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DETECTION AND CORRECTION OF GAP MAGNETIC FIELD ERRORS
J. C. Sprott
I. Introduction

An insulated gap in a current-conducting surface is a
potential source of a magnetic field error unless the surface
current is led away from the gap by a flange, continuity winding,
or the back surface of the conductor in a manner that matches the
current density distribution that would exist in the absence of
the gap. Common examples are the poloidal and toroidal gaps in
the walls and shells that shape the magnetic field in toroidal
plasma confinement devices such as multipoles, tokamaks and
RFP's. One consequence of such an error is the generation of a
normal component of the magnetic field in the gap, whereas the
normal component of the field is zero away from the gap to the

extent that magnetic field does not soak into the conductor.

Imagine a gap that completely encircles a toroidal shell in
either the toroidal (long) or poloidal (short) direction. The
normal component of the magnetic field in the gap can Dbe

decomposed into its Fourier components as
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where 6 is a periodic variable proportional to the 1length along
the gap and corresponds to a physical angle only in the case of a
circularly symmetric gap. Now suppose that a set of N identical
coils are placed end-to-end along the gap with each coil covering

an angle 2n/N and measuring the average normal field along its

length. The signal in the ith ¢oi1 is thus given by
N [2ni/N ®
S; = - | B,ds = ag+ ) a .3 + B .0
1 n 0 mi“m mi~m
2v j2uw(i=1}/N m="1
where
N
ayp; = =-- [ sin 2mim/N - sin 2m(i-1)m/N ]
2mm ’
and N
Bpi = —~= [ cos 2n(i-1)m/N - cos 2mim/N ]
2mm ’

For example, if N=8, the following values of a and B are

obtained:

i Q14 anj azj ayg 53 T 73 agj

0.900 0.637 0.300 0.000 -0.180 =-0.212 -0.129 0.000

[—

2 0.373 -0.637 -0.725 0.000 0.435 0.212 =0.053 0.000
3 -0.373 =-0.637 0.725 0.000 -0.435 0.212 0.053 0.000
4 -0.900 0.637 =-0.300 0.000 0.180 =-0.212 0.129 0.000
5 =0.900 0.637 -0.300 0.000 0.180 =-0.212 0.129 0.000
6 -0.373 -0.637 0.725 0.000 -0.435 0.212 0.053 0.000
1 0.373 -0.637 =-0.725 0.000 0.435 0.212 -0.053 0.000

8 0.900 0.637 0.300 0.000 -0.180 -0.212 -0.129 0.000
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1 0.373  0.637 0.725 0.637 0.435 0.212 0.053 0.000
2 0.900 0.637 =-0.300 -0.637 =-0.180 0.212 0.129 0.000
3 0.900 -0.637 =-0.300 0.637 -0.180 =-0.212 0.129 0.000
b 0.373 -0.637 0.725 =0.637 0.435 -0.212 0.053 0.000
5 =0.373 0.637 -0.725 0.637 -0.435 0.212 =-0.053 0.000
6 =-0.900 0.637 0.300 =0.637 0.180 0.212 -0.129 0.000
7 -0.900 -0.637 0.300 0.637 0.180 =-0.212 -0.129 0.000

8 -0.373 -0.637 -0.725 =-0.637 =-0.435 =-0.212 =-0.053 0.000

Note that certain modes (m=8) are completely undetectable with
such an arrangement of 8 coils, and other modes (m=4) are
measurable only if they have a certain symmetry (odd for m=4).
Finally, note that modes above m=4 give signals identical to the
low order modes by the process of aliasing. For example, m=5

aliases with m=3, m=6 aliases with m=2, and m=7 aliases with m=1.

