
December 24, 2018 14:46 WSPC/S0218-1274 1850163

International Journal of Bifurcation and Chaos, Vol. 28, No. 14 (2018) 1850163 (13 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218127418501638

Offset Boosting for Breeding Conditional Symmetry

Chunbiao Li∗
Jiangsu Collaborative Innovation Center of Atmospheric Environment and
Equipment Technology (CICAEET), Nanjing University of Information

Science and Technology, Nanjing 210044, P. R. China
Jiangsu Key Laboratory of Meteorological Observation

and Information Processing, Nanjing University
of Information Science and Technology,

Nanjing 210044, P. R. China
goontry@126.com

chunbiaolee@nuist.edu.cn

Julien Clinton Sprott
Department of Physics, University of Wisconsin–Madison,

Madison, WI 53706, USA
sprott@physics.wisc.edu

Yongjian Liu
Guangxi Colleges and Universities Key Laboratory

of Complex System Optimization and Big Data Processing,
Yulin Normal University, Yulin, Guangxi 537000, P. R. China

liuyongjianmaths@126.com

Zhenyu Gu† and Jingwei Zhang‡
Jiangsu Key Laboratory of Meteorological Observation

and Information Processing, Nanjing University
of Information Science and Technology,

Nanjing 210044, P. R. China
School of Electronic and Information Engineering,

Nanjing University of Information Science and Technology,
Nanjing 210044, P. R. China

†gzy1210440@163.com
‡20151305061@nuist.edu.cn

Received April 27, 2018; Revised July 5, 2018

Symmetry is usually prevented by the broken balance in polarity. If the offset boosting returns
the balance of polarity when some of the variables have their polarity reversed, the corresponding
system becomes conditionally symmetric and in turn produces coexisting attractors with that
type of symmetry. In this paper, offset boosting in one dimension or in two dimensions in a
3D system is made for producing conditional symmetry, where the symmetric pair of coexisting
attractors exist from one-dimensional or two-dimensional offset boosting, which is identified by
the basin of attraction. The polarity revision from offset boosting provides a general method
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for constructing chaotic systems with conditional symmetry. Circuit implementation based on
FPGA verifies the coexisting attractors with conditional symmetry.

Keywords : Conditional symmetry; offset boosting; coexisting attractors.

1. Introduction

Multistability has attracted great interest in non-
linear dynamics studies for its potential value or
threats in engineering. It exists in physics [Arecchi
et al., 1982], chemistry [Thomson & Gunawardena,
2009], biology [Laurent & Kellershohn, 1999], neural
networks [Zeng et al., 2010], and even in ice sheets
[Robinson et al., 2012]. Symmetric chaotic systems
are a source of coexisting symmetric pairs of attrac-
tors [Lai & Chen, 2016; Li et al., 2015a; Li & Sprott,
2014; Bao et al., 2016; Li et al., 2015b; Li et al.,
2018a; Zhou et al., 2017]. Meanwhile, those ordi-
nary differential equations with conditional symme-
try can produce offset boosted symmetric attractors
in an asymmetric structure [Li et al., 2016, 2017; Li
et al., 2018b]. Conditional symmetry represents a
special type of hindered symmetry where the polar-
ity balance is broken by the polarity reversal of
some variables but is consequently satisfied by their
offset boosting. A system with conditional symme-
try belongs to a unique structure, and the explo-
ration of this type of system is helpful to understand
where the coexisting attractors are located within
the space of initial conditions. In [Li et al., 2017],
a chaotic system with conditional symmetry was
constructed from a rigid variable-boostable system
[Li & Sprott, 2016] where polarity imbalance is pre-
vented by an isolated variable. However, the broken
polarity balance can be recovered by a generalized
offset boosting, and correspondingly, the system
retains its conditional symmetry. Therefore, in this
paper, we follow this procedure and develop new
regimes of chaotic systems with conditional symme-
try from a more flexible offset boosting. To under-
stand the mechanism for conditional symmetry, we
offer the following remarks:

Remark 1.1. For a dynamical system Ẋ = F (X)
(X = (x1, x2, . . . , xN )), if there exists a variable
substitution: ui = xi, uj = xj + dj , (here 1 ≤
j ≤ N, i ∈ {1, 2, . . . , N}\{j}) satisfying U̇ =
F (U, dj), (U = (u1, u2, . . . , uN )), then the variable
xj in system Ẋ = F (X) exhibits offset boosting,
which means that the average of the variable xj

is boosted by the newly introduced constant dj . If
the variable xj is the signal from an electrical cir-
cuit, the signal is offset boosted by the addition of
a direct component dj . Specifically, if ui = xi, uj =
xj + dj only introduces a separate constant dj in
one dimension on the right-hand side of the equa-
tions, then the system can be regarded as a variable-
boostable system [Li & Sprott, 2016].

