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Classical indicators of tipping points have limitations when they are applied to an ecological and a
biological model. For example, they cannot correctly predict tipping points during a period-doubling
route to chaos. To counter this limitation, we here try to modify four well-known indicators of tipping
points, namely the autocorrelation function, the variance, the kurtosis, and the skewness. In particular,
our proposed modification has two steps. First, the dynamic of the considered system is estimated
using its time-series. Second, the original time-series is divided into some sub-time-series. In other
words, we separate the time-series into different period-components. Then, the four different tipping
point indicators are applied to the extracted sub-time-series. We test our approach on an ecological
model that describes the logistic growth of populations and on an attention-deficit-disorder model.
Both models show different tipping points in a period-doubling route to chaos, and our approach
yields excellent results in predicting these tipping points. Published by AIP Publishing. https://doi.
org/10.1063/1.5038801

Predicting tipping points in biological and ecological sys-
tems is a fashionable topic. Tipping points are impor-
tant because they can cause a system to experience an
unknown, unwanted, or desired huge change. There are
many studies that propose predictor indices. The four
well-known indicators of tipping points are the autocor-
relation function, the variance, the kurtosis, and the skew-
ness. They provide excellent results in predicting tipping
points of period-one attractors. However, in more complex
transitions, those indicators fail to predict tipping points.
To improve these four indicators, we apply them in two
steps. In the first step, we estimate the dynamic of the sys-
tem. In the second step, based on the estimated dynamic,
the original time-series is divided into some sub-time-
series. Then, these four well-known indicators are applied
to the sub-time-series, which are the different period-
components of its attractor. We believe that the improved
indicators can deal with more complex transitions than
period-one attractors. The proposed tipping point indica-
tors are applied to an ecological and a biological system,
and they give excellent results. The improved indicators
can predict complex transitions in a period-doubling route
to chaos.

a) Electronic mail: f_nazarimehr@aut.ac.ir
b) Electronic mail: sajadjafari@aut.ac.ir
c) Electronic mail: mrhashemigolpayegani@aut.ac.ir
d) Electronic mail: matjaz.perc@uni-mb.si
e) Electronic mail: csprott@wisc.edu

I. INTRODUCTION

Different kinds of bifurcation have been observed in
many real world dynamical systems such as dynamical dis-
ease, brain response to flickering light, climate, and financial
markets.1–4 In bifurcation points, a critical transition occurs,
and the dynamic of the system changes from one regime
to another. The condition in which a bifurcation from one
dynamical behavior to another one occurs is called tipping
point (TP).5 The occurrence of TPs is unexpected in many
cases. Thus, prediction of the TP conditions is an important
challenge. To date, many methods have been proposed to pre-
dict TPs using the time-series extracted from the systems.6,7

Near a TP, the basin of attraction of the system’s attrac-
tor becomes shallower. In such a case, a perturbation that
drives the system away from the attractor is followed by
a slower return to the attractor. This is an important phe-
nomenon which is called critical slowing down.8 TPs can
cause an unwanted transition or a desired one.8 Till now, some
empirical indicators are used to predict upcoming transitions
using the system’s time-series.6 Many studies show that crit-
ical slowing down causes an increase in the variance and
temporal autocorrelation of fluctuations in the system states.9

Near a TP, the standard deviation increases, and the autocor-
relation at lag-1 approaches its maximum value (unity).8 TP
predictors have been called early warning signals of critical
transitions.8 They can be grouped into two categories: met-
ric based and model based indicators. Metric based indicators
quantify changes in the system’s behavior without associating
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FIG. 1. (a) Variations of parameter r in the interval r ∈ [0, 2.7] and (b) a
zoomed view of part (a). The figure shows variations of parameter r with
stepwise changes.

the data to a specific model, while model based early warn-
ings fit a specific model to the data.10 Some early warning
indicators such as autocorrelation at lag-1,11–14 variance,10 de-
trended fluctuation analysis,10 skewness,12 kurtosis,15,16 and
complexity measure17 are metric based indicators. On the
other hand, indicators such as nonparametric drift-diffusion-
jump models8 and time-varying AR(p) models18 are model
based indicators. The robustness of these methods in deal-
ing with noise and external disturbances is very important. A
proper indicator for predicting TPs should be sensitive to the
proximity of the TP. Such an indicator can help to anticipate
whether the bifurcations are near. Recently, Lyapunov expo-
nent was proposed as an early warning for predicting different
types of TPs.19

