor from System (5) with a = 1.7, b = 1.4, m = 3,
n = 1, and initial conditions (2, 2, 0), the colors indicate the value of the
local largest Lyapunov exponent with positive values in red and negative
values in blue. Equilibrium points are shown as blue dots.

FIGURE 7. Lyapunov exponents for System (5) when a = 1.7, b = 1.4, m =
3, n = 1 and the average value of the variables for different initial
conditions (2, 2, z0) when z0 varies from −15 to 15.

Here f = −msin(nz), but with slightly revised parameters
such as a = 1.7, b = 1.4, m = 3, n = 1 which will pre-
serve the chaos but with larger Lyapunov exponents (0.1151,
0, −1.1151) and a Kaplan-Yorke dimension 2.1032 and an
attractor as shown in Fig. 6. System (5) remains the asym-
metric structure, and has four groups of infinite equilibrium
points of saddle-foci: (2.1799,−4.7518, 2kπ (k ∈ Z )), which
are of index-1 with eigenvalues (1.2600, −1.1300±2.4022i),
(2.1799, −4.7518, (2k + 1)π (k ∈ Z )), which are of index-
2 with eigenvalues (−3.1896, 1.0948±1.2591i), (−0.7799,
−0.6082, 2kπ (k ∈ Z )), which are of index-2 with eigen-
values (−1.6696, 0.3348±2.2817i) and (−0.7799, −0.6082,
(2k + 1)π (k ∈ Z )), which are of index-1 with eigenvalues
(2.3645, −1.6822±0.9620i).

Here the constant c in Eq.(4) disappeared, but the period
in the first dimension in Eq. (5) gives a periodic offset boost-
ing. As predicted, System (5) displays chaos with countless
coexisting strange attractors. As shown in Fig. 7, when the
initial condition in the z dimension varies from −15 to 15,
the average value of z jumps to different levels correspond-
ing to different attractors, each of which share the same

FIGURE 8. Some of the coexisting strange attractors for initial conditions:
(1, −1, k π), k = 0 for green, k = −2 for blue, k = −4 for cyan, k = 2 for
red, and k = 4 for pink.

FIGURE 9. Cross section of the basin of attraction for System (5) with a =
1.7, b = 1.4, m = 3, n = 1 in the plane z (mod 2π) = 0.

FIGURE 10. Typical attractors of System (5) with different periodic
functions.

Lyapunov exponents. Note that there is a third state between
the predicted strange attractors, where the system diverges
in the direction of z and evolves to an oscillation in the
direction of x and y. In Fig. 8 five coexisting strange attractors
are shown for different initial conditions. The selection of
suitable initial conditions is not critical, but values close to
(1, −1, kπ ) are in the basins of the corresponding attractors.
Here we can clearly see that the polarity of the signal z can
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TABLE 1. Typical periodic functions giving multistability.

be selected by initial condition from the green, blue and red
attractor corresponding to bipolarity, negative and positive
polarity.

The basin for one of the attractors has the same shape as
the original system as shown in Fig. 9, which also includes
a large area of unbounded solutions. Note that there are
infinitelymany attractors located in Euclidean space. The cor-
responding circuit is more convenient for producing chaotic
oscillations since infinitely many solutions are available. Fur-
thermore, this time a chaotic signal with the desired polarity
can complement by selecting an attractor with specific initial
conditions.

If the periodic function is replaced with ẋ = −m cos(nz),
System (5) will still give the same countless coexist-
ing strange attractors. Moreover, changing the polarity of

FIGURE 11. Circuit schematic of System (6) in AnadigmDesigner2.

FIGURE 12. Anadigm QuadApex Development Board.

FIGURE 13. Phase trajectory of System (6) from oscilloscope (a) x-y
(b) z-x (c) z-y.

the function will not affect the system significantly, then
ẋ = m sin(nz) and ẋ = m cos(nz) also give the same attrac-
tors. Some other typical functions and parameters can be
applied to replace the sinusoidal function to obtain infinitely
many attractors as shown in Table 1. Four attractors from
Table 1 are shown in Fig. 10. Here the parameters are selected
for their relatively larger Lyapunov exponent, and initial con-
ditions are given arbitrarily for obtaining those attractors.

