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a b s t r a c t 

In this short communication, we comment on the recent report of a hidden attractor in the classical 

Lorenz system. We contend that the reported system gives instead a chaotic transient whose duration 

approaches infinity at a critical value of the parameters. We caution others who are searching for hidden 

attractors to consider carefully the possibility that the attractor is instead a transient chaotic set. 

© 2018 Elsevier Ltd. All rights reserved. 
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In a recent article, Munmuangsaen and Srisuchinwong [1] re-

orted the observation of a hidden chaotic attractor in the classical

orenz system [2] 

˙ 
 = a (y − x ) 
˙ 
 = −xz + rx − y 

˙ 
 = xy − bz 

(1) 

or parameters in the vicinity of (a, r, b) = (4 , 29 , 2) and initial

onditions (x 0 , y 0 , z 0 ) = (5 , 5 , 5) . However, upon further examina-

ion, it appears that this apparent attractor is a long-duration

haotic transient as indicated by the plot of x ( t ) in Fig. 1 in

hich the orbit abruptly attracts to one of the stable equilibria

t (x, y, z) = (±7 . 4 83315 , ±7 . 4 83315 , 28) after a time the order of

∼ 1 × 10 4 (about ten thousand cycles of the orbit). At the same

ime, the finite-time largest Lyapunov exponent drops abruptly

rom about 0.67 to −0 . 0618 , the latter value in agreement with

he real part of the largest eigenvalue of the corresponding equi-

ibrium. 

The geometric mean duration of the transient τ increases as r

s increased, approaching infinity at r ≈ 29.2725 according to τ ≈
00 / (29 . 2725 − r) 3 . 8 as shown by the least squares fit in Fig. 2 . For

 > 29.2725, the chaotic attractor is self-excited and can be found

sing initial conditions in the vicinity of the unstable saddle node

t the origin and coexists with the two stable foci. 
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At r = 29 . 2725 , there is a boundary crises [3,4] where the

trange attractor collides with the basin boundary that separates

t from the basin of the two stable equilibria as shown in Fig. 3 . At

his point, all three basins intersect the saddle point at the origin,

hown as a small open black circle in the figure, and the strange

ttractor, shown in cross section as black lines, is destroyed. The

hree attractors coexist over the interval 29.2725 < r < 36. At r = 36

he two equilibria undergo a Hopf bifurcation, leaving only the sin-

le globally attracting strange attractor for larger values of r . These

alculations were done using a fourth-order Runge–Kutta integra-

or with adaptive step size. 

Similar behavior was reported in 1979 by Yorke and Yorke

5] for ( a, r, b ) ≈ (10, 24.06, 8/3), along with the mechanism re-

ponsible for the transient, although there is no linear transforma-

ion of the variables that would indicate that the two regimes are

quivalent. They estimated that the power law dependence of τ
as a slope between 3.5 and 4.0, which agrees with our estimate

f 3.8. The basins of attraction for the two cases are similar [6] .

hus it remains an interesting and open question whether there is

 sustained hidden chaotic attractor in the classical Lorenz system.

The same kind of long-duration chaotic transient occurs in the

abinovich system [7] with (a, r, b) = (−0 . 5 , 6 . 8 , 0 . 99) where the

rbit appears to lie on a hidden strange attractor but abruptly goes

o one of the equilibria after a time of τ ∼ 5 × 10 7 . 
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Fig. 1. Transient chaos in the Lorenz system for (a, r, b) = (4 , 29 , 2) . 

Fig. 2. Geometric mean duration of the chaotic transient as a function of r . 

Fig. 3. Basins of attraction in the x = y plane for the Lorenz system with (a, r, b) = 

(4 , 29 . 2725 , 2) where a boundary crisis occurs. 
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We caution others who are looking for examples of hidden

attractors to consider carefully the possibility that the attractor

is actually a long-duration “transient chaotic set” as defined by

Kuznetsov et al. [7] , a term that we prefer to calling it a “transient

attractor”. However, in a practical application, a hidden transient

chaotic set may be just as problematic as a hidden attractor. 
A necessary condition for the existence of a hidden attractor is

hat the orbit remain on it for a very long time such as t > 1 × 10 8 ,

ut a sufficient condition requires searching a neighborhood of pa-

ameter space for transient solutions and then determining how

he duration of the transient scales with parameters [8] . If very

areful tuning of the parameters is required to obtain the hidden

ttractor, it is likely to be a long-duration transient. On the other

and, it is possible to have a false transient if the step size of the

ntegrator is too large and the attractor comes very close to its

asin boundary, as often happens, or if an initial condition is cho-

en too close to the basin boundary, which is sometimes a compli-

ated fractal. 

Finally, we remark on the incongruity of the term “hidden at-

ractor” for cases in which the basin of the attractor is the entirety

f the state space except for a set of measure zero representing

he unstable periodic orbits, for which there are examples [9] . In

act, there are even hidden attractors in which every initial condi-

ion is arbitrarily close to the attractor [10] . Such attractors may be

idden, but they are not hidden very well! 
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