In this paper, several modified indicators are proposed
to predict different TPs. The failure of some applicable indi-
cators encountering different types of TPs is discussed in
Section II. In Section III, we propose some modified indi-
cators of TPs and a way to overcome limitations of pervi-
ous indicators. In Section IV, quantification of the proposed
indicators is discussed. Finally, the paper is concluded in
Section V.

II. PROBLEM DEFINITION

Evidence shows that many different bifurcations can
occur in biological systems. An experiment has shown the
existence of a period-doubling route to chaos in the flicker-
ing vision of a salamander.20 In that experiment, the elec-
troretinogram (ERG) signal of the salamander as a function
of flash frequency and the contrast of emitted light to its
eye were recorded.20 In another experiment, aggregates of
embryonic chick cardiac cells induced by potassium channel
block can show different dynamics such as irregular dynam-
ics, bursts, and doublets.21 Another example is bifurcations
that occur in neural systems. Bifurcation scenarios such as the
period-adding route to chaos are reported in some studies.22–29

Experimental records emphasize the existence of such bifur-
cations using a chronic constriction injury model of the sciatic
nerve.30 Also, bifurcations can be seen with respect to chang-
ing extracellular potassium or calcium concentrations.26,31–33

Thus, it is important to predict the occurrence of such bifurca-
tions in biological systems.

Benchmarks are needed to investigate the efficiency of
leading indicators34,35 in predicting different types of tipping
points. We use an ecological and a biological system which
has rich dynamical behaviors and they are well-known in tip-
ping point studies. The formulation of these two models is
described in Section II A.

A. Simulated data

The first model used here is a discrete Ricker-type model,
which is an ecological model that describes the logistic growth
of a population N with an extra loss term. This model is used
to depict the dynamics of different organisms such as fish and
birds.36–38 The Ricker-type model is

Nt+1 = Nte
r−bNt+σEεt − F

Np
t

Np
t + hp

, (1)

where Nt, r, and b are population biomass, intrinsic growth
rate, and the density-dependence b = r/K with a carrying
capacity K, respectively. The exploitation is a sigmoid func-
tion with half-saturation h and a maximum harvesting rate F.
To mimic the effect of the environment in the Ricker-type
model, stochasticity is applied with zero mean and standard
deviation σE. In this paper, we consider parameters K = 10,
p = 2, and h = 0.75. We ignore the stochastic term (σE = 0)
in investigating the dynamics of model (1). The system has
qualitatively different solutions depending on the parameter
r, including stable fixed points, periodicity, and chaos.

The second system is a model proposed for attention
deficit disorder (ADD).39 Dopamine deficiency is one of the
causes of this disorder. This model involves a nonlinear neu-
ronal network which describes the interactions of inhibitory
and excitatory parts of brain action. The ADD model is given
by

xk+1 = B tanh(w1xk) − A tanh(w2xk), (2)

