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1 | INTRODUCTION

Memristors have attracted great interest in engineering for their
potential applications [1-5]. They have been used as a dynamic
element to generate chaotic signals. The presence of a mem-
ristor usually leads to a 4-D system [6—10], although only a 3-D
system is required for chaos. Several 3-D memristive chaotic
systems have been reported [11-15], but in those cases, the
memtistor was implemented with a complicated operational-
amplifier-based equivalent device.

Jetk systems are a simple type of dynamical system that
can generate chaos [16-20]. Such a compact structure is
composed of a couple integral operation units in series. Some
jerk systems are chaotic when they contain a nonlinearity from
quadratic terms [16—18], an exponential function [19] or a
cubic term [20]. All other jerk systems that produce chaos
based on the memristor are 4-D [21, 22]. The novelty of this
work is that compared with prior studies, we aim to construct
a completely 3-D jerk memristive circuit. The most important
challenge in this work is introducing a suitable memristor to
break the existing oscillation in a 2-D structure and finally
bring chaos.

In addition, many memristive systems exhibit chaotic
oscillation combined with other states because of the integral
effect from the memristor [6—10, 21-25]. Unlike these

A simple memristive chaotic jerk system with one variable to represent the internal state is
found. The proposed equilibria-free memristive system yields hidden chaotic oscillation in
a narrow parameter space. A circuit is constructed that models the jerk system, and it
shows agreement with the predicted oscillation. The new memristive jerk system appears
to be one of the algebraically simplest memristive chaotic systems.

memristive jerk systems, however, a second-order jerk struc-
ture with a memristor is explored that is both simple and
robust for giving chaos. In Section 2, the model is given and
analyzed with basic dynamical analysis. In Section 3, the circuit
is built for proving the theoretical analysis. Finally, a short
conclusion is made to summarize the work.

2 | SYSTEM MODEL

A simple chaotic jerk oscillator containing a memristor as one
of the state variables was found by an exhaustive computer
search based on the Euler method. Suppose there is a 2-D jerk
structure ¥y =2z, z = f(y, z), and introduce a flux-controlled
memductance W(x) in it. The following system is found for
producing chaos:

x=y,
y=1z (1)
2=—z—az — W(x)y +b.

where the flux-controlled memductance W(x) = 1.3x7-1 is
introduced in the z-dot equation. Here the variables y and z are
the external system variables, and x is the internal variable in
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the memristor and indicates the magnetic flux. When 2 = 0.239
and & = 1, System (1) produces chaos with Lyapunov expo-
nents (0.0529, 0, —1.0529) after a time of t = 2e7 and a cor-
responding Kaplan—Yorke dimension of Diy = 2.0502 for
initial condition (0, =2, —2), as shown in Figure 1, whose
basins of attraction (in the z = 0 plane) are shown in Figure 2.

This system is fairly delicate with chaos in only a narrow
range of the parameter space, as indicated in Figure 3. The
internal vatiable x comes from the integration of the system
state variable y. System (1) is asymmetric with a speed of
volume contraction determined by a derivative proposed by
Lie:

0z

—=-1-2az.
0z “

VvV = i + @ +
ox Oy

In addition, System (1) has no equilibria [26-30], and
therefore the attractor is hidden [31-35].

More interesting is that unlike other memristive systems
[8-10], System (1) outputs relatively stable oscillations except
when switching between chaos and sliding initial values that
agree with the plots of the dynamical region and basins of
attraction. To further verify this, the solution based on offset
boosting under a fixed initial condition is used for diagnosing
multi-stability [36, 37]. Taking offset-boosting d in the
dimension y — y + d, it is shown that when offset d varies in [-
5, 5] except for the long transient process, System (1) remains
chaotic unless it is dragged sliding with the initial condition, as
shown in Figure 4.

The embedded memristor is defined as

X=Y,
W(x) =1.3x*-1, (2)
i = W(x)y.