With 8 signals, one should be able to determine 8 Fourier
coefficients. From the considerations above, the 8 1lowest
independent coefficients are agj through a3 and B1i through Bui'
The problem then is to invert the matrix of coefficients to

derive the Fourier coefficients as follows:

The problem can Dbe solved straightforwardly using a modified

Gauss-Jordan elimination method with the result:

i a'nj B'11 o'y B'p  a'p B'3;  a'yy By



1 0.125 0.098 0.237 0.196 0.196 0.294 0.122 0.196
2 0.125 0.237 0.098 0.196 =-0.196 -0.122 -0.294 -0.196
3 0.125 0.237 -0.098 -0.196 -0.196 -0.122 0.294 0.196
4 0.125 0.098 -0.237 -0.196 0.196 0.294 -0.122 -0.196
5 0.125 -0.098 -0.237 0.196 0.196 -0.294 -0.122 0.196
6 0.125 -0.237 -0.098 0.196 -0.196 0.122 0.294 -0.196
7 0.125 =0.237 0.098 -0.196 -0.196 0.122 -0.294 0.196

8 0.125 -0.098 0.237 -0.196 0.196 -0.294 0.122 -0.196

Note that the analysis here is a generalization of the usual
Fourier technique. It is easy to show that in the limit of large

N, a

mi = COS 2mim/N and Bmi = sin 2mmi/N. Also, for 1large N,

a'mi = 2ami/N and B'mi = Zsmi/N except that U.'Oi = OLOi/N.

The amplitude and phase of the various modes are given by

- 2 211/2
ey = Lag™ + b7

and
o = tan—T(bm/am)

In terms of Cn and ¢m’ the normal field at the gap can be written

as
o0
By = cg * 21cm cos(mé - ¢)
m=

The error in the wall current density at the gap is given by
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where r is defined such that 27r is equal to the 1length of the
gap. Alternately, the error in the wall current density can be
estimated directly from the difference between the signals in

adjacent coils, AS, from

NAS
AJ = = =-m--

Znuor
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II. Example 1: Tokapole II Poloidal Gap

The above 1ideas have been applied to a measurement of the
field errors at the poloidal gap on Tokapole II in the absence of
plasma. A set of 8 coils was distributed around the gap as
described above. The machine was pulsed at a peak hoop current
of 500 kA with a 40:1 turns ratio on the poloidal iron core. The
core was biased to reduce the magnetizing current to a negligible
(<10kA) value. The measurements were taken 0.5 ms after the
field was pulsed at which time the poloidal gap voltage was 80 Vf
The signals from the coils were not integrated and had
approximately the same waveform as the poloidal gap voltage, at
least at the times of interest. The coils were numbered
sequentially from i=1 at the outer wall top to i=8 at the outer

wall bottom and all oriented in the same sense. The data are as

follows:

i Si

1 =40 mv
2 +50 mV
3 +170 mV
y =170 mV
5 +170 mV
6 =290 mV

7 =160 mV
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These measurements imply the following mode spectrum:

m Cn o
0 0.563 180
1 1.672 103
2 0.422 54
3 2.100 -96
4 1.568 90 (assumed)

x 1073 degrees

The amplitudes of the modes are normalized to the total poloidal

flux in the machine.

With this normalization, the mode amplitudes must De
multiplied by a factor of NL/uow = 300 to get the actual value of
Bn/Bt’ where L is the inductance of the machine (0.220 pH) and w
is the width of the gap (4.78 mm at t=0). Thus the largest mode
(m=3) corresponds to about a 60% field error at the radial
location of the sense coils. The high order modes fall off

rapidly with distance beyond the sense coils, however.

The existence of an m=0 mode implies that there is a net
radial flux into the poloidal gap. This flux must return to the
machine through the toroidal gap and perhaps through some of the
larger portholes. Indeed, a gradient of toroidal gap voltage was
measured around the toroidal gap of just the right magnitude to

account Ffor the radial flux entering the poloidal gap (to within
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the experimental error of ~5%). The field entering the toroidal
gap 1is observed to enter over the entire toroidal circumference
of the gap with the largest flux entering at about + 90° from the
poloidal gap. The flux is not symmetrical on the two sides of
the poloidal gap, implying a small mutual inductance between the
poloidal and toroidal field circuits in vacuum as has been
previously observed. Eliminating this coupling between the
poloidal and toroidal field circuits is a necessary, but not
sufficient, condition for eliminating the m=0 error. The
magnitude of the m=0 error is expected to be influenced by the
impedance of the toroidal field circuit which was disconnected
for these experiments. A measurement of the toroidal gap voltage
on either side of the poloidal gap when the poloidal field only
is fired provides a sensitive measure of the m=0 component of the
poloidal gap error. In the presence of toroidal field and
plasma, such a measurement could still be made using a
differential amplifier to eliminate the axially symmetric
component of the toroidal gap voltage. It is an interesting
exercise in topology to show that a coil designed to measure the
m=0 component of the poloidal gap error is identical to one

designed to measure the n=0 component of the toroidal gap error.

