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A new dynamical system based on Thomas’ system is described with infinitely many strange attractors 
on a 3-D spatial lattice. The mechanism for this multistability is associated with the disturbed offset 
boosting of sinusoidal functions with different spatial periods. Therefore, the initial condition for offset 
boosting can trigger a bifurcation, and consequently infinitely many attractors emerge simultaneously. 
One parameter of the sinusoidal nonlinearity can increase the frequency of the second order derivative 
of the variables rather than the first order and therefore increase the Lyapunov exponents accordingly. 
We show examples where the lattice is periodic and where it is quasiperiodic, that latter of which has 
an infinite variety of attractor types.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

A 3-D cyclically symmetric dynamical system is one whose 
equations are given by ẋ = f (x, y, z), ẏ = f (y, z, x), ż = f (z, x, y), 
where all the functions are the same except with their variables 
rotated. Some such systems are known to produce chaos including 
Halvorsen’s system [1] and a piecewise-linear system [2].

Thomas [3] proposed a cyclically symmetric dissipative dynam-
ical system⎧⎪⎨
⎪⎩

ẋ = sin(y) − bx,

ẏ = sin(z) − by,

ż = sin(x) − bz,

(1)

whose linear damping governs the dynamics and controls the di-
mension of the attractor from 0 to 3 [4–6]. Replacing the linear 
damping in system (1) by a sinusoidal damping [7,8] and intro-
ducing a new parameter a to control the ratio of the two periods 
gives the system⎧⎪⎨
⎪⎩

ẋ = sin(ay) − b sin(x),

ẏ = sin(az) − b sin(y),

ż = sin(ax) − b sin(z).

(2)
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Since all the terms are spatially periodic, the resulting system 
admits multiple coexisting solutions depending on the initial con-
ditions.

Offset boosting refers to a transformation that can shift any of 
the variables in a system and hence its attractor in phase space 
without altering the system solutions [9]. If the periods for all 
these trigonometric functions are identical (a = 1), any attractor 
will be infinitely reproduced by periodic offset boosting [9–13]. 
However, if the trigonometric functions have different spatial peri-
ods (a �= 1), infinitely many heterogeneous attractors will emerge 
from different initial conditions as a result of the offset boost-
ing. If the two spatial periods are commensurate (rational a), the 
lattice of attractors consists of a finite number of attractor types, 
but if the periods are incommensurate (irrational a), there will be 
infinitely many types typically consisting of a combination of dif-
ferent strange attractors and limit cycles.

In this paper, a cyclically symmetric system with periodic si-
nusoidal damping is proposed. Section 2 derives its symmetry 
and equilibrium points. Section 3 discusses its unique route to 
chaos. Section 4 describes its special multistability with spatially-
periodic chaos and reveals the mechanism for multistability. Sec-
tion 5 shows an example of spatially-quasiperiodic chaos with 
infinitely many attractor types. Section 6 shows a case where all 
the attractors merge into one large unbounded strange attractor. 
Section 7 shows that similar behavior occurs for different trigono-
metric functions. Conclusions and discussion are given in the last 
section.
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Fig. 1. Chaotic attractor for system (2) with a = 4.75, b = 1 and initial condition 
(0, 1, 0). The colors indicate the value of the local largest Lyapunov exponent with 
positive values in red and negative values in blue. The equilibrium point at the 
origin is shown as a blue dot. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

2. Symmetry and equilibrium points

System (2) is symmetric about the origin since the transforma-
tion of x → −x, y → −y, z → −z gives the same equation and has 
a periodic rate of volume contraction given by the Lie derivative, 
(1/V )dV /dt = ∂ ẋ

∂x + ∂ ẏ
∂ y + ∂ ż

∂z = −b(cos(x) + cos(y) + cos(z)). In fact, 
system (2) is a cyclically symmetric one, where each derivative de-
pends on itself and the other variable, and the functions are all 
identical except the variables are rotated. The dynamical evolution 
of the three variables is unified under different initial conditions.

To calculate the equilibrium points, we set b = 1 without loss 
of generality. From cos( ay+x

2 ) sin(
ay−x

2 ) = cos( az+y
2 ) sin(

az−y
2 ) =

cos( ax+z
2 ) sin( ax−z

2 ) = 0, eight groups of equilibrium points can 
be obtained. One group of equilibrium points is ( 2π(k3a2+k2a+k1)

a3−1
, 

2π(k1a2+k3a+k2)

a3−1
, 2π(k2a2+k1a+k3)

a3−1
). For a �= 1, they are related by dif-

ferent combinations of the integers ki . When k1 = k2 = k3 = 0, 
the eigenvalues are (a − 1, (− a

2 − 1) ±
√

3
2 ai) which implies that 

the corresponding equilibrium point at the origin is an unstable 
saddle-focus of index-1 when a > 1. There are other equilibrium 
points of different stability, which will be ignored here because 
of the complicated forms in the expression of their location and 
eigenvalues. All these equilibrium points affect their local dynam-
ics giving different attractors.