Flux-dependent memductance is related to the internal
variable x, which is of quadratic degree [13, 38, 39] and is
determined by the system variable y:

W(x) =136 —1=1.3( [*_ yds)* =1
—1.3( [ yds)’ =1+ W,

X

FIGURE 2 Basins of attraction of System (1) in the plane of z = 0

0 a

FIGURE 3 Dpynamical regions in the parameter space of a, b; red
(darker area if figure is rendered in black-and-white) indicates chaos, and cyan
(lighter atea if figure is rendereed in black-and-white) indicates limit cycle

Strange attractor projections of System (1) with a = 0.239, b = 1 and initial condition (x, yo, zo) = (0, =2, —=2) (a) (X, -Y) plane, (b) (X, Z) plane,
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FIGURE 4 Dynamical behaviours in System (1) with 2 = 0.239, b = 1, and initial condition (xo, yo, Zo) = (0, =2, —2) when the offset parameter d varies
within [=5, 5] (a) Average values of variables, (b) Lyapunov exponents

(b) FIGURE 5 The memductance and pinched
3 hysteresis loop
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3 | JERK CIRCUIT IMPLEMENTATION

Obtaining an analog circuit to realize System (1) is a rela-
tively easy way to introduce a memristor into the operational
amplifier-based integration circuit. First, we construct a 2-D
jerk main structure. Second, an equivalent circuit is designed

for the applied memristor without resorting to another . LY VLT U P ERa——— '
amplifier-based integration element. The basic principle is A2 /. W_ X s B
based on the characteristics of virtual break and virtual short o : ; : o
of an operational amplifier. An analog circuit based on ¥y \ 7 W(x)y
Equation (1) is designed as shown in Figure 6, and ac- E " E
cording to the Kirchhoff law, the circuit equations can be Mececaccscccccccccacc] foccccccccccccncacanad
written as follows:
Ca X
y = ! z, A% R, X%y Ry B
R;C, o— A o
: z 2z Wy V, ) : Wix)y
Z=TRGC RC G TRC _ &

where the memristor W(x) is equivalent to the circuit
simulator as shown in Figure 7, FIGURE 7 [Lquivalent element of the flux-dependent memristor
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FIGURE 8 Experimental values of (a) (b)
memductance and inherent constraints of pinched
hysteresis (a) Experimental value of memductance
and (b) inherent constraints of pinched hysteresis
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FIGURE 9 Strange attractor projections of System (4) shown in
oscilloscope (2) (X, -Y) (b) X, Z) (¢) (-Y, Z) (0.5 V/div)
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1, 1
Ve =g "R (5)
_ 1
“R.C

In this process, a 2-D jerk structure provides a simple
structure for the proposed system. The circuit structure
contains two parts based on the integration including
addition and subtraction of the system vatriables y and z
according to Equation (1). Here the analog multiplier
ADG633/AD is applied to realize the nonlinear product
operation, while the operational amplifier OPA404/BB
combined with its peripheral circuit is used to construct
the addition, inversion, and integration operations. The
memductance W (x) =1.3x*> =1 is realized through the
citcuit parameters C, = 100 nF, R, = 10 kQ, R, = 7.69
kQ, and R. = 10 kQ. The system parametets a = 0.239,

b = 1 are realized through the circuit parameters
R1 = R:‘., = 10 kQ, RZ = 41.8 kQ, Ro = 30 kQ, and
Vs = 3V. The capacitor C; = C, = 100 nF are selected

for establishing a robust phase trajectory that only re-
scales the time of the oscillation. The equations used in
the circuit implementation contain different constants
from those in System (1) owing to amplitude and time
which s implementation.

Figure 8 displays a plot of the experimental constraints of

rescaling, normal in circuit
memductance and inherent relation of pinched hysteresis,
while Figure 9 displays the phase portraits observed in

the oscilloscope.

The experimental constraints of memductance, the
inherent pinched hysteresis effect, and the experimental
phase portraits agree well with the numerical simulation,
proving the system dynamics and the effectiveness of the
hardware circuit. As a main element, the equivalent mem-
ristor can potentially have a great effect on the performance
of the jerk system, which is dominantly determined by two
analog multipliers and one operational amplifier. These three
components define the memristor applied in this work, and
therefore some other physical memristor models (e.g the
HP memristor) cannot guarantee chaos in the 3-D jerk

structure.