The source of the m=0 error can be easily seen. Imagine an
extreme <case 1in which only the top and bottom legs of the core
are excited. To supply the required image currents in the inner
and outer walls, current most flow around the corners of the

vacuum vessel. This is no problem except at the wupper outer
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corner where the toroidal gap prevents the required current from
flowing. Thus all the current for the outer wall must come from
the windings on the bottom 1leg of the core. This leaves the
upper leg to supply both the 1lid and inner wall currents. There
is thus a net poloidal current in one direction on one side of
the poloidal gap and a corresponding reverse current on the
opposite side, producing the m=0 error. The m=0 error should be
automatically eliminated when the higher m errors are trimmed to

zero, and, indeed, this is observed to be the case.

Note also that a coupling between the poloidal and toroidal
gaps can exist even when the m=0 mode 1is zero. Having no m=0
simply means that there is no net flux leaving the poloidal gap
and entering the toroidal gap. There could still be flux 1lines
entering the poloidal gap and leaving the toroidal gap, or vice
versa, So long as there is an equal number of 1lines doing the
opposite somewhere along the poloidal gap. In practice, however,
it 1is observed that when the m=0 mode is reduced to a low value,
there is very little flux entering or leaving anywhere around the
toroidal gap. Conversely, when there 1is an m=0 component
present, the flux tends to have the same sign at all toroidal
azimuths around the toroidal gap, although the magnitude may

vary.

The m=1 mode is within about 13 degrees of vertical implying
that the machine is reasonably up/down symmetric. The sense of

the radial field is such as to suggest that some ampere-turns
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should be moved from the inside to the outside of the torus.
However, the experiment should be repeated with plasma .current

present.

The m=2 mode would be expected to peak at 90 degrees if the
primary turns were improperly distributed among the four legs of
the core. There is clearly a contribution to the m=2 mode from
some other source. By running the machine with only two opposite
legs of the core driven, a large m=2 mode with amplitude ~1072
and within about 5 degrees of 90 degrees was observed. The
magnitude and sign of the m=2 error suggests that the top and
bottom 1legs of the core have about one too many turns and the
inner and outer legs have about one too few. Indeed, an error of
this magnitude was built into the machine (see PLP T7U4) in order
to permit the legs of the core to be connected in parallel for a
40:1 turns ratio. This error could be corrected by placing a
small inductor in series with the top and bottom windings on the

core.

The large m=3 mode was unexpected. It is about 180 degrees
out of phase with the m=1 component. A number of explanations
are possible. The same in/out nonsymmetric error that produces
the m=1 can also produce an m=3 component because of its
nonsinusoidal nature. The toroidal curvature also produces an
m=3 component as does the asymmetric hoop positioning and the
asymmetric toroidal gap. Finally, note that the m=3 component is

strongly affected by aliasing with the m=5 component. The m=3
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error may be reduced by the same steps that reduce the m=1 error,
but the extent to which they null under the same conditions
remains to be seen.

The m=4 mode is present as would be expected from the fact
that the vessel has four-fold symmetry. The error is such as to
require a reduction in current in the inner bridges as expected
since the inner hoops were moved farther from the wall than the

original design case.

To get a better idea of the error in current placement, the
quantity AJ is plotted versus poloidal angle, measured counter-
clockwise from the outer wall midplane. Figure 1 shows the
result using the Fourier series and using a direct subtraction of
the raw signals from adjacent coils. Note that the Fourier
series method, though it gives a smoother curve, introduces
additional peaks in AJ that are not evidenced in the raw data.
The result is to suggest that current should be removed from the

inner bridges and added to the inner wall midplane.

