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Applied Chaos Level Test for Validation
of Signal Conditions Underlying
Optimal Performance of Voice

Classification Methods

Boquan Liu,a Evan Polce,a Julien C. Sprott,b and Jack J. Jianga
Purpose: The purpose of this study is to introduce a
chaos level test to evaluate linear and nonlinear voice
type classification method performances under varying
signal chaos conditions without subjective impression.
Study Design: Voice signals were constructed with
differing degrees of noise to model signal chaos. Within
each noise power, 100 Monte Carlo experiments were
applied to analyze the output of jitter, shimmer, correlation
dimension, and spectrum convergence ratio. The
computational output of the 4 classifiers was then
plotted against signal chaos level to investigate the
performance of these acoustic analysis methods under
varying degrees of signal chaos.
Method: A diffusive behavior detection–based chaos level
test was used to investigate the performances of different
voice classification methods. Voice signals were constructed
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by varying the signal-to-noise ratio to establish differing
signal chaos conditions.
Results: Chaos level increased sigmoidally with increasing
noise power. Jitter and shimmer performed optimally when
the chaos level was less than or equal to 0.01, whereas
correlation dimension was capable of analyzing signals
with chaos levels of less than or equal to 0.0179. Spectrum
convergence ratio demonstrated proficiency in analyzing
voice signals with all chaos levels investigated in this study.
Conclusion: The results of this study corroborate the
performance relationships observed in previous studies and,
therefore, demonstrate the validity of the validation test
method. The presented chaos level validation test could be
broadly utilized to evaluate acoustic analysis methods and
establish the most appropriate methodology for objective
voice analysis in clinical practice.
Voice disorders can impart significant functional
and psychological limitations on the lives of patients
(Little, McSharry, Roberts, Costello, & Moroz,

2007). A comprehensive understanding of the acoustic basis
of voice disorders becomes important to effectively diag-
nose and treat patients. To better characterize voice signals,
Titze (1995) developed a classification scheme that desig-
nated voice signals into three signal types according to the
nonlinearity present in the signal. Type 1 signals are pre-
dominantly periodic, Type 2 signals contain modulations
and subharmonics, whereas Type 3 signals are aperiodic in
nature. This classification scheme was modified by Sprecher,
Olszewski, Zhang, and Jiang (2010) to incorporate a
fourth voice type, which primarily exhibits stochastic noise
characteristics.

The ability to use acoustical analysis to differentiate
between voice types represents both a noninvasive and
objective means through which clinicians can obtain crucial
information regarding normal and disordered phonation.
In a traditional model of voice production, vocal fold colli-
sions during phonation generate vibratory motions that
produce quasiperiodic excitation signals in the vocal tract
(Rabiner & Schafer, 1978). In this voice production model,
voice type signals 1, 2, and 3 represent the low-dimensional
vibratory system and are generated by periodic and quasi-
periodic vibration patterns stemming from the vocal folds.
On the contrary, Type 4 voice signals are produced by
chaotic vocal fold collisions, nonlinear stress–strain tissue
interactions, and infinite-dimensional turbulent airflow
through the vocal tract (Jiang, Zhang, & McGilligan, 2006;
Zhang, Jiang, Biazzo, & Jorgensen, 2005; Zhang, McGilligan,
Zhou, Vig, & Jiang, 2004). The functional and morphological
Disclosure: The authors have declared that no competing interests existed at the time
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complications present in vocal pathologies are manifested
as Types 3 and 4 voice signals. Differentiation between
Types 3 and 4 voice signals may provide further insight
into the underlying functional or morphological changes
simultaneously occurring during the transition from low-
dimensional vibratory dynamics to infinite-dimensional
biomechanical and turbulent flow dynamics in the vocal
tract. In addition, periodically monitoring progression of
the voice type profile during the course of treatment would
allow clinicians to quantitatively assess patient voice im-
provement and compare the efficacies of different treat-
ment interventions.