where B = 5.821, w1 = 1.487, and w2 = 0.2223 are constant
parameters, and A is considered as the bifurcation parameter.
This equation is a behavioral model of a neuronal network. x
is the electrical activity of this network.
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FIG. 2. (a) Bifurcation diagram of the Ricker-type model with respect to changing parameter r in the interval [0,2.7] multiplied by 0.1 for better observation
in green-blue color and the absolute value of the autocorrelation at lag-1 in red, (b) bifurcation diagram of the Ricker-type model with respect to changing
parameter r in the interval [0,2.7] multiplied by 0.1 for better observation in green-blue color and the logarithm of the variance in red, (c) bifurcation diagram
of the Ricker-type model with respect to changing parameter r ∈ [0, 2.7] multiplied by 0.1 for better observation in green-blue color and the logarithm of the
skewness in red, (d) bifurcation diagram of the Ricker-type model with respect to changing parameter r ∈ [0, 2.7] multiplied by 0.1 for better observation in
green-blue color and the logarithm of the kurtosis in red, (e) bifurcation diagram of the ADD model with respect to changing parameter A ∈ [5, 30] (multiplied
by 0.25 for better observation) in green-blue color and the autocorrelation method in red, (f) bifurcation diagram of the ADD model with respect to changing
parameterA ∈ [5, 30] (multiplied by 0.25 for better observation) in green-blue color and the logarithm of the variance in red, (g) bifurcation diagram of the ADD
model with respect to changing parameter A ∈ [5, 30] (multiplied by 0.25 for better observation) in green-blue color and the logarithm of the skewness in red,
and (h) bifurcation diagram of the ADD model with respect to changing parameter A ∈ [5, 30] (multiplied by 0.25 for better observation) in green-blue color and
the logarithm of the kurtosis in red. The figure shows that the four well-known indicators have not a proper trend in approaching a tipping point and receding
from it except for period-one dynamic.
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FIG. 3. (a) Estimated period of the Ricker-type model with a threshold on
autocorrelation and variance, (b) estimated period of the Ricker-type model
without variance threshold, and (c) bifurcation diagram of the Ricker-type
model with respect to changing parameter r in two green-blue colors. It can
be observed from this figure that the threshold is necessary to have a proper
prediction of the period of system.

B. Tipping point predictors

Much research has been done on predicting those tipping
points that cause an overexploitation bifurcation in the sys-
tem’s state.5,8,16,40–42 In this type of bifurcation, there exist
two fixed points in the system. By changing a parameter,
a stable fixed point of the system becomes unstable, while
another one which was unstable becomes stable. Also, in
some intervals of some parameters, two fixed points are stable
simultaneously and exhibit hysteresis with changing parame-
ters. In other words, there are two coexisting attractors in this
situation, and the system can jump between them by pertur-
bations. Thus, the system can have an abrupt shift between
these alternate attractors. Recently, some studies considered
different transitions in the dynamics of populations.43,44 They
use a Ricker-type model to simulate transitions from a stable
equilibrium to cyclic and chaotic behaviors. They attempt to
predict these tipping points using a nonlinearity measure and

compare its results by autocorrelation at lag-1 and variance.44

Figure 1 of Ref. 44 shows population abundance trajectories
with respect to changing conditions and the three indicators.
This figure shows that the three indicators cannot predict dif-
ferent tipping points such as “period-one to period-two” or
“periodic to chaotic.”44

A desirable method should have several features in pre-
dicting tipping points. One of these features is that it should
have a specific similar value in the occurrence of differ-
ent tipping points to indicate how close the system is to a
tipping point. Also, the method should have an appropriate
trend when approaching a tipping point (a proper indicator
should have an extremum in the tipping point). Such a trend
helps prediction of tipping points before they happen (espe-
cially in cases where the bifurcation parameter is varying
in time). To test the results of classic tipping point indica-
tors on the Ricker-type model, these indicators are calculated
for each value of the parameter r using 500 samples of its
time-series. After 500 iterations, the parameter r is changed
to r + �r and the system is followed for another 500 iter-
ations. So, parameter r changes step by step, and each step
is 500 iterations. In other words, the bifurcation parameter
changes with a step function. The bifurcation parameter is
constant for a window with length 500 and then changes to
a new value. Figure 1 shows the variations of parameter r,
which is changed in the interval r ∈ [0, 2.7] and �r = 0.0001.
Part (b) shows a zoomed view of part (a) with its stepwise
changes.

