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One of the main applications for chaotic circuits is the production of aperiodic signals with
many of the characteristics of noise for secure communications and similar uses. However, the
probability distribution function (pdf) of such signals is usually far from Gaussian. This paper
describes a new chaotic circuit based on the recently proposed signum thermostat that produces
signals whose pdf is accurately Gaussian. Data from the constructed circuit are analyzed and
shown to be in agreement with the theoretical prediction.
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1. Introduction

Random numbers have a wide variety of applica-
tions including Monte-Carlo simulations [Binder &
Heermann, 2002] and cryptography [Stinson, [2006].
Since the dawn of the computer age, computer
algorithms have been developed to meet this need

, M} These digital “pseudorandom num-
ber generators” have the virtues of reproducibility
and portability, but they are inherently flawed as a
consequence of their deterministic basis, although
they can be made to pass all conventional tests
for randomness [Press et all, 2007]. As a conse-
quence, hardware-based random number generators
have been developed, usually based on some quan-
tum process such as radioactive decay or on thermal
noise m, M} The more recent development of
chaotic electrical circuits has now provided a deter-
ministic alternative based on Lyapunov instability

[Kocarev & Liarl, [2011].

Chaotic systems share many of the properties
of random systems, but they rarely produce sig-
nals whose probability distribution function is even
approximately Gaussian. For many years, there has
been a concerted effort by molecular dynamicists
to devise simple mathematical models with such a
property, most of which are only approximate. Such
a system would model the fluctuations in the energy
of a harmonic oscillator in thermal equilibrium with
a heat bath at constant temperature.

One of the earliest such attempts was the Nosé—

Hoowver oscillator ﬂN_Q&é, 11984; [Hoove, hﬂ%ﬂ],
s=y? T (1)

jj:y7 y:—CC—Zy,

With T' = 1, this system is also known in the liter-
ature as the Sprott A system [Sprotf, 1994] since
it was independently discovered in a systematic
search for three-dimensional chaotic flows with only
five terms and two quadratic nonlinearities. It is
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somewhat unusual because it lacks any equilibrium
points provided T > 0.

Absent the zy term, this system would be a
simple harmonic oscillator with angular frequency
w = 1. The zy term represents a nonlinear damp-
ing of the oscillator [Sprott & Hoover, 2017] that
removes energy when z is positive and adds energy
when z is negative, with z averaging exactly to
zero, (z) = 0. The z variable provides negative
feedback to the energy and thus acts like a “ther-
mostat,” maintaining the time-averaged energy of
the oscillator (E) = 1(2?) + 2(y?) equal to T
which can be considered as a dimensionless temper-
ature, but with large fluctuations about the average.
Equation (I)) is sometimes written with different or
additional parameters, but it is inherently a one-
parameter system through an appropriate transfor-
mation of the variables, and so the use of T as the
parameter is convenient but arbitrary.

The resulting system shares many of the prop-
erties of a Hamiltonian system except that the
energy is allowed to fluctuate in time rather than
being rigidly fixed. Such systems are said to be
isothermal rather than isoenergetic and to be
nonuniformly conservative [Heidel & Zhang, 1999)].
As with other conservative systems, Eq. () is time-
reversible since the transformation (z,y,z,t) —
(x,—y,—z,—t) leaves the equations unchanged.
This three-dimensional modification of the simple
harmonic oscillator has chaotic solutions as required
for the orbit to visit all points in (z,y) phase space
as expected for a physical oscillator in contact with
a real heat bath.

A perfect molecular model would have its
energy F = %xQ + %yQ distributed according to a
Boltzmann factor P(E) = e /T )T with a Gaus-
sian distribution of P, = e=**/2T /3/2xT and P, =
e~y /2T /v 27T In fact, a distribution of that form is
preserved (constant in time) by Eq. ([Il) provided P,
is equal to e=#/2T /V2rT as one can verify by cal-
culating the time derivative of P(z,v,2) = P, PP,
at a fixed position in state space which is given by

p= O(Pz) n J(Py) n d(Pz) _o 2)
oz Ay 0z
This is a necessary but not a sufficient condition
for producing a Gaussian probability distribution
of P(x,v,z).

In fact, Eq. () fails to generate the entire
canonical distribution, but rather it traces out only
a small part of it depending on the initial values

of (z,y,z). For initial conditions chosen randomly
from a Gaussian measure with 7' = 1, 94% of the
orbits are quasiperiodic and lie on two-dimensional
tori that surround an infinite number of stable one-
dimensional periodic orbits. The remaining 6% of
the initial conditions lie in a surrounding three-
dimensional chaotic sea [Hoover & Hoover, 2018].
Trajectories within the sea eventually come arbi-
trarily close to any point within it. Thus the Nosé-
Hoover system is not ergodic.