Remark 1.2. Suppose in a dynamical system Ẋ =
F (X) (X = (x1, x2, . . . , xN )), if xi → −xi, then
the variable xi is polarity reversed. If the polar-
ity reversal is taken in some variables (xi1 , xi2 , . . . ,
xih , . . . , xik) (here 1 ≤ i1, . . . , ih, . . . , ik ≤ N) sub-
ject to the same governing equation in which case
the polarity balance must remain on both sides
of the equation Ẋ = F (X) = (f1(X), f2(X), . . . ,
fN (X)) since d(−xih) = −d(xih) may give a polar-
ity reversal on the left-hand side of Ẋ while the
corresponding right-hand side of Ẋ needs to return
−fih(X) to balance the revised polarity on the left-
hand side.

Remark 1.3. For a specified system with some
dynamical properties, any transformation should
agree with the basic law of polarity balance. A sym-
metric system can retain its polarity balance when
some of the variables are polarity reversed. More-
over, in a dynamical system, the polarity imbalance
can be induced by the polarity reversal of any of
the variables and can also be induced by the offset
boosting of any of the variables since the deriva-
tive of −xih gives a definite negative polarity on
the left-hand side, while the offset boosting of the
variable may give a negative sign on the right-hand
side, although it does not change the polarity of the
left-hand side of the differential equation.

Remark 1.4. When some of the variables are polarity
reversed, a symmetric dynamical system can retain
its polarity balance while an asymmetric one loses
its balance of polarity. Meanwhile, the polarity bal-
ance can be restored in some specific asymmet-
ric systems when some of the variables are offset
boosted.
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Remark 1.5. For a dynamical system Ẋ = F (X) =
(f1(X), f2(X), . . . , fN (X))(X = (x1, x2, . . . , xN )),
if there exists a variable substitution including
polarity reversal and offset boosting such as ui1 =
−xi1, ui2 = −xi2 , . . . , uik = −xik , uj1 = xj1 + dj1 ,
uj2 = xj2 + dj2, . . . , ujl

= xjl
+ djl

, ui = xi, (here
1 ≤ i1, . . . , ik ≤ N, 1 ≤ j1, . . . , jl ≤ N , i1, . . . , ik
and j1, . . . , jk are not identical, i ∈ {1, 2, . . . , N}\
{i1, . . . , ik, j1, . . . , jl}), the derived system will
retain its balance of polarity on the two sides of
the equation and will satisfy U̇ = F (U)(U = (u1,

u2, . . . , uN )). The system Ẋ = F (X) (X = (x1,
x2, . . . , xN )) can be defined as one of l-dimensional
conditional symmetry since the polarity balance
needs an l-dimensional offset boosting [Li et al.,
2017]. Specifically, for a three-dimensional dynam-
ical system, Ẋ = F (X)(X = (x1, x2, x3)), there
only exist conditional rotational symmetry in one
dimension and conditional reflection symmetry in
one dimension or two dimension.

2. Offset Boosting for Breeding
Conditional Symmetry

Considering that conditional symmetry can be eas-
ily obtained from a general structure with off-
set boosting in addition to rigid variable-boostable
systems [Li et al., 2017; Li & Sprott, 2016], we
here design four additional cases from searching
for chaotic systems with conditional symmetry.
For example, to obtain a conditional reflection-
symmetric system, suppose there is a polarity rever-
sal in the variable xi. This will revise the polarity
of the dimension of xi on the left-hand side of ẋi,
and in turn require adjustment in the polarity of the
terms on the right-hand side of ẋi to get −fi(X).
Besides this, all the other dimensions retain polar-
ity balance since −xi may introduce a minus sign
on the right-hand side, which in turn requires a new
minus sign from offset boosting to cancel it. That is
to say, to keep the polarity balance of a polynomial
equation fj(X), it is necessary to revise the equa-
tion to produce similar dynamics by introducing
new functions in fj(x1, x2, . . . ,−xi, . . . , Fj1(xj1),
Fj2(xj2), . . . , Fjl

