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In this paper, a new structure of chaotic systems is proposed. There are many examples of dif-
ferential equations with analytic solutions. Chaotic systems cannot be studied with the classical
methods. However, in this paper we show that a system that has a simple analytical solution can
also have a strange attractor. The main goal of this paper is to show examples of chaotic systems
with a simple analytical solution that is unstable so that the chaotic orbit does not track it. We
believe the structures presented here are new. Two categories of chaotic systems are described,
and their dynamical properties are investigated. The proposed systems have analytic solutions
that exist far from the equilibrium. Of course, all strange attractors are dense in unstable peri-
odic orbits, but mostly the equations that describe these orbits are unknown and difficult to
calculate. The analytical solutions provide examples where the orbits can be calculated despite
their instability.

Keywords : Analytical solution; chaotic system; strange attractor.

1. Introduction

Chaotic systems and their properties present chal-
lenges in the study of dynamical systems [Dud-
kowski et al., 2018]. There are many ambiguities
in the creation of strange attractors. An important
question is whether equilibrium points or other
structural features influence the creation of chaotic
solutions and their properties in a dynamical sys-
tem. Attractors can be categorized as either self-
excited or hidden [Dudkowski et al., 2016; Leonov
et al., 2015; Jafari et al., 2015]. Self-excited attrac-
tors can be found using initial conditions in the
neighborhood of an unstable equilibrium, while hid-
den attractors are not related to any equilibrium

[Sharma et al., 2015; Danca & Kuznetsov, 2017;
Wei et al., 2017; Kuznetsov et al., 2017; Kuznetsov
et al., 2018; Danca et al., 2017]. Efforts have been
made to find methods for the localization of hid-
den attractors [Kuznetsov et al., 2011; Dudkowski
et al., 2015; Nazarimehr et al., 2017a; Nazarimehr
et al., 2017b]. Hidden attractors have been found
in real-world systems [Hosseini et al., 2017]. Sys-
tems with no equilibrium [Wei, 2011; Wang & Chen,
2013; Wei et al., 2013; Nazarimehr et al., 2018], sta-
ble equilibrium [Wang & Chen, 2012; Wei et al.,
2014; Wei & Zhang, 2014], and curve of equilib-
ria [Gotthans & Petržela, 2015; Barati et al., 2016]
belong to the category of hidden attractors. Many
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systems have been designed to have hidden chaotic
attractors [Jafari & Sprott, 2013; Jafari et al., 2013;
Molaie et al., 2013]. Those systems were designed
with specific equilibria, and then the space of initial
conditions and parameters were searched for chaotic
solutions. Hidden attractors have been studied in
many systems [Wei et al., 2015a; Kuznetsov et al.,
2018; Wei et al., 2016].

There are many classical methods to solve dif-
ferential equations analytically [Zaitsev & Polyanin,
2002; Mattheij & Molenaar, 1996]. These methods
can identify systems with a bounded exponential
solution, which implies that the orbit is approach-
ing an equilibrium point. Also the system can have
a periodic solution in which the orbit approaches a
limit cycle. However, there is no analytical method
to calculate the chaotic solution of a dynamical
system. This raises the question of whether the
classical methods for solving differential equations
can be trusted when there is a complex type of
dynamics.

In this paper, we design two new categories of
systems with well-known analytical solutions that
also exhibit chaos, and we investigate the dynam-
ical properties of these systems. In particular, we
design some chaotic flows with the analytical solu-
tions at Ae−t and A sin(t), but the numerical solu-
tions are attracted to a chaotic attractor instead of
the analytical solution.

2. Proposed Systems

The proposed systems are based on the general
structure given by the following quadratic jerk
system:

ẋ = y,

ẏ = z,

ż = a1x + a2y + a3z + a4x
2 + a5y

2

+ a6z
2 + a7xy + a8xz + a9yz + a10.

(1)

The ten parameters ai (i = 1 to 10) are chosen so
that the solutions are either of the form x = Ae−t

or x = A sin(t) with (A ∈ R). In the first case,
the variable x of Eq. (1) is set to x = Ae−t, which
implies that y = −Ae−t and z = Ae−t from the
first and second equalities of Eq. (1). In this paper,
we focus on the jerk system. It is an easy and pop-
ular form to study chaotic attractors [Wei et al.,
2015b]. The necessary conditions for the parame-
ters are then calculated from the third equality of

Eq. (1), giving

a1 − a2 + a3 = −1,

a4 + a5 + a6 − a7 + a8 − a9 = 0,

a10 = 0.

(2)

The same process is followed for the second case
(x = A sin(t)), giving

a1 − a3 = 0,

a2 = −1,

a4 + a6 − a8 + a10 = 0,

a5 + a10 = 0,

a7 − a9 = 0.