2. Signum Thermostat

A simple modification of the Nosé-Hoover system
recently proposed by M] that exactly sat-
isfies the desired conditions is the signum thermo-
stat given by

=y, y=-z—asgn(z)y, =y’ -T (3)
for a > 1.7. Smaller values of a allow initial condi-
tions that lie on tori and give quasiperiodic orbits.
These tori shrink in size until the last one that
passes near the points (+m,0,0) vanishes when a
exceeds 1.7. Equation (@) can be viewed as a lim-
iting case of a recently proposed logistic thermo-
stat |Tapi ,12017) with which it shares many
properties.

This system is ergodic in the sense that for any
initial conditions (except along the line x = y = 0),
it will eventually come arbitrarily close to every
point in (z,y, z) space. Hence it does not have an
attractor, but rather the chaotic sea fills all of space.
The damping term —a sgn(z)y averages to zero over
a sufficiently long time. Because sgn(z) abruptly
switches between +1 and —1 when z crosses zero, it
is called a bang-bang controller. The furnace turns
on and off abruptly and fully, but the heat flow to
or from the oscillator is controlled by the parameter
a, which arguably better models a real thermostat
than does the proportional controller in Eq. ().

Furthermore, the probability distribution of x
and y is Gaussian, while the probability P, is
governed by Tdd% = —aP,sgn(z), whose normal-
ized solution is exponential and given by P, =
(a/2T)e~ /T The Gaussian probability P, and
P, are independent of a with a width that depends
only on T'.

Finally, unlike Eq. (), Eq. (@) has the nice
property that the & and y equations are linear
except at z = 0, and so the dynamics is independent
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of the amplitude of the oscillation. Said differently,
T is an amplitude parameter [Li & Sprott,[2013] that
only affects the magnitude of the variables and thus
can be taken as unity without loss of generality. If
the system is ergodic and Gaussian for any temper-
ature, it is ergodic and Gaussian for every tempera-
ture, and it has only a single bifurcation parameter
a, which facilitates analysis of the system, especially
because the system is two-dimensional and linear
for z # 0. Since our interest is in ergodic solutions,
we will hereafter take a = 2, which is comfortably
in excess of 1.7.

3. Numerical Solutions

The parameters a = 2 and T = 1 give the pre-
dicted chaotic orbit in Fig.[Il The colors indicate the
value of the local largest Lyapunov exponent with
red positive and blue negative. Since the chaotic sea
fills the whole of space, initial conditions are arbi-
trary and are taken as (xg,vo,20) = (1,1,1) here
and elsewhere. Calculations are done using a fourth-
order Runge-Kutta integrator with adaptive step
size and stringent error control.

The time series for z(t) is shown in Fig.
As expected for a nonlinearly damped harmonic
oscillator, there is a dominant frequency (w =~ 1
for this case), but with a broad-band power spec-
tral density as is characteristic of a chaotic system.

3 i
z /
’4/
3
Y
-3 -3
-3 X 3

Fig. 1. Numerical solution of Eq. [B) with a =2 and T = 1.

The colors indicate the value of the local largest Lyapunov
exponent with red positive and blue negative.
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The time series for y(t) is similar. The Lyapunov
exponents are (0.3032,0, —0.3032) and sum to zero
as they must for a conservative system, with a
Kaplan-Yorke dimension [Kaplan & Yorkd, 1979
of Dy = 3, as expected for an orbit that visits
every point in the three-dimensional state space.

The main evidence that the system is ergodic
comes from the cross-section of the flow in Fig.
showing 10® crossings of the z = 0 plane. Regions
of quasiperiodicity would have appeared as “holes”
in the chaotic sea, and none are evident. The two
horizontal stripes at y = +1 are the z-nullclines,
where z = 0 and the flow is tangent to the z = 0
plane. As before, the colors indicate the value of the
local largest Lyapunov exponent. Although the col-
ors show considerable spatial structure, the measure
(local probability distribution) is perfectly smooth.

The evidence that the distributions are Gaus-
sian comes from the histograms in Fig. [ showing
6 x 108 values of the three variables along with
the theoretical predictions and the even moments of
the distributions. The odd moments are negligibly
small. The mth even moments agree to within sta-
tistical uncertainty with the theoretical predictions
of P, and P, given by (z™) = (y™) = (m — 1)!l =
{0,1,3,15,105,945, ...}, and P, given by (2") =
m!/a™ = {0,0.5,1.5,11.25,157.5,3543.75,...} for
a=2.