When a = 4.75, b = 1, system (2) has a self-excited chaotic 
attractor near the origin with Lyapunov exponents (0.2822, 0,

−2.9562) and a Kaplan–Yorke dimension of 2.0955. The strange 
attractor is shown in Fig. 1, whose basin of attraction in the plane 
z = 0 is shown in Fig. 2. The projection onto different orthogonal 
planes (i.e., x = 0, y = 0) has the same shape since system (2) has 
cyclical symmetry.

3. Bifurcation and robust chaos

The parameter a in system (2) is a bifurcation parameter, which 
also influences the offset boosting since it changes the period of 
Fig. 2. Basin of attraction of system (2) with a = 4.75, b = 1 in the plane z = 0. The 
black lines show the cross section of the chaotic attractor in the plane.

the corresponding sinusoidal nonlinearity. To demonstrate this, the 
Lyapunov exponents, Kaplan–Yorke dimension, and bifurcation di-
agram for the attractor nearest to the origin are given in Fig. 3, 
where Xm means the local maximum values of the variable x. 
There is a Hopf bifurcation for a = −2, b = 1 where the eigen-
values of the equilibrium point at the origin are (−3, 0 ± 1.7321i). 
Unlike other systems [14–21], system (2) has many windows of 
chaos. For positive values of a below the first such window, most 
of the limit cycles are asymmetric for the initial condition (0, 1, 0)

as shown in Fig. 4; while larger values of a give mostly symmetric 
limit cycles as shown in Fig. 5. All the attractors shown in Figs. 4
and 5 are for the initial condition (0, 1, 0), and there are infinitely 
many other attractors for each parameter as shown in the next 
section. In fact, for the asymmetric case, the system has symmet-
ric pairs of coexisting attractors at many of the lattice sites where 
the symmetry is broken.

With a further increase in the parameter a, the chaotic solu-
tion of system (2) also changes from asymmetric to symmetric 
and finally retains its chaos with a largest Lyapunov exponent 
and Kaplan–Yorke dimension that increase with a. As shown in 
Fig. 6, when b = 1, and a = 4.5 the attractor is asymmetric; when 
b = 1, a = 9.5, 10, 12, 18, 50, the attractor is symmetric, and the 
second derivative of the variables, which dictates the character-
istic frequency of oscillation, increases. Lyapunov exponents and 
Kaplan–Yorke dimensions of these attractors are shown in Table 1.

This phenomenon is associated with the more closely spaced 
equilibrium points. Without loss of generality, assume b = 1, when 
the parameter a increases, system (2) has more closely spaced 
equilibrium points. Since ẋ = sin(ay) − sin(x) ∈ [−2, 2], the deriva-
tive of the variable x (if a variable corresponds to the displace-
ment of an object, the derivative of that variable corresponds to 
the velocity) cannot be increased without limit. But when a sec-
ond derivative is taken, giving the equation ẍ = a cos(ay)(sin(az) −
sin(y)) − cos(x)(sin(ay) − sin(x)) ∈ [−2(|a| + 1), 2(|a| + 1)], the dis-
placement in the x direction has a continuously increasing accel-
eration (within a limited range of amplitudes). The corresponding 
strange attractors and their frequency spectra are shown in Fig. 7
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Fig. 3. Dynamical behavior of system (2) with initial condition (0, 1, 0) when a
varies in [2,12] for b = 1 showing Lyapunov exponents, Kaplan–Yorke dimension, 
and bifurcation diagram.

Fig. 4. Typical asymmetric limit cycles of system (2) with initial conditions (0, 1, 0)

and b = 1 below the first window of chaos.

for larger values of a. The range of the variables becomes smaller 
thereby compressing the attractor, while the characteristic frequen-
cies increase along with the Lyapunov exponent [22,23].
Fig. 5. Typical symmetric limit cycles of system (2) with initial conditions (0, 1, 0)

and b = 1 above the first window of chaos.

Fig. 6. Chaotic attractor of system (2) with initial conditions (0,1,0) and b = 1.

Table 1
Lyapunov exponents and Kaplan–Yorke dimensions of the strange attractors for var-
ious a in system (2) with b = 1 and initial conditions (0, 1, 0).