Currently, various linear and nonlinear methods are
utilized in acoustical analysis and for classification of
voices into their corresponding categories. Linear parameter–
based perturbation analyses, such as jitter and shimmer,
are calculated based on the fundamental frequency and
peak amplitude of each phonatory cycle (Sprecher et al.,
2010). However, low degrees of chaos inherent in irregular
phonation diminish the ability of jitter and shimmer to
produce stable estimates. Thus, previous studies have sug-
gested jitter and shimmer should only be applied for anal-
ysis of nearly periodic Type 1 voice signals (Jiang et al., 2006).

The establishment of chaotic behavior in human
phonation required application of nonlinear dynamics to
analyze complex, nonlinear voice signals. Correlation di-
mension (D2) represents the number of degrees of freedom
required to describe the complexity of a system and is use-
ful for differentiating between periodic and irregular pho-
nations (Jiang, Zhang, & Ford, 2003; Jiang et al., 2006).
Although the D2 converges to a finite value with increas-
ing embedding dimension when analyzing periodic and
slightly chaotic signals, the D2 does not converge to a finite
value when the chaos component of the signal becomes
more extensive. Under these high chaos conditions, the
signal exhibits infinite dimensionality, and therefore, accu-
rate estimates of D2 for Type 4 voice signals become impos-
sible. Spectrum convergence ratio (SCR) uses short-time
Fourier transform (STFT) to evaluate the convergence of
250 generated segments for each voice signal (Lin, Calawerts,
Dodd, & Jiang, 2016). SCR is sensitive to small varia-
tions in the periodicity of voice signals and is theorized
to be capable of objectively classifying all four voice sig-
nal types.

The efficacy of these classifiers can vary tremendously
when analyzing voice signals containing differing degrees
of nonlinearity and chaos, causing them to produce invalid
results under certain conditions (Calawerts, Lin, Sprott, &
Jiang, 2017; Jiang et al., 2003, 2006; Lin et al., 2016; Sprecher
et al., 2010). However, the performance and reason of in-
validation for different classification methods are not well
documented, limiting their practical application and reli-
ability. In previous studies, the accuracy of classification
methods was analyzed by comparing the voice type ob-
tained from the linear or nonlinear parameter to the voice
type assigned subjectively by a researcher in spectrogram
analysis. The subjective nature of spectrogram analysis
introduces classification errors and, therefore, decreases
L
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confidence in the validity of this comparison method. Sub-
jective perception is currently widely utilized in voice re-
search and clinical practice and compared to the results of
acoustical analysis methods; however, confounding factors,
such as medical training, experience, and varying defini-
tions of pathological phonation, generate variability among
and between subjective raters (Gupta et al., 2016). To
eliminate the variability caused by human subjective im-
pression, we propose a validation test that directly relates
the degree of noise present in the voice signal to the chaos
level (CL), the degree of aperiodic or random behavior in
a signal, to objectively determine the voice signal conditions
under which classification methods perform optimally. We
applied the validation test to determine how the degree of
chaos in a signal, due to noise, affects the performance of
various linear and nonlinear parameters.

Previous studies have demonstrated that the addi-
tion of external noise can induce spontaneous chaos. In the
field of signal processing, noise-induced chaos has been
observed in various models, such as the semiconductor super-
lattice and the Rössler model system (Kawata, Horita,
Terachi, & Ogata, 1995; Yin et al., 2017). In addition, pre-
vious research in nonlinear dynamic analysis of voice
production has demonstrated that the addition of a tur-
bulent noise component to a two-mass model resulted
in chaotic vocal fold vibrations (Jiang & Zhang, 2002).
However, no research to our knowledge has investigated
if the addition of varying levels of external noise to artifi-
cially constructed voice signals can model signal chaos.