Although the distributions are accurately
Gaussian, successive values are not independent
since they come from a deterministic flow, making
the values not truly random and hence not suit-
able for some purposes. However, since the system
is chaotic, information about the initial condition
is destroyed at an exponential rate given by the
largest Lyapunov exponent (A; = 0.3032 in this
case). Hence we would expect successive values sep-
arated in time by At > 1/A\; ~ 3 to be indepen-
dent. More precisely, if it is required for the most
significant d digits of the values to be independent,
the sample interval should exceed approximately
At ~ dIn(10)/A; ~ 8d. Thus to obtain values with
four digits of independence requires At &~ 32.

One way to illustrate the effect of serial correla-
tion is to plot each value of x(t) versus the value of
x(t— At) as shown in Fig. [l for 10° points with four
values of At. Recall that the dominant frequency of
oscillation is w ~ 1, so that At = 1 represents only
one radian (=~ 57 degrees) so that successive val-
ues have a strong positive correlation. On the other
hand, At = 3 represents about 172 degrees, and
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Fig. 2.

there is a strong negative correlation shown in the
figure as a 90° rotation of the plot. The correla-
tion decreases with increasing At, becoming unde-
tectable in the figure for At = 30 as expected.
Similar results occur for the other variables.
Another way to view the decay of the serial
correlation is by plotting the time-lag correlation
function between two variables such as z and y
given by
() - 20— 80) "
(@2(0))(y*(1))

-5

5 X . 5
Fig. 3. Cross-section for the flow in Eq. (8) at z = 0 for a =

2 and T' = 1. The colors indicate the value of the local largest
Lyapunov exponent with red positive and blue negative.

100

Numerical waveform for z(t) from Eq. [B) with a = 2 and T'= 1. The y(¢) waveform is similar.

versus At, where the angular brackets denote the
time average, or in this case the average over many
successive samples of the variables. Figure [l shows
the correlation function for the different variables
with 4 x 10% points at each of the 400 values of At.
The autocorrelation function Cy, shown in Fig.[Bla)
is the Fourier transform of the power spectral den-
sity of the x variable, and the relatively narrow
peak in the former implies a relatively broad peak
in the latter as desired for a chaotic signal that emu-
lates noise. As expected, the autocorrelation func-
tion is near zero for At = 430. Note that the

mean = 0.0000
<X~2>= 1.0000
<X“4> = 3.0002
<X"6> = 15.0011
Px| <X 8>=105.0081
<X~10> = 9451006

mean = 0.0000
<Y~2>= 1.0000
<Y~4> = 3.0000
<Y"6> = 14.9998
Py| <Y"8>=104.9972
<Y~10> = 944.9619

mean = 0.0000
<Z~2> = 0.5000
<Z~4> = 1.5001
<Z76> =11.2475

Pz| <Z°8>=157.0702
<Z~10> =3499.7424

-5 Value 5

Fig. 4. Probability distributions and their even moments
for the three variables of Eq. (@) with a =2 and T'= 1. The
expected distributions are shown as black lines at the edge
of the red regions.
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X (1)

-5 -5
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-5 X(t-at) 5 -5 X(t-at) 5

Fig. 5. Return map for the z variable of Eq. (@) with a = 2 and T' =1 for increasing time lags At.

Fig. 6. Time-lag correlation function for the different variables of Eq. ([B) with @ = 2 and 7" = 1 as a function of the time
lag At.
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Fig. 6.

cross-correlation function Cy, in Fig. B(d) is zero
at At = 0, which means that Eq. [B) can produce
two independent Gaussian random numbers z and
y if sampled at the same instant. The correlation
functions C,, and C,, are zero within statistical
error for all values of the time lag and hence are
not shown.

4. Circuit Implementation

It is straightforward to construct an electrical cir-
cuit whose voltages correspond to the variables in
Eq. @) with @ = 2 and T = 1 as shown in
Fig. [ The component values are R3 = 7.5k,
Rg = Ry = 1kQ, Ry = 150k, Rg = 1000kS2,
and Rig = 2k, with the other resistors equal to
10k, C; = Cy = C3 = 1uF, C4y = 0.001 pF, and
Vs = Vs = 15V, which corresponds to the parame-
ter T'=1 in Eq. [B) and sets the magnitude for all
the voltages and currents in the circuit. The AD633
analog multiplier has a factor of ten attenuation to
prevent saturation. It is useful to use a high-speed
amplifier such as an L'T1226 for the comparator to
ensure accurate implementation of the signum func-
tion. The circuit as designed runs at a relatively low
frequency of ~ 100 radians per second (~ 16 Hz),
but can be rescaled to run at any rate determined
by limitations of the amplifiers and multipliers.