(xjl
), . . . , xN ) (1 ≤ j1, . . . , jl ≤ N,

j1, . . . , jl are not identical, and l is odd) for vari-
ables (xj1, xj2 , . . . , xjl

) which admit offset boosting
giving a new minus sign to cancel the one from
−xi by Fjm(xjm + djm) = −Fjm(xjm) (j1 ≤ jm ≤
jl). Note that offset boosting does not produce a
minus sign on the left-hand side of the equation

since d(xjm + djm) = d(xjm). A jerk system is a
simple structure to pass the polarity which con-
sequently provides an easy way to consider polar-
ity balance. In the following, we show some exam-
ples mainly from jerk structures and show how the
polarity imbalance is restored by a suitable offset
boosting.

Theorem 2.1. The following jerk system can be
transformed into a system with conditional reflec-
tion symmetry with respect to the x dimension
by introducing a nonmonotonic function F (y) [Li
et al., 2017]:



ẋ = y,

ẏ = z,

ż = a1xy + a2x
2 + a3y

2 + a4z + a5z
2 + a6.

(1)

Proof. If x → −x, y → y, z → z, the polarity
balance of the first and last dimensions of Eq. (1)
is destroyed because of the polarity invariance in
the variables y and z, while the polarity balance in
the second dimension ẏ is preserved. However, off-
set boosting of the variable y can produce a polarity
reversal and restore the polarity balance in the first
and last dimensions if a suitable function is intro-
duced. Suppose y → F (y), since F (y) is nonmono-
tonic, if y = u+ c makes F (y) = F (u+ c) = −F (u),
the variable substitution x → −x, y → u+ c, z → z
will restore the polarity balance in the equation




ẋ = F (y),

ẏ = z,

ż = a1xF (y) + a2x
2 + a3(F (y))2

+ a4z + a5z
2 + a6,

(2)

which proves that system (1) can be transformed
into system (2) with conditional reflection symme-
try by a special nonmonotonic function F (y). For
the same reason, the jerk equation




ẋ = y,

ẏ = z,

ż = a1x
2 + a2y

2 + a3xy + a4xz

+ a5yz + a6z
2 + a7,

(3)

can also be transformed into a system with condi-
tional rotational symmetry since the polarity imbal-
ance from the transformation x → −x, y → −y,
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z → z in the y and z dimensions can be recovered
by offset boosting of the variable z from a special
nonmonotonic operation F (z). The above jerk equa-
tions give a new structure for developing chaotic
systems with conditional symmetry that is different
from the variable-boostable system [Li & Sprott,
2016]. We can transform chaotic flows with the
structure of Eqs. (1) or (3) to have conditional sym-
metry if an absolute value function or a trigonomet-
ric function [Li et al., 2017] is introduced to give
conditional symmetry since the offset boosting may
result in a polarity reversal that satisfies the sym-
metric transformation.

More generally, an asymmetric 3D system can
recover its polarity balance from 2D offset boosting.
We conclude that the dynamical system




ẋ = a1z
2 + a2xz + a3yz + a4,

ẏ = a5z
2 + a6xz + a7yz + a8,

ż = a9z + a10x + a11y,

(4)

can also be transformed into a system with con-
ditional reflection symmetry with respect to the
z dimension from a 2D offset boosting by intro-
ducing nonmonotonic functions F (x) and G(y) in
the right-hand side of the equations. Suppose x →
x + c1, y → y + c2, z → −z, if u = x + c1 makes
F (u) = F (x + c1) = −F (x), v = y + c2 makes
G(v) = G(y + c2) = −G(y), all the polarity balance
can be restored in the revised system.