In this paper, two colors are used to obtain a more beau-
tiful bifurcation diagram (green is the shadow of blue). Part
(a) of Fig. 2 shows the absolute value of the autocorrelation at
lag-1 for the bifurcation of model (1). The bifurcation diagram
depicts the final state of Nt by scanning the parameter upward.
As the figure shows, autocorrelation at lag-1 has a good trend
in approaching a tipping point of period-one behavior and
receding from it. But in higher periods, autocorrelation at lag-
1 does not give good results. Another well-known tipping
point indicator is variance. Part (b) of Fig. 2 shows the log-
arithm of the variance with respect to changing parameter r of
model (1). The logarithm function provides a better observa-
tion. Similar to the autocorrelation at lag-1, the results show
that the variance has a good trend in approaching and reced-
ing from the tipping point of the period-one attractor, but it
does not give a good result in more complex behaviors. Parts
(c) and (d) of Fig. 2 show the logarithm of the skewness and
kurtosis of model (1) with respect to changes in the param-
eter r. Parts (e), (f), (g), and (h) of Fig. 2 present the results
of autocorrelation at lag-1, logarithm of variance, skewness,
and kurtosis of model (2) with respect to changing param-
eter A. The results show that these methods cannot predict
different tipping points of ADD model except the period-one
transitions. In other words, Fig. 2 shows that these leading
indicators sometimes have proper performance in transitions
between some period-one attractors, but they do not show
good results in transitions between more complex behaviors.
In this paper, we modify these well-known “tipping point indi-
cators” and make them more efficient to predict various types
of bifurcations in biological systems.
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FIG. 4. (a) The rescaled bifurcation diagram of the Ricker-type model and the absolute value of the improved autocorrelation method in red with respect to
changing parameter r in the interval [0,2.7], (b) the rescaled bifurcation diagram of the Ricker-type model and the absolute value of the improved autocorrelation
method in red with respect to changing parameter r in the interval [2.585,2.605], (c) bifurcation diagram of the ADD model (multiplied by 0.25) and the improved
autocorrelation method in red with respect to changing parameter A in the interval [5,30], and (d) bifurcation diagram of the ADD model (multiplied by 0.25)
and the improved autocorrelation method in red with respect to changing parameter A in the interval [12.2,14]. The improved autocorrelation has a proper trend
close to and far from the TPs. The index has a proper trend when approaching the edge of the periodic window and also shows the tipping points of the pitchfork
bifurcations.

III. MODIFIED EARLY WARNING INDICATORS

In this section, we design an algorithm to extract the type
of system’s behavior. Then, we add this algorithm to the well-
known early warning indicators. In other words, the proposed
modified early warning indicators contain two steps. Consider
a time-series x with N samples. In the first step, the autocorre-
lation at lag-m of the signal is calculated for all m < mthreshold ,
where mthreshold is a threshold to estimate the period of the
time-series. Then, the minimum value of m for which the auto-
correlation at lag-m is maximized is selected as the estimated
period of the system (we call that m∗). When the estimated
period of the system is m∗, it means that the system has a
period-m∗ cycle. The period of the time-series is estimated as
mthreshold when its real period is more than mthreshold or if it is
chaotic. In the second step, m∗ vectors are created from the
signal

V1 = (x1, xm∗+1, x2m∗+1, . . . , x[(
N

m∗
)
−1

]
m∗+1)

,

V2 = (x2, xm∗+2, x2m∗+2, . . . , x[(
N

m∗
)
−1

]
m∗+2)

,

...

Vm∗ = (xm∗ , xm∗+m∗ , x2m∗+m∗ , . . . , x[(
N

m∗
)
−1

]
m∗+m∗)

,

(3)

where [.] is the floor function. The classical early warning
indicators are calculated for each of the m∗ vectors. The aver-
age of these m∗ calculated indicators is the proposed improved
early warning index.

A. First step: Extracting the system’s dynamic type

The period of the time-series is assumed to be the first
nonzero maximum of the autocorrelation function among dif-
ferent lags. In this step, we use two thresholds which set
the autocorrelation to unity if it is greater than the thresh-
old or the variance of the time-series is less than a threshold.
These thresholds help the algorithm deal with transients in the
observed time-series. In this paper, mthreshold is taken as 100.
The threshold value of the autocorrelation is 0.99999999, and
the threshold value of the variance is 0.001. Part (a) of Fig. 3
shows the estimated periods of the Ricker-type model using
autocorrelation as the parameter r is changed. Two data cur-
sors show the estimated period for parameters r = 0.9703 and
2.162. The transient parts are not a relevant dynamic of the
system and cause errors in extracting the type of dynamic.
Therefore, these parts of the signal are removed by observing
a long time-series, or some thresholds in the autocorrelation
and variance can help the algorithm cope with it. If the value
of the autocorrelation is larger than a threshold or the variance
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FIG. 5. (a) Bifurcation diagram of the Ricker-type model and one tenth of the
logarithm of the improved variance method in red with respect to changing
parameter r in the interval [0,2.7] and (b) bifurcation diagram of the ADD
model and one tenth of the logarithm of the improved variance method in red
with respect to changing parameter A in the interval [5,30]. The improved
variance method has a proper trend when close to or far from the tipping
points, and it does not have the same value at different tipping points.