IV. CIRCUIT REALIZATION BASED ON FPAA
Here an Anadigm QuadApex Development board with four
AN231E04 chips [58]–[61] was used to construct a circuit
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TABLE 2. CAM parameters of the circuit in Fig. 7.

implementation of System (5) with non-zero initial condi-
tions and to experimentally verify the infinitely many coexist-
ing attractors. Each chip contains four Configurable Analog
Blocks (CABs) which perform the analog processing through
fully differentiable switched capacitor technology. Since the
dpASP has a differential output voltage level of ±3V, ampli-
tude rescaling is necessary. To put it within the+/−3V signal
range of the FPAA, System (5) was first rescaled by x → 4x,
y→ 2y, z→ 5z as follows:

ẋ = −
m
4
sin(5nz),

ẏ = −8x2 − y,

ż =
a
5
+

4bx
5
+

2y
5
,

(6)

The circuit implementation of System (6) was designed
using AnadigmDesigner2 as shown in Fig. 11 and then
downloaded into anAnadigmQuadApexDevelopment Board
consisting of four AN231E04 chips as shown in Fig. 12.

TABLE 3. CAM parameters of the circuit in Fig. 14 for System(6A) and
System(6B).

Configurable Analog Module (CAM) values are given in
Table 2, and the corresponding phase trajectories on the
oscilloscope are shown in Fig. 13. The clock frequency of
the CAMS is 250kHz.
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FIGURE 14. Circuit schematic of System (6) in AnadigmDesigner2 for
nonzero initial conditions.

FIGURE 15. Hardware for the implementation of System (6).

To set non-zero initial conditions, the circuit implemen-
tation of System (6) was constructed on two FPAA chips,
System (6A) and System (6B) as shown in Fig. 14. The
physical connections are shown in Fig. 14. Non-zero initial
conditions were then applied to the integrators and a primary
configuration AHF file consisting of chips System (6A)_ic,
System (6B)_ic, FPAA2 and FPAA1 was downloaded to the
board. Then a dynamic configuration AHF file consisting of
chips System (6A), System (6B), FPAA2 and FPAA1 was

FIGURE 16. Coexisting strange attractors from the circuit.

FIGURE 17. Circuit schematic of A2–D2 in AnadigmDesigner2.

downloaded to start the circuit. The CAM values are given
in Table 3, using a clock frequency of 250 kHz.

The whole hardware implementation scheme is shown
in Fig. 15. The signals were collected through a NI USB
6002 at a sample rate of 16 kHz after time rescaling and are
shown in Fig. 16 to demonstrate multistability of the system.

Circuits for various periodic functions corresponding to
A2, B2, C2, and D2 in Fig. 10 were also implemented. To fit
the functions of C2 and D2 into the +/−3V range, system
C2 was scaled by x → 5x, y → 2y, z → z/4, and system
D2 was scaled by x → 8x, y → 2y, z → z/2. The
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FIGURE 18. Phase trajectory of System (5) from oscilloscope (a) A2 (b) B2
(c) C2 (d) D2.

schematic is shown in Fig. 17, and the corresponding phase
trajectories are shown in Fig. 18. The configuration files for
the AHF files and transfer function block can be downloaded
at http://wesleythio.com/.

V. CONCLUSION AND DISCUSSION
The polarity control of chaotic signals is an important issue
in engineering applications like amplitude control [58]–[60].
A feasible approach for realizing chaotic polarity control may
entail system selection. We describe two regimes of chaotic
systems which can output unipolar or bipolar chaotic signals.
One regime is defined as an offset-boostable system, where
a DC voltage is applied for polarity control. Considering the
existence of unbounded solutions, additional hardware may
be necessary for initial condition presetting. The other regime
is defined as a self-reproducing system with infinitely many
attractors coexisting in the solution space, any of which can
be extracted by choosing an initial condition. However, when
the offset constant is replaced by a periodic function in the
offset-boostable system, a series of initial-condition-periodic
attractors are born giving infinite multistability.

The mechanism for constructing dynamical systems with
infinitely many attractors is based on the fact that some
of the variables in the system can be offset boosted by a
newly introduced constant. In this paper, we show that when
applying this method in the Sprott M system, we get the
predicted coexisting strange attractors. Note that the periodic
function can be rectangular or some other nonlinear function
so long as it preserves the desired oscillation and the method
proposed in this paper is also effective for those symmetric
cases [72], [73]. An effective circuit for demonstrating the
infinitely many attractors was built based on the FPAA, and

the output from the circuit demonstrates the predicted multi-
stability.

The experiment shows that it is more convenient to trans-
form unipolar and bipolar signals based on the selection
of any of the coexisting attractors. There are three distinct
advantages for polarity control based on infinite multistabil-
ity. Firstly a desired signal (corresponding to an attractor)
can be freely selected by the initial conditions rather than
different hardware equipment. Secondly the unipolar signal
and the bipolar signal can exchange smoothly. Moreover,
more coexisting attractors in a limited solution space reduce
the risk of oscillation death since some systems may have
unbounded solutions or coexisting stable point attractors
(correspondingly the chaotic attractor is hidden [65]–[71])
and can provide more available chaotic sources for signal
processing.
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