Parameter Lyapunov exponents (LEs) Kaplan–Yorke dimension (Dky)

a = 4.5 0.1809, 0, −2.8216 2.0641

a = 9.5 0.4459, 0, −3.3607 2.1327

a = 10 0.3901, 0, −3.3068 2.1180

a = 12 1.1607, 0, −4.0652 2.2855

a = 18 2.3259, 0, −5.2471 2.4433

a = 50 7.2548, 0, −10.2305 2.7091
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Fig. 7. Chaotic oscillation from system (2) with initial conditions (0, 1, 0) and b = 1
(a) strange attractor, (b) corresponding frequency spectrum.

Fig. 8. Dynamical behavior of system (2) with initial conditions (0, 1, 0) when b
varies in [0.4, 1.74] at a = 4.75 including Lyapunov exponents, Kaplan–Yorke di-
mension, and bifurcation diagram.

When a = 4.75 and b varies in [0.4, 1.74], the diagrams of bi-
furcation and Lyapunov exponent spectrum are as given in Fig. 8. 
In contrast to the system with a varying parameter a, this fig-
ure shows that the parameter b alters the dynamics of system (2)
dramatically, giving an inverse period-doubling progressing from 
chaos to a stable equilibrium and with numerous periodic win-
dows. For b < 0.4, system (2) has an unbounded strange attractor 
that will be described later.
Fig. 9. Coexisting attractors of system (2) with a = 4.75, b = 1.

4. Infinite periodic lattice of attractors

The multistability of a dynamical system relates to its initial 
conditions. The mechanism responsible for multistability is asso-
ciated with offset boosting and atypical bifurcation. To show this, 
replace the variable x with x +c, correspondingly sin(x) and sin(ax)
become sin(x + c) and sin(a(x + c)), indicating that the bifurcation 
parameter a becomes entangled with the offset parameter c. In 
fact, an offset in any of the variables will introduce two constants 
in the right-hand side of Eq. (2), and therefore it will influence the 
dynamical behavior. For x → x + c, system (2) becomes
⎧⎪⎨
⎪⎩

ẋ = sin(ay) − b sin(x + c),

ẏ = sin(az) − b sin(y),

ż = sin
(
a(x + c)

) − b sin(z).

(3)

Because it has two different periods, 2π and 2π/a, the bifurca-
tion parameter a in system (3) becomes entangled with the offset 
boosting parameter c. System (2) can thus produce an infinite 3-D 
lattice of attractors, with a mixture of chaos and limit cycles. Am-
plitude control provides a way to find coexisting attractors [24,25]. 
The above analysis also shows that offset boosting with a fixed ini-
tial condition gives a method for identifying multistability [9].

As predicted, when a = 4.75, b = 1, there are limit cycles coex-
isting with strange attractors as shown in Fig. 9. The colors are 
arbitrary and are used only to distinguish attractors that might 
otherwise overlap in a given projection. The basins of attraction for 
one row of the coexisting attractors in the z = 0 plane as shown in 
Fig. 10 shows the offset separated structure with complicated basin 
boundaries. The basin structure repeats in the y and z directions. 
Some periodic attractors are intermingled with the offset-boosted 
strange attractors, which is caused by the different characteristic 
lengths and initial conditions.

Besides the new introduced periodic solutions, offsetting of the 
variable x modulo 2π is obtained for the sinusoidal nonlinearities. 
Fig. 11 shows that a change in the initial condition x0 produces not 
only an offset boosting but also coexisting chaos and limit cycles. 
Of those nine attractors, three are chaotic, and six are limit cycles. 
As shown in Fig. 9, the initial conditions of the variables x, y, and 
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Fig. 10. Basins of attraction for one row of coexisting attractors when z = 0.

Fig. 11. Dynamical behavior of system (2) with a = 4.75 and b = 1 when the initial 
condition x0 varies in [−25, 25] for y0 = 1, z0 = 0.

Fig. 12. Typical coexisting attractors of system (2) with a = (
√

5 + 1)/2, b = 0.7.

z have the same effect on system (2), giving the same attractors 
that hop between chaos and periodicity.

Since a = 4.75 = 19/4 is a rational number, the 3-D lattice is 
spatially periodic with a period of 4 × 2π , and thus a cube of 
size 8π in each direction will contain 64 coexisting attractors, and 
there are infinitely many such identical cubes. Some of the cells 
contain a symmetric pair of attractors. Many of the attractors have 
identical properties except for a rotation by 90 degrees as a result 
of the cyclical symmetry. Further analysis of the 64 attractors us-
ing the average trace of their Jacobian matrix to distinguish among 
them shows that of the 64 attractors in each cube, only five are 
unique. The spatial pattern of the five is complicated and nonobvi-
ous. As a practical matter, it is necessary to avoid initial conditions 
that lie at exact multiples of 2π to break the symmetry of the 
three variables. Note that there are many more equilibrium points 
than there are attractors and most of the equilibria are saddle-
focus pairs of index-1 and index-2 with occasional saddle nodes.