An attempt was made to reduce the errors by moving the upper
and lower primary windings toward the outside, raising the outer
primary slightly, and adding a small inductor (about 6 pH) in
series with the top and bottom legs of the core. With a hoop
current of 300 kA and a poloidal gap voltage of 38 volts at 0.5
ms, the unintegrated signals from the coils at 0.5 ms without

plasma were reduced to the following:



m E theta

0 . 05625 180

1 . 167174 10z.888

2 . 0421514 54.46233

3 . 2100686 -96.42302

4 . 1568 90
percent degrees
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Figure 1. Poloidal gap current error for Tokapole II before correction (t
0, no plasma).
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i Si

1 +5 mV
2 =34 mv
3 +13 mV
y -52 mV
5 +46 mv
6 -8 mV
7 +33 mV
8 -4 mv

As shown in figure 2, the maximum error was reduced about a
factor of 2.5. The m=U4 error is the dominant one, indicating an
excess of current in all bridges and a deficiency in the midplane
and midecylinder. The m=0 mode was virtually eliminated, and the

m=1, 2 and 3 were reduced by a factor of 3-4.

The relative error has a slight time dependence. After 5
ms, the maximum error has increased slightly, as shown in figure
3, but the general shape and mode composition are the same. A
curious feature of the time dependence after the corrections were
made is that the integrated signals in coils 2, 4, 5 and 7 follow
the waveform of the poloidal field, but the signals in coils 1,
3, 6 and 8 are quite different in shape and on the average
smaller by a factor of about 5. These measurements were all
taken without plasma. With plasma, the results are qualitatively

similar since the plasma current is only about 11% of the hoop
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0 6.578948E-04 O

1 5.108413E-02 -84.73289
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percent degrees
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Figure 2. Poloidal gap current error for Tokapole II after correction (t =

0, no plasma).
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0 7.291667E-03 O
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Figure 3. Poloidal gap current error for Tokapole II after correction (t = 5
ms, no plasma).
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III. Example 2: Poloidal Divertor RFP Poloidal Gap

The same procedure as above was applied to a measurement of
the field errors at the poloidal gap on the poloidal divertor RFP
in the absence of plasma. A set of 8 coils was distributed
around the gap as described above. The machine was pulsed at a
peak hoop current of 250 kA with an 8:1 turns ratio on the
poloidal iron core (four winding bundles in parallel). The
magnetizing current was negligible. The measurements were taken
1.0 ms after the field was pulsed at which time the poloidal gap
voltage was 110 V. The signals from the coils were not
integrated and had approximately the same waveform as the
poloidal gap voltage, at least at the times of interest. The
coils were numbered sequentially from i=1 at the outer wall top
to i=8 at the outer wall bottom and all oriented in the same

sense. The data are as follows:

i Si

1 +125 mV
2 +400 mv
3 -290 mV
4 +650 mV
5 -700 mV
6 +200 mV
7 -500 mV

8 -130 mV
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These measurements imply the following mode spectrum:

m ey o

0 0.278 180

1 2.315 88

2 0.579 65

3 3.836 89

4 4,428 -90 (assumed)
x 1073 degrees

The amplitudes of the modes are normalized to the total poloidal

flux in the machine.

With this normalization, the mode amplitudes must be
multiplied by a factor of NL/qu = 2770 to get the actual value
of B,/By, where L is the inductance of the machine (1.83 pyH) and
Ww is the width of the gap (4.20 mm at t=0). Thus the largest
mode (m=4) corresponds to about a 1200% field error at the radial
location of the sense coils. The high order modes fall off

rapidly with distance beyond the sense coils, however.

The relative errors 1in the RFP are typically 2-3 times
larger than the corresponding errors in Tokapole 1II, especially
for the m=4 mode which is large because the turns on the legs of
the core are clumped more than desired near the midplane and

mideylinder rather than in the bridges.
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As for the Tokapole, AJ is plotted versus poloidal angle in
figure 4. The result indicates the predominance of the m=3 mode
but out of phase with the Tokapole case. The implication is that
current should be removed from the inner wall midplane and added
to the inner bridges. This was done shortly before the machine
was decommissioned, and although the error was reduced, the

plasma performance was not improved.