In practice, differing noise powers in a voice signal
lead to various degrees of chaos, resulting in different voice
type signals. Under different noise powers, this article
employs a diffusive behavior detection–based CL test to
investigate the signal conditions that voice classification
methods perform optimally under (Gottwald & Melbourne,
2005, 2009). We defined high chaos as a CL greater than
or equal to 0.9, intermediate chaos as a CL between 0.1
and 0.9, low chaos as a CL between 0.01 and 0.1, and very
low chaos as a CL less than or equal to 0.01. The applica-
bility of the proposed method was investigated through
performance analysis of the SCR, D2, and perturbation
classification methods. We chose to only analyze SCR, D2,
jitter, and shimmer because previous studies have thor-
oughly tested the voice types and signal conditions that
these four parameters perform most optimally under. Per-
formance analysis involved analyzing the computational
output of SCR, D2, jitter, and shimmer at varying CLs from
0 to 1. A linear relationship between the acoustic analysis
outputs obtained and CL would indicate that the specific
acoustic analysis method under investigation can effectively
quantify voice signals that widely vary from periodic to
predominantly chaotic in nature.

Similar to the classification performance profiles
observed in previous studies, we hypothesized that jitter
and shimmer would only produce reliable estimates when the
signal was predominantly periodic, which is when the CL is
very low. Second, we hypothesized that D2 would perform
optimally when analyzing signals with low CLs. Third, we
iu et al.: Chaos Level Test for Voice Classification Methods 1131
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hypothesized that SCR would produce stable acoustic esti-
mates under all signal CLs investigated in this study.

Method
Perturbation Analysis

Jitter is defined as the average absolute difference be-
tween consecutive periods, divided by the average period,
expressed as

Jitter ¼
1

N −1 ∑
N

i¼1
Ti − Tiþ1j j

1
N ∑

N

i¼1
Ti

(1)

where Ti are the extracted fundamental frequency period
lengths and N is the number of extracted fundamental fre-
quency periods (Brockman, Drinnan, Storck, & Carding,
2011; Sprecher et al., 2010).

Shimmer is defined as the average absolute difference
between the amplitudes of consecutive periods, divided by
the average amplitude, expressed as

Shimmer ¼
1

N −1 ∑
N

i¼1
Ai − Aiþ1j j

1
N ∑

N

i¼1
Ai

(2)

where Ai are the extracted peak-to-peak amplitude data
(Brockman et al., 2011; Sprecher et al., 2010).

D2
The D2 describes the complex dynamic behaviors of

a system. More complex systems might necessitate more
state variables, whereas simpler systems may need fewer
degrees of freedom to describe the system dynamics (Awan,
Novaleski, & Rousseau, 2014; Lin et al., 2016; Sprecher
et al., 2010).

A time series with length L is measured and recorded
as x(n1), x(n2), x(n3), …; the D2 is calculated using the
dimensional phase space (Packard, Crutchfield, Farmer,
& Shaw, 1980):

Xi ¼ x nið Þ; x ni − τð Þ;…; x ni − e − 1ð Þτð Þf g (3)

where x(ni) is the nith signal data, τ is the delay, and e is
the embedding dimension. The mutual information method
is used to determine the appropriate time delay (Fraser &
Swinney, 1986).

The correlation integral C(L, r) is represented by

C L; rð Þ ¼ 1
L L− 1ð Þ ∑

L

i¼1
∑
j¼1
i≠j

L

H r− jjXi −Xj jj
� �

(4)

where r is the radius around Xi, H stands for Heaviside func-
tion, and the correlation integral C(L, r) is the probability
1132 Journal of Speech, Language, and Hearing Research • Vol. 61 •

ded From: https://jslhr.pubs.asha.org/ by a ReadCube User  on 05/18/2018
f Use: https://pubs.asha.org/ss/rights_and_permissions.aspx
that the distance between two vectors on the attractor is
smaller than a radius (r). If the value of r is too small, ran-
dom noise becomes a dominant factor and causes estimates
of D2 to increase continuously with increasing embedding
dimension (e) (Awan, Roy, & Jiang, 2010). If the value
of r is too large (i.e., approximately the size of the recon-
structed phase space), estimations of D2 approach zero
because all data pairs of interest in reconstructed phase space
are smaller than r. The appropriate range of r, designated
as the scaling region, lies between these two extremes and
can be determined manually.

H uð Þ ¼ 1; u > 0
0; u ≤ 0

�
(5)

The D2 is defined as

D2 ¼ lim
r→0

lim
L→∞

logC L; rð Þ
logr

: (6)

The D2 was found by calculating the slope of the
most linear part of the log C(L, r) versus log r plot (Fraser
& Swinney, 1986; Grassberger & Procaccia, 1983).