4 | CONCLUSIONS

By introducing a memristor into a second-order jerk struc-
ture, chaotic oscillation is found in a 3-D jerk system. The
proposed simple memristive jerk system has only six terms
while without any equilibria, one of which is quadratic.
Circuit experiments show the same oscillation, and thus they
agree with the numerical simulation. When flux-controlled
memductance is revised as W(x) =13 | x| =1, a minor
parameter adjustment (a = 0.432, b = 1) can still recover
chaos with Lyapunov exponents (0.0328, 0, —1.0332) and a
corresponding attractor dimension of Dy = 2.0321, which
simplifies the circuit realization. Compared with other
memristive systems [10, 40], this system is also unique for
its robust chaotic oscillation, although it is hidden [41, 42].
This feature is attractive for its application in chaos-based
communication or image encryption. Future work on this
circuit can investigate the introduction of other memrtistors
such as the HP memristor into this proposed jerk structure
for chaos.

ACKNOWLEDGEMENTS

This report was supported by the National Natural Science
Foundation of China (Grant No. 61871230), the Natural Sci-
ence Foundation of Jiangsu Province (Grant BK20181410),
and also supported partially by a Project Funded by the Priority
Academic Program Development of Jiangsu Higher Education
Institutions.



392 |

LI Er AL

ORCID
Chunbiao Li © https://orcid.org/0000-0002-9932-0914
REFERENCES

1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Theory. 18(5), 507-519 (1971)

Tour, .M., He, T.: The fourth element. Nature. 453, 42—43 (2008)

Wu, K., Wang, X.: Enhanced memristor-based MNNs performance on
noisy dataset resulting from memristive stochasticity. IET Circ. Device.
Syst. 23(5), 704=709 (2019)

Fernando, C., Alon, A., Marco, G.: Nonlinear dynamics of memristor
oscillators. IEEE Trans. Circuits Syst. 58(6), 1323-1336 (2011)

Zhao, Q., Wang, C., Zhang, X.: A universal emulator for memristor,
memcapacitor, and meminductor and its chaotic circuit. Chaos. 29(1),
013141 (2019)

Bao, B, Xu, J., Liu, Z.: Inital state dependent dynamical behaviors in
memristor based chaotic circuit. Chin. Phys. Lett. 27(7), 070504
(2010)

Bao, B, et al.: Chaotic memristive circuit: equivalent circuit realization
and dynamical analysis. Chin. Phys. B. 20(12), 120502 (2011)

Zhou, L., Wang, C., Zhou, L.: A novel no-equilibrium hyperchaotic
multi-wing system via introducing memristor. Int. J. Circ. Theor. App.
46(1), 84-98 (2018)

Wang, C., et al: Memristor-based neural networks with weight
simultaneous perturbation training. Nonlinear Dyn. 95(4), 2893-2906
(2018)

Li, C., et al.: Complicated dynamics in a memristor-based RLC circuit.
Eur. Phys. J. S. T. 228(10), 1925-1941 (2019)

Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos. 18(11),
3183-3206 (2008)

Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc.
Chaos 20(5), 1567-1580 (2010)

Muthuswamy, B.: Implementing memristor based chaotic circuit. Int. .
Bifurc. Chaos. 20(5), 13351350 (2010)

Sun, J., et al.: Generalised mathematical model of memristor. IET Circ.
Device. Syst. 10(3), 244-249 (2016)

Kim, H., et al.: Memristor emulator for memristor circuit application.
IEEE Trans. Circuits Syst. 59(10), 2422-2431 (2012)

Gottlieb, H.PW.: Question 38. What is the simplest jerk function that
gives chaos. Am. J. Phys. 64(5), 525 (1996)

Sprott, ].C.: Some simple chaotic jerk functions. Am. J. Phys. 65(6), 537—
543 (1997)

Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68(8), 758—
763 (2000)

Sprott, J.C.: A new class of chaotic circuit. Phys. Lett. 266(1), 19-23
(2000)

Malasoma, J.-M.: What is the simplest dissipative chaotic jerk equation
which is parity invariant. Phys. Lett. 264(5), 383-389 (2000)

Njitacke, Z.T., et al.: Coexistence of multiple attractors and crisis route to
chaos in a novel memristive diode bidge-based Jerk circuit. Chaos Soli-
tons Fract. 91, 180-197 (2016)

Kengne, J., Negou, A.N., Tchiotsop, D.: Anti-monotonicity, chaos and
multiple attractors in a novel autonomous memristor-based jerk circui.