To use the circuit to produce Gaussian random
numbers, it is only necessary to sample the instanta-
neous value of Vj or V4 (they both have a Gaussian
distribution with the same variance) whenever a
new value is desired. If the interval between samples
is sufficiently large (much larger than the Lyapunov
time), successive samples are uncorrelated through

(Continued)

V2 AN,
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Fig. 7.

2050116-6

M,

X1
X2
Y1
Y2

VM 1
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mean = 0.0012
<X"2>= 9779385
<X*4> = 2.64587
<X"6> = 11.32084
Px| <X 8>= 6547163
<X™10> = 474.3552

mean =-0.0345
<Y"2>= 1.013097
<Y~4> = 2.856522
<Y"6> = 12.56489
Py| <Y"8>= 73.1852
<Y~10> = 524.0913

mean =-0.1284
<Z°2> = 5164831
<Z~4> = 1.284581
<Z"6> = 6.9822

Pz| <Z°8>= 67.79556
<Z~10> = 1234.792

-5 Value 5

Fig. 8. Probability distributions (in red) and their even
moments for ten million samples of the voltages V1, Vo, and
Vs (resp., Py, Py, and P) in Fig. [ The expected distribu-
tions are shown as black lines.

Lyapunov instability, although that may not be nec-
essary for some applications. The result of such a
process in which ten million samples were taken at a
sample rate of 100 Hz (10° s or about 28 h) is shown
in Fig. B and confirms that the distributions for V;
and V5 (resp., P, and P,) are Gaussian as predicted.
The distribution function for V3 is expected to be
given by P, = e 21#l in good agreement with the
measurement.

The notch near P, = 0 and the asymmetry
in P, in Fig. § are attributed to hysteresis in the
comparator. This hysteresis makes the comparator
switch at values close to zero rather than exactly at
zero. Most comparators are designed to have hys-
teresis to prevent signal noise from causing prema-
ture or erratic switching when the signal is small,
which can cause errors in timing circuits such as a
digital clock. The notch and asymmetry occur when
the hysteresis exceeds approximately +1mV.

The comparator can be further modified to
have adjustable hysteresis threshold limits by
adding an external circuit that provides positive
feedback. This circuit is also known as a Schmitt
trigger. Here Cy4, Rg, and Ry set a hysteresis thresh-
old that decays with time, allowing the compara-
tor to switch exactly at zero while preventing
oscillation. (4 is set to a small value to allow this
threshold to quickly decay, and its voltage V} is not

A Chaotic Circuit for Producing Gaussian Random Numbers

a part of the dynamical equations. Rig is a pullup
resistor that should be connected to the +15V
source (represented as Vg) to allow the comparator
to saturate quickly.

The small hysteresis limits of the notch and
asymmetry in the probability distribution also sug-
gests a sensitivity to noise within £1 mV, which can
be reduced through low-noise operational ampli-
fiers and 0.1 uF bypass capacitors to remove power
supply noise. Additionally, pins 5 and 6 of the
LM311 comparator should be connected together
since these unused pins can pick up noise. These
techniques improve the probability distribution, but
do not completely remove the notch and asymme-
try. Further work on this circuit could investigate
methods to reduce the noise below +1mV.

Normally, it would be difficult or impossible
to construct an electrical circuit for a conservative
dynamical system because even the slightest damp-
ing or anti-damping would cause the oscillations to
decay or grow without limit until something in the
circuit saturates. However, this nonuniformly con-
servative system uses negative feedback to control
the average energy of the oscillation, and thus it is
highly robust. Since it lacks equilibrium points and
the chaotic sea fills the whole of state space, initial
conditions are arbitrary, and the circuit cannot fail
to oscillate for any choice of the parameters or of
the corresponding circuit components.

5. Summary and Conclusions

The signum thermostat applied to the simple har-
monic oscillator gives a particularly simple three-
dimensional dynamical system whose solution is
ergodic (the orbit eventually comes arbitrarily close
to every point in the space) and whose variables
have an exact Gaussian probability distribution
function. The equations lead directly to a simple
electrical circuit whose chaotic oscillations have the
same property.

Although the circuit as described is inherently
slow, producing just a few dozen independent and
identically distributed random numbers per second,
much faster versions are possible in principle, lim-
ited only by the speed of the circuit components.
Furthermore, the quality of the random numbers is
ensured by the Lyapunov instability of the under-
lying chaotic system. Such a circuit has potential
application wherever Gaussian random numbers are
required, and the successive values are independent
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for a sufficient, well-prescribed interval between
samples.
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