SCR
SCR was calculated based on applying the STFT to

each voice signal sample. The discrete STFT is defined by

V ω;mð Þ ¼ ∑
∞

n¼−∞
y nð Þg n−mð Þe−jωn (7)

where y(n) is the time series; m is the number of seg-
ments, m = 1, 2, …, M; g(n − m) is the window function;
and ω corresponds to the frequency. Briefly, discrete STFT
is used to analyze a series of discrete segments that com-
prise a signal and compare these discrete segments to deter-
mine changes in frequency in the signal over time. To
partition the time sequence into segments, a windowing
function moves along the time axis and obtains local time
segments. The window size, which dictates the number of
sampled points, was set to 0.012 s, generating 250 segments
for each voice sample. Fourier transformations were ob-
tained for the 250 segments produced for each voice signal.
A variable called the dynamic range of segments’ spectro-
gram (DRSS) was then defined to quantify the variation
in frequency between the different segments.

The DRSS was calculated by the following (Lin et al.,
2016):

DRSS ¼ ∑
M

m¼1
Cmax mð Þ−Cmin mð Þ½ � (8)

where Cmax(m) is the maximum energy curve and
Cmin(m) is the minimum energy curve expression in the
1130–1139 • May 2018
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segment m, m = 1, 2,…,M, providing the difference between
the maximum and minimum coefficient values of all seg-
ments. Next, a variable named the maximum energy (MAE)
is defined as

MAE ¼ ∑
M

m¼1
Cmax mð Þ: (9)

Finally, the SCR value was found using the formula

SCR ¼ − ln
DRSS
MAE

� �
: (10)

Aperiodic or chaotic voice will have an SCR value
that approaches 0, whereas the SCR value increases gradu-
ally as voice signals become more periodic. This trend in
SCR values is due to the spectrum of a periodic signal be-
ing composed of extremely similar segments. Therefore,
an aperiodic signal would be composed of segments of con-
siderable dissimilarity. Accordingly, SCR decreases with
increasing voice type.

Validation Test
The voice signal x(z), z = 1,2, …, Z, is modeled as

x zð Þ ¼ s zð Þ þ n zð Þ (11)

where s(z) is purely periodic and n(z) is white, Gaussian-
distributed noise (Jiang et al., 2003, 2006; Titze, 1995).
A signal (s(z)) amplitude of 0.6, sampling frequency of
25 kHz, and signal frequency of 180 Hz are employed in
this study. The length of each constructed voice signal
was 20,000 data points.

The pc and qc are two variable parameters that
are constructed to represent the chaotic behavior of a
signal:

pc Tð Þ ¼ ∑
T

t¼1
x tð Þ cos ct

qc Tð Þ ¼ ∑
T

t¼1
x tð Þ sin ct

(12)

where c is randomly selected from π/5 to 4π/5, that is, c ∈ [π/5,
4π/5], T = 1, 2,…, Z. The choice to restrict the range of c
to c ∈ [π/5,4π/5] is implemented to avoid resonance distor-
tions of CL around π (Gottwald & Melbourne 2005, 2009).
Gottwald & Melbourne (2009) demonstrated that reso-
nance and Brownian motion of pc and qc occurs when c = π,
which would cause CL to increase regardless of if the
signal is periodic or chaotic. As shown in Figure 1, the pc
and qc exhibit bound property when the x(z) is a non-
chaotic signal. However, the pc and qc demonstrate no bound
property and behave like Brownian motion if x(z) is a cha-
otic signal.
L
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The diffusive behavior of pc and qc can be investi-
gated by analyzing the Mc(v),

c vð Þ ¼ 1
Z−v

∑
Z−v

k¼1
pc kþ vð Þ− pc kð Þ½ �2 þ qc kþ vð Þ− qc kð Þ½ �2

� �

(13)

where v ≪ Z. In practice, the v is chosen to be 1, 2, …, Z/10,
to optimize accuracy and computational efficiency. Using
least square regression, the CL is defined by the asymptotic
growth rate,