of the time-series is less than a threshold, the autocorrela-
tion is set to unity. Without these thresholds, the transients in
the time-series cause incorrect estimated periods. Part (b) of
Fig. 3 shows the estimated periods of the Ricker-type model
with respect to changing the parameter r without the vari-
ance threshold. Two data cursors show the estimated period
for parameters r = 0.6083 and 1.357. In part (c) of this figure,
the bifurcation diagram of the Ricker-type model with respect
to changing parameter r is shown.

B. Second step: Calculating the proposed modified
indicators

After estimating the period of the signal for each value
of the parameter, the indicator is calculated for each vector of
Eq. (3). Then, its average is taken as the improved indicator.
More details are discussed in Sections III C–F.

C. Modified autocorrelation method

The first early warning indicator which is discussed in
this paper is autocorrelation. In this section, the modified auto-
correlation method is investigated using the two mentioned
models, the Ricker-type and the ADD model.

FIG. 6. (a) Bifurcation diagram of the Ricker-type model and the logarithm
of the improved kurtosis method in red with respect to changing parameter
r in the interval [0,2.7] and (b) bifurcation diagram of the ADD model and
the logarithm of the improved kurtosis method in red with respect to chang-
ing parameter A in the interval [5,30]. The improved kurtosis decreases near
the tipping point because the probability distribution is close to a Gaussian
distribution. It can predict pitchfork bifurcations as well as period-doubling
bifurcations.

In the Ricker-type model, after estimating the period of
the time-series for each value of the parameter, the autocor-
relation is calculated for each Vi vector of Eq. (3). Then,
their average is taken as the improved autocorrelation. For
example, when the estimated period is four, we calculate the
autocorrelation for each Vi vector where i = 1, 2, 3, 4. Finally,
the average of these four autocorrelation values is taken as
the new early warning indicator. Part (a) of Fig. 4 shows the
absolute value of this early warning for the Ricker-type model
with respect to changing parameter r. The result shows that
the improved early warning can predict different TPs and has
a proper trend when close to or far from the TPs. Also, the
value of the early warning index is unity in the occurrence
of different types of tipping point. Part (b) of Fig. 4 shows the
improved early warning near a periodic window. As the figure
shows, it has a proper trend before the occurrence of the peri-
odic window which can allow its prediction. Also, it reveals
the thin periodic windows between chaotic domains. Parts (c)
and (d) of Fig. 4 show the improved autocorrelation index
of the ADD model with respect to changing parameter A.
The improved autocorrelation index has a proper trend when
approaching the edge of the periodic window and also shows
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FIG. 7. (a) Bifurcation diagram of the Ricker-type model and the logarithm
of the absolute value of the improved skewness method in red with respect
to changing parameter r in the interval [0,2.7] and (b) bifurcation diagram
of the ADD model and the logarithm of the absolute value of the improved
skewness method in red with respect to changing parameter A in the interval
[5,30]. The improved skewness has a proper trend close to and far from the
tipping points, but it does not have a constant value at different tipping points.

the tipping point of the pitchfork bifurcation. In the pitch-
fork bifurcation which is happened in parameter A = 13.25,
the attracting period 4-cycle changes into a repelling 4-cycle
(as in period doubling) but also splits into two new attracting
4-cycles, each with its own basin of attraction, which change
as parameter A changes.

D. Modified variance method

Another well-known early warning is variance. As stated
in Section II, this early warning cannot predict transitions
between complex dynamics. In this section, the improved
variance method is studied in the Ricker-type and the ADD
model.