A jerk structure such as



ẋ = y,

ẏ = xz,

ż = a1xy + a2xz + a3x
2 + a4y

2

+ a5z
2 + a6yz + a7,

(5)

can also provide such a case with conditional sym-
metry from 2D offset boosting. Here the polar-
ity reversal of one variable restores its balance by
an offset boosting from one of the other variables.
Moreover, the polarity reversal of one variable also
changes the polarity balance in the second dimen-
sion and consequently needs an extra offset boost-
ing from the third variable. Here the polarity imbal-
ance caused by the variable x in the first and second
dimensions can be restored by offset boosting of the
variables y and z when introducing nonmonotonic
functions F (y) and G(z) in the right-hand side of
the equation. �

3. New Cases of Conditional
Symmetry

Considering the above four cases, Eqs. (1) and (3)
can be transformed to have conditional symmetry
by 1D offset boosting, while Eqs. (4) and (5) can be
revised to have conditional symmetry by 2D offset
boosting. Equations (1) and (3) are different from
the cases reported in reference [Li et al., 2017] where
a single 1D offset boosting is in the third dimension.
Here the new conditional symmetric system is from
a jerk structure where the reflection or rotational
symmetry is broken by a neighboring variable, but
the polarity balance can be restored by a general
offset boosting. In fact, HJ5 is a system with con-
ditional rotational symmetry according to the vari-
ables y and z [Li et al., 2016] where offset boost-
ing in the variable x restores the polarity balance
for achieving symmetry. Equations (4) and (5) are
new cases of conditional reflection systems where
2D offset boosting is necessary for restoring polarity
balance. The original system is normally an asym-
metric chaotic system (ACS) as listed in Table 1,
and the corresponding conditional symmetric sys-
tems (CSS) show coexisting attractors.

The strange attractors in an asymmetric sys-
tem as shown in Fig. 1 are all asymmetric. Symmet-
ric pairs of coexisting attractors in the conditional
symmetric versions are shown in Figs. 2–5. Figure 2
shows the coexisting attractors in CSS1 induced by
1D offset boosting in the y dimension, while Fig. 3
shows that the coexisting symmetric attractors in
the plane x = 0 need an offset boosting in the z
dimension. Two symmetric attractors in the plane
z = 0 in system CSS3 demand offset boosting in
the x and y dimensions as indicated in Fig. 4. In
Fig. 5, we see two symmetric attractors in the plane
x = 0 in system CSS4 requiring offset boosting in
the y and z dimensions. As predicted, the coexist-
ing attractors reside separately in the phase space
with different offset gaps in one or two dimensions
as identified by the basins of attraction shown in
Fig. 6. Here the black lines indicate the cross-section
of the coexisting attractors. As predicted by the
above analysis, Figs. 6(a) and 6(b) clearly show the
coexisting symmetric attractors in the plane x = 0
with the condition of offset boosting in the corre-
sponding y and z dimensions. Figures 6(c) and 6(d)
also agree with the 2D offset boosting in the dimen-
sions x–y and y–z, respectively, for restoring the
conditional symmetry. Note that the basins for each
attractor are asymmetric and the area of the basins

1850163-4

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

8.
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
01

/0
7/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



December 24, 2018 14:46 WSPC/S0218-1274 1850163

T
a
b
le

1
.

A
sy

m
m

et
ri

c
ch

a
o
ti
c

sy
st

em
s

(A
C

S
)

a
n
d

th
ei

r
co

n
d
it
io

n
a
l
sy

m
m

et
ri

c
v
er

si
o
n
s

(C
S
S
).

S
y
st

em
s

E
q
u
a
ti
o
n
s

P
a
ra

m
et

er
s

E
q
u
il
ib

ri
a

E
ig

en
va

lu
es

L
E

s
D

K
Y

(x
0
,y

0
,z

0
)

A
C

S
1

ẋ
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ẋ
=

y
,

a
=

1
.2

4
,

(0
,0

,0
)

0
,0

,0
0
.0

6
7
1
,

2
.0

5
2
9

−1
,−

2
,−

1

ẏ
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ż
=

x
,

−1
.6

6
4
6

C
S
S
3

ẋ
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(a) (b)

(c) (d)

Fig. 1. Strange attractors in the original asymmetric chaotic systems: (a) ACS1, (b) ACS2, (c) ACS3 and (d) ACS4.

Fig. 2. Coexisting attractors in CSS1 induced by 1D offset boosting in the y dimension.