CL ¼ lim
v→∞

logMc vð Þ
log v

(14)

and determined by fitting a straight line to the graph of
logMc(v) versus log v through minimizing the absolute devia-
tion (Gottwald & Melbourne, 2005, 2009). The periodicity
or aperiodicity of a signal can then be ascertained from the
slope of the fitted line of the logMc(v) versus log v plot (Fig-
ure 2). Based on these mathematical equations, a custom
MATLAB R2017a (MathWorks, Natick, MA) program
was created for CL validation test analysis. A nonlinear sig-
nal processing software package named Open TSTool was
used for D2 computations.

Constructed voice signals were used in this study
instead of observational voice data because the degree of
noise in the simulated signals could be controlled artifi-
cially. By changing the noise power, we obtained different
x(z), z = 1, 2, 3, …, Z. In this article, we used the relation-
ship between noise and CL to obtain differing degrees of
signal chaos because it is simpler to directly control signal
noise relative to signal chaos. The CL was then applied to
represent the chaotic behavior of the constructed signals.
A flowchart depicting the computational progression of the
validation test is displayed in Figure 3. First, voice signals
(x(z)) were constructed with differing magnitudes of sig-
nal noise (n(z)). Then the CL test computation was per-
formed to calculate the CL for every generated x(z). Next,
the acoustical analysis methods of jitter, shimmer, D2, and
SCR were used to evaluate and generate output values for
each x(z). In addition, 100 Monte Carlo experiments were
performed within each noise power, and a completion of
the 100 Monte Carlo iterations represents the stop criterion.
Thus, once all 100 iterations were completed for a particu-
lar x(z), the CL and acoustic analysis output values were
averaged across the 100 Monte Carlo iterations and then
graphically analyzed for linearity.

Results
Figure 4 displays time domain representations for

the constructed voice signals at differing CLs, where A, B,
C, and D correspond to the waveforms at a CL of 0.05,
0.2, 0.5, and 0.8, respectively. The waveform fundamental
frequency is represented by the inverse of the period, f0 =
1/T. The waveforms exhibit increasing amplitudes as the
signal CL increases. A signal amplitude of 0.6 was used for
iu et al.: Chaos Level Test for Voice Classification Methods 1133



Figure 1. Plot of p versus q for a (A) periodic signal and (B) chaotic signal.
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the construction of every signal; however, as the noise com-
ponent (n(z)) of the signal increases in the higher CLs, the
waveform amplitudes are characterized by larger magni-
tudes. In addition, as the CL increases from 0.05 to 0.8, the
phonatory cycles of the simulated waveforms transition
from periodic to aperiodic.

As shown in Figure 5, the CL increases with increas-
ing noise power. In other words, CL and signal-to-noise
ratio are inversely related. The CL varying from approxi-
mately 0 to 1 corresponds to the signal dynamics ranging
from periodic to predominantly chaotic, which coincides
with the voice type definition. Consequently, an increasing
CL would correlate with increasing voice type. Figure 5
was divided into four different magnitudes of chaos:
Figure 2. Plot of log Mc(v) as a function of log v for a (A) periodic signal an

1134 Journal of Speech, Language, and Hearing Research • Vol. 61 •
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high chaos is defined as a CL greater than or equal to 0.9,
intermediate chaos as the CL interval of 0.1–0.9, low chaos
as the CL interval of 0.01–0.1, and very low chaos as a CL
less than or equal to 0.01. As the CL approaches 1 the
signal noise becomes increasingly larger, indicating that
the chaos component dominates the signal.

Figure 6 shows the mean value of 100 Monte Carlo
experiments performed within each CL for jitter and shim-
mer. Jitter and shimmer both exhibited nonmonotonic
behavior with increasing CL. Overlapping of jitter and
shimmer values are observed between CL values of 0.35
and 0.9. This indicates that different signal CLs correspond
to identical values of jitter and shimmer. In addition, shim-
mer exhibited a more linear relationship with CL at very
d (B) chaotic signal.