The time dependence of the above errors was calculated by
Beckstead, and his results are included as figure 5 for the case
with no plasma. The mode amplitudes and phases are relatively
constant, at least for the first five milliseconds of the pulse,
except that the m=2 mode grows slightly. The variation near t=0
is a result of the division of two small numbers since both
the error field and the poloidal field start at zero at t=0. The
growth of the m=2 mode could be corrected by varying the relative
inductance and resistance of the various winding bundles on
different 1legs of the iron core. Some attempts at this were
made. More detailed time-dependent measurements of the gap
errors in the presence of toroidal field and plasma were made in
the last week of operation of the machine by Beckstead, Sarff,

Almagri and Assadi, and will be reported elsewhere.
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Figure 4. Poloidal gap current error for Poloidal Divertor RFP before
correction (t = 0, no plasma).
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IV. Effect of Gap Errors on the Flux Plot

A field error at any gap in a conductor bounding an
axisymmetric magnetic field in a toroid in general destroys the
axisymmetry. The result may be a bump in the magnetic flux
surfaces, islands in the flux topology, or a region of stochastic
wandering of the field lines between two well defined surfaces.
If the error is characterized by particular poloidal and toroidal
mode numbers, m and n, respectively, islands will form in the
vicinity of the surface q = m/n where q is the safety factor,
equal to Btr/BpR for a large aspect ratio (R/r), circular system.
In general, an error is characterized by a broad spectrum of m
and n values, causing islands throughout the flux plot with
widths proportional to the square root of the amplitude of the

component of the error with which they are resonant:

Bp ndq/dr
The overlapping of these islands when the error is large causes
the stochastic wandering of the field lines that is considered to

be especially detrimental to plasma confinement.

The normal magnetic field entering or leaving a gap gives
rise to an error field throughout the device. The easiest way to
model this field is to line the gap with a row of magnetic
monopoles, positive where flux enters the gap and negative where
it leaves. The monopole strength is precisely what 1is measured

by the sense coils at the gap. The magnetic field can be
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calculated from the array of monopoles by superposition in the
same way that Coulomb's law is used to calculate the electric
field produced by an array of charges, namely
S 3
B =iE1Si£i/Nnr
Actually, this procedure is not quite accurate since the field
near the gap is unidirectional, whereas the field very near a
monopole or point charge 1is 1isotropic. This difference is
important only near the gap and is not thought to greatly affect
the flux plot calculation except perhaps very near the wall. The
effect of making this assumption should be to narrow the n-

spectrum and to broaden the m-spectrum somewhat.

Using this procedure, eight monopoles were assumed to be
located around the rim of the Tokapole poloidal gap, each at the
center of one of the sense coils, and with a magnitude
proportional to the strength of the flux entering the gap through
that coil. Actually, the m=0 component was first subtracted out,
although it could also have been included by distributing
additional monopoles appropriately along the toroidal gap.
Figure 6 shows the resulting magnetomotive force (mmf) surfaces
(magnetic scalar potential) in the plane of the gap that results
from this approximation. The error field 1is perpendicular to
these surfaces with a magnitude proportional to their density.
Near the center of the machine, the predominance of the m=1
(vertical) field is apparent. On the axis of the machine, the

error field is calculated to have a value of 5.2 gauss when the



Figure 6. Magnetic scalar potential of error field in the plane of the
poloidal gap of Tokapole II before correction (t = 0, no plasma).
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total poloidal flux in the machine is 0.066 webers (corresponding

to a hoop current of 300 kA).

To estimate the effect of the gap error on the flux plot of
Tokapole II, the field error as calculated above was superimposed
on the equilibrium field of the hoops as represented by four,
straight, current filaments. The filaments were placed at x =
+0.145 m and y = +0.145 m, each carrying a current Ih/u.
Actually, the electrical centers of the hoops were displaced from
their geometric centers along a diagonal by an amount § = rh(v-
1)/2(v+?), where ry is the hoop minor radius (0.025 m) and v is
the maximum variation of the poloidal field over the surface of
the hoop (see PLP 977). Since v depends on the plasma current, §

(in meters) was approximated by

§ = 0.00H2(1+51p/Ih)