Fig. 3. Coexisting attractors in CSS2 induced by 1D offset boosting in the z dimension.
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Fig. 4. Coexisting attractors in CSS3 induced by 2D offset boosting in the x and y dimensions.

Fig. 5. Coexisting attractors in CSS4 induced by 2D offset boosting in the y and z dimensions.

Fig. 6. Basins of attraction: (a) z = 0 for CSS1, (b) y = 0 for CSS2, (c) z = 0 for CSS3 and (d) x = 0 for CSS4.
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Fig. 7. Basins of attraction for ACS4 with a = 3, b = 1.2
when y = 0.

Fig. 8. Bifurcation diagrams of CSS4 when b = 1.2 while a varies in [2.4, 8.4].

for the coexisting attractors are generally unequal.
In Figs. 6(c) and 6(d), there are white bands near
the boundary between the basins of attraction,
which indicate that there is a transient that takes
the orbit far from either attractor before settling
back to one or the other.

The chaotic system ACS4 is special with a line
of equilibrium points [Li et al., 2015c; Jafari &
Sprott, 2013; Bao et al., 2018a]. Note that the line
of equilibria (0, 0, z) has different stability accord-
ing to the value of z, and so initial conditions near
the equilibria may lead to different phase trajecto-
ries. When a = 3, b = 1.2, the basin of attraction
[Liu & Pang, 2011; Sprott & Xiong, 2015] for ASC4
as shown in Fig. 7, shows that this system is a case
with hidden oscillations [Leonov et al., 2011; Jafari
et al., 2015; Wei et al., 2014; Kapitaniak & Leonov,
2015; Dudkowski et al., 2016] since the initial
condition in the neighborhood of the line does not
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(a) (b)

Fig. 9. Four coexisting attractors in CSS4 when a = 3.4, b = 1.2.

Fig. 10. Basins of attraction for CSS4 with a = 3.4, b = 1.2
when x = 0.

guarantee finding the chaotic oscillation. In fact, a
white band close to x = 0 in Fig. 7 shows that there
is an unbounded solution in system ACS4. For the
version of conditional symmetry CSS4, when the
parameter a varies in [2.4, 8.4] under two types of

initial condition, the system is mainly chaotic with
diminishing Lyapunov exponents and has inter-
spersed periodic windows as shown in Fig. 8. The
plot uses 500 values of a, with each calculated for a
time of 2.3e3. The parameter a is scanned upward
and downward as a convergence check and for check-
ing the evidence of hysteresis. The bifurcation dia-
grams look similar but slightly different especially
when the parameter a is close to 3.4. Further explo-
ration also shows that even when a = 3, two coexist-
ing attractors of conditional symmetry do not share
exactly the same Lyapunov exponents. The positive
attractor has relatively higher Lyapunov exponents
(0.0550, 0,−0.2504) and Kaplan–Yorke dimension
2.2196 except for a shift in Zm. Figure 8(b) shows
the hysteresis in system CSS4, which is a sufficient
condition for multistability but not a necessary con-
dition. It is interesting that one of the bifurcation
plots shows hysteresis while the other does not,
which is different from those symmetric systems.
When a = 3.4, system CSS4 has two pairs of
coexisting attractors with conditional symmetry, as
shown in Fig. 9. The basins in the x = 0 plane for
those two pairs of attractors are shown in Fig. 10.
Unlike the system of conditional reflection symme-
try [Li et al., 2017], here the basins of limit cycle

Fig. 11. Asymmetric coexisting attractors in CSS4 induced by 2D offset boosting in the y and z dimensions with F (y) = |y|−5,
and G(z) = |z| − 3.3.
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are embedded in the ones of strange attractor rather
than being outside any of the basins of attraction
of conditional symmetry.

Note that a suitable threshold in the nonmono-
tonic operation F (·) is necessary for restoring the
polarity balance under offset boosting. For F (x) =
|x|−a, to obtain F (x+2a) = |x+2a|−a = −F (x)
(or F (x−2a) = |x−2a|−a = −F (x)), the variable x
should be in the region [−2a, 0] (or [0, 2a]) (a ≥ 0).
Modifying the threshold can give coexisting asym-
metric attractors [Li et al., 2016; Bao et al., 2018b;
Chen et al., 2017], as shown in Fig. 11.