1130–1139 • May 2018



Figure 3. Flowchart demonstrating the validation test process for
analysis of the performance of voice classification methods.
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low CLs relative to jitter. Specifically, when the CL was
smaller than 0.01, shimmer decreased linearly with decreas-
ing CL. As CL increased beyond 0.01, shimmer no longer
changed purely linearly with CL.

The D2 increased linearly with CL when the CL was
smaller than 0.0179 (Figure 7). As the CL value further
increased, D2 frequently resulted in an infinite value. The
probability of D2 analysis producing an infinite result was
positively correlated with increasing CL value. Therefore,
because D2 did not converge at higher CLs, the graph only
displays D2 values up to a CL of 0.0179.

The SCR monotonically decreased with increasing
CL (Figure 8A). As displayed in Figure 8B, the standard
deviations of SCR in the high CLs are smaller relative to
the low CLs. The standard deviations of SCR were smaller
than 0.002 when CL was larger than 0.1 and smaller than
0.0015 as CL rose up to 0.9. Table 1 displays the signal
CL conditions under which the different classification
methods analyzed performed optimally.
Discussion
In this study, we proposed a method capable of ob-

jectively evaluating the performance and optimum signal
L
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conditions for linear and nonlinear voice type classifica-
tion methods. The validation test calculation utilizes a
diffusive behavior detection–based CL test to determine
the signal CL under which these classification methods
become unreliable. One hundred Monte Carlo experi-
ments were performed, and subsequently, mean values at
each CL were calculated. We applied the validation test
to analyze the performances of jitter, shimmer, D2, and
SCR, across varying degrees of chaos in constructed
voice signals.

The results of our study corroborated the observa-
tions and findings of previous studies. Analysis revealed
that jitter and shimmer were only suitable for quantify-
ing voice signals with very low degrees of nonlinearity.
Shimmer performed slightly better than jitter; however, in
practice, this difference is negligible. Sharp increases in the
values of jitter and shimmer were observed from CLs of
0.3 to 0.5. These sharp increases in output values are due to
the transition from a primarily periodic signal at a CL of
0.3 to a signal with considerable noise characteristics at a
CL of 0.5. As the CL is increased further to 0.6, jitter and
shimmer begin to decrease sharply because estimations
of fundamental frequency and cycle periods become erro-
neous when noise becomes predominant in voice signals
(Jiang et al., 2003; Little et al., 2007). This is consistent with
previous studies that suggested jitter and shimmer should
only be applied for analysis of Type 1 and some Type 2
voices (Jiang et al., 2003, 2006; Sprecher et al., 2010), which
exhibit very low, if any, signal chaos. In this study, stan-
dard deviations were not reported for jitter, shimmer, or
D2 because decreased classification performances and in-
creased fluctuations from mean values as signal dynamics
become increasingly aperiodic for these methods have been
thoroughly investigated and observed previously in the lit-
erature. Consequently, as displayed in Figure 3, observed
overlapping of jitter and shimmer values at differing CL
values suggest that jitter and shimmer are incapable of pro-
ducing stable estimations when the CL is greater than 0.01.
Thus, our hypothesis that jitter and shimmer would only
produce reliable estimates when the signal was nearly peri-
odic was confirmed.

When the signal CL was greater than 0.0179, calcu-
lations of D2 frequently yielded infinite values and the
probability of obtaining infinite values increased with the
CL. Under periodic or low-dimensional chaos signal con-
ditions, D2 converges to a finite value with increasing
embedding dimension; however, D2 estimates of high-
dimensional chaos signals do not converge with increasing
embedding dimension (Jiang et al., 2003, 2006). Previous
studies have suggested that D2 analysis becomes ambigu-
ous under high-dimensional signal chaos conditions because
stochastic noise characteristics dominate the voice signal
(Jiang et al., 2003, 2006; Sprecher et al., 2010). Similarly,
in this study, D2 was applicable for analysis of signals
with very low CLs, as well as some signals with low CLs.
Therefore, our second hypothesis that D2 would perform
optimally when analyzing low-dimensional signals was
confirmed.
iu et al.: Chaos Level Test for Voice Classification Methods 1135