The poloidal gap was taken as a square at x = #a and y = #a,
where a = 0.22 m. The plasma was represented as a toroidal
current density distribution proportional to 1/r (giving a
spatially constant poloidal field strength contribution from the
plasma) with a magnitude adjusted to give the desired total
plasma current. The toroidal field Bt was taken as constant over
the x-y plane. Periodic boundary conditions were applied in the
z-direction with a period of L = 2“Ro = 3.14 m. The poloidal gap
was assumed to be at z = L/2, and the position of the field line

was plotted every time it punctures the x-y plane at z=0.
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Even wusing the simplistic representation of the Tokapole
with the gap errors as described above, following several field
lines for hundreds of toroidal transits with sufficient accuracy
requires large amounts of computer time. The algorithm used was
a fourth order Runge-Kutta with a fixed step size of 5 mm. The
code solves simultaneously the three equations dx/df% = Bx/B,
dy/df = By/B and dz/d{ = BZ/B where d¢ is an increment of length
in the local direction of B and B = [sz + BY2 + Bzg]ifz.
Initial conditions were taken as y=z=0, and x in ten equal
increments between 0 and a. The program as listed in Appendix A
was written in Turbo BASIC and run on an IBM PC-XT compatible
with an 8087 math coprocessor. Each transit required several

minutes of computation, and a whole flux plot required about a

day.

First, the code was run in the absence of field errors to
ensure that the numerical accuracy was adequate and to produce an
equilibrium flux plot. The result as shown in figure 7 for Ih =
300 KA, Ip = 30 kA and Bt = 075 tesla, strongly resembles the
numerically calculated flux plot for the actual Tokapole. The

corresponding q-profile as a function of r/a measured across the

midplane is shown in figure 8.

Next, the gap field errors were added with a magnitude
corresponding to their value before any improvements were made.

The result in figure 9 shows considerable stochasticity outside






1

1N
"
7
1 &
ey
o o
fasé
4

o

nSa

Figure 8. Radial q-profile in the midplane of the flux plot used to model
Tokapole II (no errors, with plasma).
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the separatrix. Of course, the q-profile is more strongly
sheared than in the real case because of the representation of
the plasma such that q goes from O to « between the axis and the
separatrix. Figure 10 shows the same case, but in the x-z plane
for y=0. The stochasticity near the walls is equally evident

here.

Figure 11 shows the mmf surfaces in the plane of the gap
after the corrections were made. This is the 0.5 ms case without
plasma. Applying these errors to an equilibrium Tokapole field

with Ih = 300 KA and I = 30 kA gives the puncture plots in

p
figures 12 and 13. Some islands and stochasticity are evident
but much reduced from the case before the errors were corrected.
The design case of Ih = 500 kA, Ip = 100 kKA and Bt = 0.5 tesla
was also examined with the result as shown in figures 14 and 15.

The flux surfaces are not quite as well defined as for the lower-

current case.

An attempt was also made to ascertain the quality of the
flux surfaces for the poloidal divertor RFP in the presence of
the measured gap errors. As with the Tokapole, the device was
represented as a cylinder of square cross section with
filamentary currents near the corners to represent the hoops.
The dimensions chosen were a = 0.5 m and L = 2mR, = 8.73 m. The
hoops were placed at x = +0.32 m and y = #0.32 m with ry = 0.021
m, each carrying current Ih/u. The fourth order Runge-Kutta

scheme used a step size of 1 em. The equilibrium flux plot (no



Figure 11. Magnetic scalar potential of error field in the plane of the
poloidal gap of Tokapole II after correction (t = 0, no plasma).
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field errors) for Ih/Ip = 310 KA / 170 kA is shown in figure 16.
Except for the absence of noses and gussets, the flux plot

resembles the experimental one.

First, a tokamak case was examined. A typical case is shot
350 from 14-May-1987. Data were taken at 3 ms, near the time of
peak plasma current. Using the measured poloidal gap errors in
the presence of plasma and the measured hoop current (310 KA),
plasma current (170 kA, current density proportional to 1/r) and
toroidal field (700 G, constant in space), the puncture plot of
figure 17 was generated. Some good flux surfaces are evident

near the axis, but otherwise the flux plot is quite stochastic.