(3)

More details of the proposed systems will be dis-
cussed in the following subsections.

2.1. Exponential solution

System (1) with the constraints of Eq. (2) has the
analytical solution Ae−t. Using a time-consuming
computer search, some simple systems with this
structure with chaotic attractors are found. These
systems and some of their dynamical properties
are given in Table 1. Since these systems have
an analytical solution in the form of (x, y, z) =
(Ae−t,−Ae−t, Ae−t) and limt→∞ Ae−t = 0, the ori-
gin is an equilibrium.

As an example, the equilibrium of system F3 is
also calculated from

ẋ = 0 ⇒ y = 0,

ẏ = 0 ⇒ z = 0,

ż = 0 ⇒ x = 0.

(4)

Thus the only equilibrium is at the origin. Stability
analysis of this equilibrium shows that its eigenval-
ues are λ1 = −1, λ2 = 0.5 + 2.179i, λ3 = 0.5 −
2.179i. Therefore, the origin is a saddle point with
stable and unstable manifolds. As a better expla-
nation, consider the parameter A = 1 as a special
solution of the discussed systems. The stable man-
ifold is an infinite line given by x = −y = z, and
thus any initial condition in the form (x0, y0, z0) =
(e−t0 ,−e−t0 , e−t0) = (a,−a, a),∀ a ∈ � will expo-
nentially approach the equilibrium. All other initial
conditions, even ones arbitrarily close to the stable
manifold will eventually go to the strange attractor.
Furthermore, small numerical errors in the integra-
tion will take the orbit off the stable manifold to
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Table 1. Three examples of chaotic systems with analytical solution (x, y, z) = (Ae−t,−Ae−t, Ae−t).

Case Equations Parameters Equilibrium Eigenvalue LEs (x0, y0, z0)

F1 ẋ = y a = 4 0 −1 0.0063 −4.3

ẏ = z b = 11 0 0.5+0.8660i 0 8.67

ż = −x + ay2 + bxz + cyz c = 7 0 0.5−0.8660i −1167.7946 −18.7

F2 ẋ = y a = 0.7 0 −1 0.0562 −1.36

ẏ = z b = 0.7 0 0.5+0.8660i 0 8.32

ż = −x + ax2 − y2 + bxy + xz 0 0.5−0.8660i −3.6310 3.91

F3 ẋ = y a = −5 0 −1 0.1126 −0.97

ẏ = z b = −4 0 0.5+2.179i 0 2.53

ż = ax + by − y2 + xz 0 0.5−2.179i −1.5256 2.16

the strange attractor. It should be noted that the
focus of this paper to propose new systems is on the
jerk equations with complete feedback. The feed-
back loop can be incomplete in amplitude or polar-
ity. Li et al. [2016] have proposed some chaotic flows
with incomplete feedback in a jerk structure. Those
structures can be used as the general structure of
our proposed system and then chaotic attractors
can be searched in those structures by considering
the calculated conditions.

Figure 1 shows the numerical solution of sys-
tem F3 in magenta and the analytical solution in
black. The numerical solution runs away from the
analytical one after T = 62. All of the systems have
this same behavior near the origin.

Note that the stable manifold is a set of mea-
sure zero totally surrounded by the basin of the
chaotic attractor. Thus any small numerical error
takes the orbit off the stable manifold to the chaotic
attractor. This behavior is called Lyapunov insta-
bility [Lyapunov, 1992] and can be seen near the
saddle points of a chaotic system (if it exists). Thus
analytical methods for solving differential equations
are unreliable in such cases. We emphasize that the
analytic solution is valid arbitrarily far from the
equilibrium, which is highly unusual for a stable
manifold. Chaotic attractors of the three systems in
Table 1 are shown in Fig. 2. Each row of the figure
shows three cross-sections of each chaotic system.
Dynamical behaviors of system F3 are investigated
using the bifurcation diagram of Fig. 3. The system
has different periodic and chaotic attractors when
changing the parameter a, and the positive largest
Lyapunov exponent indicates that the solution is
chaotic.

2.2. Sinusoidal solution

System (1) has a sinusoidal solution with the con-
straints of Eq. (3). Coexistence of limit cycles
and chaotic attractors has been investigated in the
numerical solution of flows [Li & Sprott, 2014a,
2014b, 2018]. In this paper, we study the coex-
istence of an analytical solution with a chaotic
attractor. Using a systematic computer search, two
chaotic systems in the specific form are obtained
and they are given in Table 2. Since the ana-
lytical solutions of these systems are in the form
x = A sin(t), ẋ = y = A cos(t), ẍ = z = −A sin(t),
their analytical attractors are cycles. By consid-
ering A = 1, any initial condition in the form
(sin(t0), cos(t0),−sin(t0)) will result in the cyclic
analytical solution. Figure 4 shows the comparison
of analytical (black color) and numerical solu-
tions (magenta color) for system F5. Small numer-
ical errors in the integration will make the two
analytical and numerical solutions separated. In
other words, the cyclic solutions are immersed
in the basins of attraction of chaotic attractors
and unbounded orbits. So their time series cannot
remain on the analytical solution for a long time.