Figure 4. Example waveforms of constructed voice signals at differing chaos levels (CLs). All signals were constructed with a signal (s(z))
amplitude of 0.6, sampling frequency of 25 kHz, signal frequency of 180 Hz, and length of 20,000 data points. (A) CL = 0.05, (B) CL = 0.2,
(C) CL = 0.5, (D) CL = 0.8.
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Previous studies have proposed that SCR might be
capable of distinguishing between all four types of voices
(Lin et al., 2016), which was confirmed by the findings
in this study. Our results suggested that SCR analysis is
effective in quantifying very low, low-, intermediate-, and
high-dimensional chaos (Table 1). SCR values decreased
linearly with increasing CL. The linear correlation demon-
strates that SCR is applicable for analysis of all CLs, rang-
ing from periodic to entirely chaotic, due to nonoverlapping
regions in the SCR results distribution (Figure 8A). In
addition, Figure 8B shows that the results of SCR analy-
sis were characterized by higher variability and fluctuations
for signals with lower CL values. This is not intuitive, as
the classification performances of many objective linear
and nonlinear techniques are characterized by greater
accuracy for periodic signals, whereas decreased classifi-
cation accuracy is observed as voice signals transition to
chaotic dynamics. The observed difference in the standard
1136 Journal of Speech, Language, and Hearing Research • Vol. 61 •
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deviations of SCR is related to the differential performance
of SCR when analyzing voices with low compared to high
CLs. As shown in Lin et al. (2016), the SCR values encom-
passing Type 1 voices occupy a markedly larger range of
SCR values relative to Type 4 voices. Consequently, SCR
exhibited better classification performance during analysis
of voice signals exhibiting high-dimensional chaos, relative
to periodic and low-dimensional voice signals. Because
of its proficiency at classifying chaotic voice signals, SCR
could be applied to analyze voice disorders in clinical prac-
tice, which primarily exhibit Type 3 and Type 4 voice.
Thus, our third hypothesis that SCR would generate sta-
ble acoustic estimates under all magnitudes of signal chaos
analyzed in this study was confirmed.

In this study, the addition of white, Gaussian distrib-
uted noise to artificially constructed periodic voice signals
was used to model observational voice signals, which can
exhibit varying degrees of chaos. The relationship between
1130–1139 • May 2018



Figure 5. Graph depicting chaos level (CL) varying with noise power.
CL is designated on the y axis, and the signal-to-noise ratio (SNR)
in decibels (dB) is on the x axis.

Figure 7. Distribution of correlation dimension (D2) values obtained
from 100 Monte Carlo experiments performed at differing chaos
levels (CLs). D2 did not consistently converge with increasing
embedding dimension when the CL was greater than 0.0179.
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noise and chaos has been widely explored in the field of
signal processing, where external noise or interference is
commonly applied to induce chaotic dynamics in model
systems. Previous research has investigated the effect of
noise intensity on the chaotic dynamics of model attractors
(Kawata et al., 1995). Results demonstrated that external
observation noise added to the system output caused destruc-
tion of the trajectories of attractors in phase space, larger
maximum Lyapunov exponents relative to the absence of
noise, and increasing D2s with decreasing signal-to-noise
ratios, indicating that the addition of random noise strongly
influenced the chaotic dynamics of the system. Similarly, in
Figure 6. Distribution of jitter and shimmer values obtained from 100 Mon
periodic (CL = 0) to stochastic (CL = 1): (A) jitter and (B) shimmer.

L
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this study, we hypothesized that the addition of external
noise was capable of controlling chaos in constructed voice
signals. Lin et al. (2016) previously reported that the clas-
sification performance of SCR increased with increasing
chaos in voice signal recordings from patients. In this study,
we demonstrated that the enhanced classification perfor-
mance of SCR could be explained by observed decreases in
SCR standard deviations as the voice signals transitioned
to high-dimensional chaos. Replicating the SCR performance
relationship described in Lin et al. (2016) provides evidence
supporting the validity of the artificial signal construction
te Carlo experiments performed at chaos levels (CL) varying from

iu et al.: Chaos Level Test for Voice Classification Methods 1137



Figure 8. Distribution and standard deviations of spectrum convergence ratio (SCR) values obtained from 100 Monte Carlo experiments
performed at chaos levels (CLs) varying from periodic (CL = 0) to stochastic (CL = 1): (A) distribution and (B) standard deviation.
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paradigm employed in this study. Although deterministic
chaos is not equivalent to stochastic noise, a clear relation-
ship between the addition of external noise and control of
system chaos has been observed in various system models,
including the signal model used in this study.