Near a tipping point, the state of a system under a
small perturbation returns slowly to its stable point. Thus, the
variance increases near the tipping points. But the classical
variance can only predict tipping points which are transitions
between period-one attractors. For improving the variance
method, the same algorithm as autocorrelation is applied to
it. The improved early warning indicator is calculated in two
steps. In the first step, period of the time-series is calculated,
while in the second step the variance of each Vi vector of Eq.
(3) is calculated (i = 1, 2, . . . , m∗). The average of these vari-
ances is taken as the new early warning index. Part (a) of

FIG. 8. (a) Seven selected landmarks of the Ricker-type model in the inter-
val r ∈ [0, 2.7] and (b) selected landmarks of the Ricker-type model in the
interval r ∈ [2.46, 2.7].

Fig. 5 shows the logarithm of the improved variance in the
Ricker-type map. As the figure shows, the proposed method
has a proper trend close to and far from the tipping points.
However, this early warning does not have the same value
for different tipping points. Thus, the method can just predict
approaching the tipping points or receding from them, while
it cannot determine when the tipping points occur. As another
example, the proposed variance method is applied to the ADD
model. Part (b) of Fig. 5 shows the improved variance method.
The proposed method has a proper trend to predict tipping
points. Part (b) of Fig. 5 shows that this method also can
predict pitchfork bifurcations.

E. Modified kurtosis method

The variance of the state increases near tipping points.
Thus it enhances the tail of the distribution. The tailedness of
the distribution is measured using the kurtosis, and it is used
as an early warning signal for predicting tipping points. The
classical kurtosis failed to predict tipping points of higher-
order transitions. Thus, a new kurtosis method is proposed
in this section. To improve the kurtosis early warning indi-
cator, the two step algorithm is used. First, the period of the
time-series is calculated, and then the kurtosis is calculated
for each Vi vector of Eq. (3). The average value of calculated
kurtosis is taken as the improved kurtosis method. Part (a) of
Fig. 6 shows the logarithm of the proposed kurtosis method.
The results show that the kurtosis decreases near the tipping
points (the probability distribution is close to a Gaussian dis-
tribution) and the method has a proper trend near the tipping
points. Applying the proposed kurtosis method to the ADD
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FIG. 9. (a) Sample time interval of prediction
of each landmark using the modified autocorre-
lation method, (b) sample time interval of pre-
diction of each landmark using the modified
variance method, (c) sample time interval of
prediction of each landmark using the modified
kurtosis method, and (d) sample time interval of
prediction of each landmark using the modified
skewness method. The figure shows the quantifi-
cation of proposed methods in seven mentioned
landmarks.

model shows a proper trend close to and far from the dif-
ferent tipping points [part (b) of Fig. 6]. Thus, this method
can be used as a proper predictor of different tipping points.
Part (b) of Fig. 6 shows that the method can predict pitchfork
bifurcations as well as period-doubling bifurcations.

F. Modified skewness method

Close to the tipping points, the state of the system returns
to its attractor slowly. The asymmetry of the system by
approaching a bifurcation point increases the absolute value
of skewness. The discussion in Section II shows that the com-
mon skewness can only predict bifurcations with transitions
between period-one attractors. In this section, a new skew-
ness measure is proposed which can predict different tipping
points.

In the proposed skewness method, the period of the
time-series for each parameter of the system is esti-
mated, and the skewness is calculated for each period-
component. The average values of these measures are
proposed as an improved skewness method. Part (a) of
Fig. 7 shows the logarithm of the absolute value of the
skewness for the proposed method. It shows that this
method has a proper trend close to and far from the tip-
ping points, but it does not have a constant value at
different tipping points. By applying the proposed skew-
ness method to the ADD model, the results show that
the proposed method showed a good performance in pre-
dicting pitchfork bifurcation as well as period-doubling
[part (b) of Fig. 7]. The results show that the improved

skewness does not have a constant value at different tipping
points.