4. Circuit Implementation Based on
FPGA

Chaotic circuits can be realized based on analog
technology [Wang et al., 2017; Zhou et al., 2016,
2018]. However, in the following, we give the results
from circuit implementation based on FPGA. The
core board ALINX FPGA CYCLONE IV with
FPGA chip EP4CE15F17C8 is applied here for
numerical computation. Firstly, the continuous
nonlinear system is discretized using the Euler
algorithm:




x1(n + 1) − x1(n)
∆T

= f1(x1(n), x2(n), . . . , xN (n)),

x2(n + 1) − x2(n)
∆T

= f2(x1(n), x2(n), . . . , xN (n)),

...

xN (n + 1) − xN (n)
∆T

= fN (x1(n), x2(n), . . . , xN (n)).

(6)

Taking the system CSS1 for example,




x(n + 1) = x(n) + (|y(n)| − 4)∆T,

y(n + 1) = y(n) + z(n)∆T,

z(n + 1) = z(n) + (−x2(n) − 2.6z(n)

+ 2(|y(n)| − 4)2 + 1)∆T.

(7)

Here ∆T is the time step of the discretization. For
satisfying the accuracy, we select ∆T = 0.001. Sec-
ondly, according to the standard of IEEE754, we
use the calculation of 32-bit finite integer instead
of floating-point operations. By the operations of
multiplying, adding, or subtracting in the discrete
model, the number for the next iteration can be
obtained. The repeated iteration can achieve the
process of discretization of the chaotic system. The
absolute value operation only needs to set the first
bit of the 32-bit integer to 0. For example, the RTL
of the chaotic system CSS1 is shown in Fig. 12.
The digital system consists of three modules, i.e.
a control module, a computation module, and a
transformation module. The control module deals
with initial conditions, coefficients of the equations,
and computation control based on the structure of
the finite-state machine. Specifically x(n+1), y(n+
1), z(n+1), and the whole values are input into the
computation module as time-share, and the results
are read into the control module subsequently. The
computation module contains an absolute value
calculation block, a floating-point addition block,
a floating-point multiplicative block, and so on,
which are constructed based on the simplest general
formula. In the transformation module, the floating-
point results from the preceding calculation are
transformed into 12-bit unsigned integers and input
into a DAC for displaying the waveform on an oscil-
loscope. The FPGA chip EP4CE15 has 15 408 logic
elements. To realize chaotic system CSS1, 7944 logic
elements were occupied, which takes up 52% of the
total resource. To restore the initial condition and
corresponding coefficients, 148 523 elementary units
were employed holding 29% of the total memory
resource. Meanwhile, 42 multiplying units were used
to represent 38% of the whole resource. Coexist-
ing attractors can be observed on the oscilloscope
by selecting different initial conditions, shown in
Fig. 13. Note that offset boosting represents a shift
of the average value of an alternating signal. In
an oscillating circuit, this stands for the DC com-
ponent in a signal and can be realized by intro-
ducing a source of direct current. Here in the sys-
tem of conditional symmetry, offset boosting of a
system variable is realized from the initial con-
dition, which becomes involved with the polarity
reversal.
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Fig. 13. Coexisting attractors in the oscilloscope obtained from FPGA.

5. Discussion and Conclusions

Symmetric pairs of attractors can be located close
to the origin or far from it in phase space. Dynami-
cal systems with conditional symmetry can produce
such a special type of coexisting attractors. In such
a conditional symmetric system, the polarity bal-
ance is destroyed by the symmetric transformation
but restored by a further offset boosting. The intro-
duction of nonmonotonic functions can restore the
polarity balance by the offset boosting of some vari-
ables. Specifically, in a 3D system, 1D offset boost-
ing can restore the reflection or rotation symme-
try, and 2D offset boosting can restore the reflection
symmetry. Chaotic conditional symmetric systems
share an asymmetric structure that hides coexist-
ing symmetric attractors. The basins of attraction
show that the coexisting symmetric attractors lie in
respective asymmetric regions but with symmetric
cross-sections. In some circumstances, this special
regime of a system provides a new approach for giv-
ing two sets of chaotic signals with opposite polarity
in a physical system without requiring extra equip-
ment for achieving polarity transformation.
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