Nonlinear Dyn. 88(4), 1-20 (2017)

23.

24.

26.

27.

28.

29.

30.

31.

32.

33,

34.

35.

36.

37.

38.

39.

40.

41.

42.

Li, C,, et al: A memristive chaotic oscillator with increasing amplitude
and frequency. IEEE Access. 6, 12945-12950 (2018)

Zhang, X., Jiang, W. Construction of flux-controlled memristor and
circuit simulation based on smooth cellular neural networks module. IET
Circ. Device. Syst. 12(3), 263-270 (2018)

Yuan, I, Wang, G., Wang, W. Dynamical characteristics of an HP
memristor based on an equivalent circuit model in a chaotic oscillator.
Chin. Phys. B. 24(6), 207-215 (2015)

Nazarimehr, E, et al.: A new four-dimensional system containing chaotic
or hyper-chaotic attractors with no equilibrium, a line of equilibria and
unstable equilibria. Chaos Solitons Fract. 111, 108-118 (2018)

Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified
Lorenz system. Int. J. Bifurcat. Chaos. 24(3), 1450034 (2014)

Pham, V.-T., ct al.: Constructing a novel no-equilibrium chaotic system.
Int. J. Bifurcat. Chaos. 24(5), 1450073 (2014)

Jafari, S., Sprott, J., Golpayegani, SM.R.H.: Elementary quadratic chaotic
flows with no equilibria. Phys. Lett. A. 377(9), 699-702 (2013)

Maaita, J., et al.: The dynamics of a cubic nonlinear system with no
equilibrium point. Nonlinear Dyn. 257923 (2015)

Leonov, GA., Vagaitsev, V.I., Kuznetsov, N.V.: Localization of hidden
Chua’s attractors. Phys. Lett. A. 375(23), 2230-2233 (2011)

Leonov, G.A., Vagaitsev, V.I., Kuznetsov, N.V.: Hidden attractor in
smooth Chua systems. Physica D. 241(18), 1482-1486 (2011)

Leonov, G.A., Kuznetsov, N.V.: ‘Hidden attractors in dynamical systems.
From hidden oscillations in Hilbert—Kolmogorov, Aizerman, and Kal-
man problems to hidden chaotic attractor in Chua circuits’. Int. J.
Bifurcat. Chaos. 23(1), 1330002 (2013)

Leonov, G.A., Kuznetsov, N.V.: Algorithms for searching for hidden
oscillations in the Aizerman and Kalman problems. Dokl Math. 84(1),
475481 (2011)

Zhang, X., Wang, C.: Multiscroll hyperchaotic system with hidden attractors
and its circuit implementation. Int. . Bifurcat. Chaos. 29(9), 1950117 (2019)
Li, C., Wang, X., Chen, G.: Diagnosing multistability by offset boosting.
Nonlinear Dyn. 90(2), 1335-1341 (2017)

Li, C,, Sprott, J.C.: Variable-boostable chaotic flows. Optik. 127(22),
10389-10398 (2016)

Bao, B, Liu, Z., Xu, J.: Transient chaos in smooth memristor oscillator.
Chin. Phys. B. 19(3), 030510 (2010)

Bao, B., Liu, Z., Xu, J.: Steady periodic memristor oscillator with transient
chaotic behaviors. Electron. Lett. 46(3), 228-230 (2010)

Li, 7., Zeng, Y.: A memristor oscillatior based on a twin-T network.
Chin. Phys. B. 22(4), 040502 (2013)

Jiang, H., et al.: Hidden chaotic attractors in a class of two-dimensional
maps. Nonlinear Dyn. 85(4), 2719-2727 (2016)

Pham, V.T,, et al.: Constructing a novel no-equilibrium chaotic system.
Int. J. Bifurcat. Chaos. 24(5), 1450073 (2014)

How to cite this article: Li C, Sprott JC, Joo-Chen
Thio W, Gu Z. A simple memristive jerk system. IET
Circuits Devices Syst. 2021;15:388-392. https://doi.
org/10.1049/cds2.12035