IV. QUANTIFICATION OF THE PERFORMANCE OF
INDICATORS

In order to quantify the performance of the proposed indi-
cators, we use seven landmarks on the bifurcation points of
the Ricker-type model. Then we compare the application of
indicators in predicting these landmarks. The mentioned land-
marks are shown in part (a) of Fig. 8. Part (b) of the figure is
a zoomed view of part (a).

To quantify the performance of the modified autocorre-
lation indicator in each landmark, consider the bifurcation
diagram and modified autocorrelation indicator of the Ricker-
type model in parts (a) and (b) of Fig. 4. We use a threshold on
autocorrelation equal to 0.8 to find TPs. Then, we investigate
the existence of any warning in the 40 past windows (20 000
past samples) which shows the occurrence of a TP is near. Part
(a) of Fig. 9 shows the sample time interval of prediction of
each landmark using the modified autocorrelation method. As
seen in Fig. 5, the modified variance method increases near the
occurrence of TPs. So we follow the ascending of the modi-
fied variance in three consecutive samples. Part (b) of Fig. 9
shows the sample time interval of prediction of each landmark
using the modified variance method. In the modified kurtosis
and skewness (Figs. 6 and 7, they decrease near the occur-
rence of TPs. So the descending of the modified indicators
in three consecutive samples is used to predict TPs. Parts (c)
and (d) of Fig. 9 show the sample time interval of prediction
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FIG. 10. (a) The sample time interval of predic-
tion of modified autocorrelation, (b) the sample
time interval of prediction of modified variance,
(c) the sample time interval of prediction of mod-
ified kurtosis, and (d) the sample time interval
of prediction of modified skewness method in
the Ricker-type model, for seven landmarks, and
for ten values of σn ∈ [0.0001, 0.001] which are
depicted by colors as the color bar. The variance
method has the most robust result by increasing
the power of noise.

of each landmark using the modified kurtosis and skewness
method, respectively.

V. CONCLUSION AND DISCUSSION

In this paper, a new perspective has been illustrated to
make the old early warning indicators suitable for predict-
ing different types of TPs. In other words, we have proposed
several modified indicators to predict different TPs such as
bifurcations between different periods, crises, and periodic
windows. These types of bifurcations can be seen in a com-
mon period-doubling route to chaos which is occurred in
many real world dynamical systems. There were two main
steps in our proposed procedure. First, the dynamic of the
considered system was estimated using its time-series. Sec-
ond, the original time-series was divided into some sub-
time-series. In other words, we separated the time-series into
different period-components. Then, the four different tipping
point indicators were applied to the extracted sub-time-series.
These modified indicators were applied to a biological model
and an ecological model. The ecological model (Ricker-type)
has different bifurcations such as jumping between equilib-
rium points, period-doubling with different periods, periodic
window, and crises. The biological model (ADD) contains
period-doubling with different periods, pitchfork bifurcation,
periodic window, and crises. Applying the modified indicators
on these two models shows their generality in different appli-
cations. The proposed method showed proper performance in
predicting different tipping points. The main advantage of the
proposed indicators is their ability to anticipate different TPs
in a period-doubling route to chaos. Previous indicators were
unable to predict these TPs, and they can only predict TPs of
period-one. Noise and external perturbations can cause faults
for anticipating TPs in the proposed methods just like with
previous indicators. To investigate the influence of noise on
the performance of the proposed methods, white Gaussian

noise nk with zero mean and variance σn is added to the state
of the system xk as follows:

xk+1 = f (xk),
zk = xk + nk ,

(4)

zk is the noisy observation of the system. Figure 10 shows
the sample time interval of prediction of the modified auto-
correlation (a), variance (b), kurtosis (c), and skewness (d)
method in the Ricker-type model, for seven landmarks, and
for ten values of σn ∈ [0.0001, 0.001] which are depicted by
colors as shown in the color bar. It can be seen that increasing
the power of the noise decreases the sample time interval of
prediction of each landmark in the modified autocorrelation
method. Also, the variance method has the most robust result
by increasing the power of the noise. Kurtosis and skewness
are less robust to noise.

In the real applications, one can window the signal with
specified overlap and calculate indicators in each window.
Then, evolution of those indicators can tell us how close the
system is to a TP.
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