The voice signal construction model utilized in this
study was not an attempt to model physiological voice pro-
duction, which would require a more extensive description
of turbulent flow sources and dynamics in the vocal tract.
Rather, the proposed signal model is intended to simulate
the different voice signal outputs that arise from complex
biomechanical vocal fold collisions and airflow interactions
throughout the vocal tract. That is, the current model is
not focused on the source or creation of chaos in the vocal
tract during voice production but instead is concerned with
the corresponding signal output, which ranges from peri-
odic to chaotic, irrespective of how precisely the signal is
generated upstream in the vocal tract.

Currently, many studies utilize perceptual-, linear-,
and nonlinear-based methods of acoustic analysis to inves-
tigate normal and pathological voices. The performance
of existing classification methods can vary significantly
Table 1. Chaos level application conditions for jitter, shimmer,
correlation dimension (D2), and spectrum convergence ratio (SCR).

Method Jitter Shimmer D2 SCR

Chaos level ≤ 0 ≤ 0.01 ≤ 0.0179 All

Note. A chaos level of 0 indicates a completely periodic voice
signal, whereas a chaos level of 1 indicates a stochastic voice
signal.
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when analyzing voice signals with differing noise compo-
nents, which might lead to erroneous results. Previous
studies have suggested that certain linear and nonlinear
analysis methods are unreliable for analyzing Types 3
and 4 voice signals; however, direct quantitative measure-
ments of the degree of chaos in these voice signals that
causes a transition to methodological unreliability have not
been performed. The uncertainty surrounding the conditions
that acoustic analysis methods might produce inaccurate
results has limited their clinical application. The current
gold standard for voice classification analysis is perceptual
evaluation; however, the inherent error of this subjective
method necessitates objective analysis as a supplement for
clinical practice. The proposed validation test offers an
objective means to analyze the performance of voice clas-
sification methods, effectively eliminating the subjectivity
previously present when classifier efficacy was determined
by comparison to the results of spectrogram analysis. De-
termination of the precise chaos conditions where objective
classification methods perform optimally is clinically rele-
vant because effective patient treatment is predicated on the
ability of clinicians to obtain accurate diagnostic informa-
tion. Thus, a more robust understanding of the nature
of these validation conditions will enhance the accuracy
and utility of these acoustic analysis tools.
Conclusion
In this study, we applied a CL test to objectively

determine the efficacy of linear and nonlinear classification
methods under varying signal CLs. Jitter and shimmer
were applicable for acoustic analysis of signals with very
low degrees of nonlinearity. D2 performed optimally when
1130–1139 • May 2018
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analyzing voice signals with low-dimensional chaos. SCR
was capable of distinguishing between very low, low-,
intermediate-, and high-dimensional chaos. These perfor-
mance results matched previously reported performance
profiles for the classification methods analyzed. Thus,
the proposed validation test provided accurate, objective
information about the signal chaos conditions underlying
optimal classification performance for each acoustical
analysis method. Future studies could apply this valida-
tion test more broadly to observational voice data to
identify the most accurate and efficient voice classifica-
tion methods for clinical use.

Understanding the conditions under which voice
classification methods perform optimally is not only criti-
cal for clinical use but also for generating a more robust
understanding of the intrinsic signal characteristics of
the four voice types. Future work with the validation test
could identify additional nonlinear methods proficient in
distinguishing Types 3 and 4 voice signals, which might
assist in elucidating the mechanisms underlying disordered
voices. Performance and validation condition analysis
could assist clinicians in obtaining additional diagnostic
tools, which may lead to superior treatment for individ-
uals suffering from voice disorders.
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