Lyapunov exponents and Kaplan–Yorke dimen-
sion of strange attractors of systems F4 and F5 are
presented in Table 2. Strange attractors of these two
systems are shown in Fig. 5. All strange attractors
are dense in unstable periodic orbits, but mostly
the equations that describe them are unknown. The
proposed systems are some examples where the
orbits can be calculated despite their instability.

Bifurcation diagram and largest Lyapunov
exponent of system F5 are shown in Fig. 6. The
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(a) (b)

(c)

Fig. 1. Time series of the analytical solution (x, y, z) = (e−t,−e−t, e−t) (black) and the numerical solution of system F3

(magenta) with initial conditions (1,−1, 1).
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(a)

(b)

Fig. 3. (a) Bifurcation diagram and (b) largest Lyapunov exponent of system F3 with respect to changing parameter a with
b = −4 and constant initial conditions (−0.97, 2.53, 2.16).
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Table 2. Two chaotic systems with analytical solution (x, y, z) = (A sin(t),A cos(t),−A sin(t)).

Case Equations Parameters LEs (x0, y0, z0)

F4 ẋ = y 0.1067 −3.97

ẏ = z 0 −7.44

ż = −x − y − z − y2 − z2 + xy + yz + 1 −1.1076 −0.07

F5 ẋ = y a = −1.02 0.0419 −7.87

ẏ = z b = −1.02 0 1.69

ż = ax − y + bz − y2 + xz + 1 −6.4681 −5.87

(a) (b)

(c)

Fig. 4. Time series of the analytical solution (x, y, z) = (sin(t), cos(t),−sin(t)) (black) and the numerical solution of system
F5 (magenta) with initial conditions (0, 1, 0).
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(a)

(b)

Fig. 6. (a) Bifurcation diagram and (b) largest Lyapunov exponent of system F5 with respect to changing parameter a and
constant initial conditions (−7.87, 1.69,−5.87).

system has a period-doubling route to chaos. Posi-
tive largest Lyapunov exponent in Fig. 6(b) proves
the chaotic dynamics of system F5.

3. Conclusion

In this paper, five new chaotic systems with spe-
cial analytical solutions have been proposed. The
proposed systems were in two categories. Three of
the proposed systems had the analytical solution (x,
y, z) = (Ae−t,−Ae−t, Ae−t) and two of them had

analytical solution (A sin(t), A cos(t),−A sin(t)).
Results show that the analytical solutions cannot
attract time series of these systems for a long
time. In other words, the analytical solution was
immersed in the basins of attraction of chaotic
attractors and unbounded orbits. Because of the
numerical errors in the integration, the states of sys-
tems ran away from their analytical solution after a
short time. As we know, chaotic systems with simple
analytical solutions were proposed for the first time
in this paper. The proposed systems were cases that
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analytic solutions exist far from the equilibrium. In
addition, all strange attractors are dense in unsta-
ble periodic orbits, but mostly the equations that
describe them are unknown. The analytical solu-
tions showed some examples where the orbits can
be calculated despite their instability.

Acknowledgment

S. Jafari was supported by Iran National Science
Foundation (No. 96000815).

References

Barati, K., Jafari, S., Sprott, J. C. & Pham, V.-T. [2016]
“Simple chaotic flows with a curve of equilibria,” Int.
J. Bifurcation and Chaos 26, 1630034-1–6.

Danca, M.-F. & Kuznetsov, N. [2017] “Hidden chaotic
sets in a Hopfield neural system,” Chaos Solit. Fract.
103, 144–150.

Danca, M.-F., Kuznetsov, N. & Chen, G. [2017]
“Unusual dynamics and hidden attractors of the
Rabinovich–Fabrikant system,” Nonlin. Dyn. 88,
791–805.

Dudkowski, D., Prasad, A. & Kapitaniak, T. [2015] “Per-
petual points and hidden attractors in dynamical sys-
tems,” Phys. Lett. A 379, 2591–2596.

Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov,
N. V., Leonov, G. A. & Prasad, A. [2016] “Hidden
attractors in dynamical systems,” Phys. Rep. 637,
1–50.

Dudkowski, D., Prasad, A. & Kapitaniak, T. [2018]
“Describing chaotic attractors: Regular and perpet-
ual points,” Chaos 28, 033604.
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