5. Infinite quasiperiodic lattice of attractors

To produce an infinite lattice containing an infinite variety of 
attractors, it is necessary to choose an irrational value for a. For 
that purpose we take a = (

√
5 + 1)/2 (the golden mean) and 

choose b = 0.7 to make the attractor closest to the origin chaotic. 
Fig. 12 shows a representative cube along with the attractors that 
it contains. There are degeneracies due to the inversion symme-
try (change of sign of the variables) and the cyclical symmetry (90 
degree rotations), but there are infinitely many attractors with dif-
ferent values of the trace of their Jacobian. Most of these attractors 
are limit cycles, but some are strange attractors. There is also an 
infinite variety of equilibrium points, but they are all saddle foci 
with a similar number of index-1 and index-2.

6. Unbounded strange attractor

Fig. 13 shows that the attractor in the vicinity of the origin 
for the quasiperiodic lattice is chaotic only over a narrow range 
of b in the vicinity of 0.7 and that the more typical attractor is a 
limit cycle. However, when b decreases to about 0.32, the limit 
cycle at the origin merges with a nearby limit cycle to form a 



586 C. Li, J.C. Sprott / Physics Letters A 382 (2018) 581–587
Fig. 13. Dynamical behavior of system (2) with initial conditions (0, 1, 0) when b
varies in [0, 1] at a = (

√
5 + 1)/2 including Lyapunov exponents, Kaplan–Yorke di-

mension and bifurcation diagram.

larger limit cycle that then merges with others, eventually form-
ing a single large strange attractor that is unbounded for b = 0.2
with Lyapunov exponents (0.257, 0, −0.341) and a Kaplan–Yorke 
dimension of 2.752, a typical piece of which is shown in Fig. 14. 
Thus the system exhibits a kind of fractional Brownian motion. 
However, since the Kaplan–Yorke dimension is less than 3.0, the 
orbit is a set of measure zero in the space.

When b decreases further to 0.1, there is a very long chaotic 
transient where the orbit wanders throughout the lattice, but it 
eventually finds a stable limit cycle embedded in one of the cells 
as shown in Fig. 15. This is just one of an infinite number of such 
embedded limit cycles, but they are rare.

7. Other periodic functions

The sine terms in system (2) can be replaced by other periodic 
functions giving behavior similar to that described above. For ex-
ample, the system⎧⎪⎨
⎪⎩

ẋ = sin(ay) − b tan(x),

ẏ = sin(az) − b tan(y),

ż = sin(ax) − b tan(z)

(4)

can also give an infinite 3-D lattice of attractors. Specifically, when 
a = 4.75, b = 0.7, it has a chaotic solution with Lyapunov ex-
ponents (0.1650, 0, −2.9213) and a Kaplan–Yorke dimension of 
Fig. 14. Unbounded strange attractor of system (2) with a = (
√

5 + 1)/2, b = 0.2 for 
initial conditions (10, 15, 31).

Fig. 15. A stable limit cycle embedded in one of the cells for system (2) with a =
(
√

5 + 1)/2, b = 0.1.

2.0565 for the initial conditions (0, 1, 0). The kinds of coexisting 
attractors are as shown in Fig. 16. Comparing Fig. 16 with Fig. 9
and Fig. 12 shows that the number of coexisting attractors in the 
same cube is greater in this case since it has two different periods, 
π and 2π/a.

8. Conclusions and discussion

Multistability has attracted great attention for its value and 
problems in engineering design. However, the mechanisms for dif-
ferent regimes of coexisting attractors have not been sufficiently 
revealed. Some symmetric systems have coexisting attractors when 
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Fig. 16. Coexisting attractors of system (4) with tangent damping for a = 4.75, 
b = 0.7.

the symmetry is broken [26–28], some systems with hidden attrac-
tors show multistability for the equilibrium points [29–31], and 
extreme multistability is associated with extraneous dimensions 
[32–34]. However, offset boosting provides a new mechanism for 
producing infinitely many attractors. Unbalanced offset boosting in 
the same variable can generate different types of coexisting attrac-
tors.

By introducing spatially sinusoidal damping in Thomas’ sys-
tem, an infinite 3-D lattice of coexisting attractors consisting of 
symmetric and asymmetric limit cycles and strange attractors is 
produced. Increasing the spatial frequency of the sinusoidal func-
tion causes the system to contain more closely spaced equilib-
rium points and correspondingly produces chaotic attractors with 
larger Lyapunov exponents. The mechanism for producing infinitely 
many attractors is rooted in offset boosting and spatially-periodic 
trigonometric nonlinearities.
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