In order to model an RFP case, some prescription for the
spatial variation of the toroidal magnetic field is required. In
a cylinder, we require dBt/dr = 0 at r=0 and r=a, and Bt(a) =
F<Bt>, where F 1is the field reversal parameter and <Bt> is the
value of Bt averaged over the circular cross section out to a
radius r=a. If we further require that Bt be independent of r
for F=1 (tokamak limit), the simplest polynomial expansion of

Bt(r) that satisfies all the requirements is
By(r) = [3 = 2F = 6(1-F)(r/a)? + 301-F)(r/a)"1<By>
Figure 18 shows a plot of Bt(r) for a typical RFP case with <B.>

= 300 G and By = =100 G (F = -1/3). This is a reasonable

representation of the toroidal field in an RFP and gives a



Ih = 30 W
[p = 170 ki

I

Figure 16. Equilibrium field flux plot used to model Poloidal Divertor RFP
with J proportional to 1/r (no errors, with plasma).
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reversal surface at
rp = {1 - [F/3(F-1)117231/24
or about rp/a = 0.84 for F = -1/3.

In order to represent the toroidal field in the noncircular
RFP with internal rings, the above Bt profile was used in the
midplane, and it was assumed that Bt is otherwise constant on a
flux surface. In general this results in a reversal surface
between the separatrix and the wall. In the presence of a field
error, the field line wanders off the unperturbed flux surface,
and thus the unperturbed toroidal field 1is not quite constant
along the trajectory of the field line. This effect was ignored,
but the variation of Bt along the trajectory of the field line as
a result of the toroidal field of the error itself is included.
The plasma current is assumed toroidal with a current density
proportional to 1/r as with the tokamak case. Thus A = J/B is
not particularly constant, but for the present purpose it 1is
probably reasonably representative of the experimental

situation.

The case calculated was shot U428 from 15-May-1987. Data
were taken at 2 ms, near the time of maximum field reversal.
Using the measured poloidal gap errors in the presence of'plasma
and the measured hoop current (240 kA), plasma current (135 kA),

average toroidal field (300 G), and field at the wall (-100 G),
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the puncture plot of figure 19 was generated. As for the tokamak
case, the flux surfaces are good near the axis but completely
stochastic near the edge. The good behavior near the axis is a
result of the strongly peaked current density that gives a low ¢
and high shear. The field errors for this case are sufficiently
large that essentially all the field lines outside the separatrix

exit through the poloidal gap within a few toroidal transits.

An alternate current profile is one for which A = J/B is
constant. From V x B = Uod in the cylindrical approximation, the
contribution to the poloidal field produced by the plasma
corresponding to the previously described toroidal field profile
is

By = woIpr(3 - 2F - 3(1-F)(r/a)2 + (1+F)(r/a)"1/2na

In order to apply this result to the noncircular case with
internal rings, the poloidal field is calculated in the midplane
and assumed constant in magnitude along the trajectory of a field
line. The equilibrium flux plot corresponding to this case is
shown in figure 20 and is practically indistinguishable from the

case with J proportional to 1/r.

Applying the experimentally measured poloidal gap errors to
this relatively weakly sheared equilibrium (g=0.2 on axis)
results in a puncture plot with virtually no closed flux surfaces
and field 1lines that 1leave the poloidal gap in only a few

toroidal transits. It is hardly surprising that sustained RFP
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discharges could not be obtained under these conditions. The
machine was decommissioned before a serious attempt could be made
to reduce the errors. Further experimental studies of the effect

of gap errors on RFP plasmas must await the delivery and

installation of MST.
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V. Gap Error Correction Schemes

The most obvious way to avoid a gap error is to arrange for
the windings that drive the gap to cross the gap with the proper
distribution to match the current density in the wall far from
the gap. Good practice dictates that this be done as accurately
as possible, but it can never be perfect. Even if one could
calculate the desired distribution with absolute accuracy,
changing plasma conditions and other time-dependent effects such

as soak-in would generate errors.

One possibility that offers some advantage is to connect
some of the windings in parallel rather than 1in series. Then
when more current is demanded from one portion of the gap, the
winding current automatically readjusts in a way that 1is not
possible when the windings are in series. If the machine has an
inherent symmetry (such as up/down) and an inherent asymmetry
(such as in/out), it is best to parallel turns on the asymmetric
sides rather than the symmetric sides. Thus if the poloidal
field windings are split into two parallel bundles, the split

should be at the midcylinder rather than at the midplane.

Parallel windings also allow easy trimming by adding a small
series impedance in one or more of the bundles of turns. Varying
the resistance and reactance of this impedance provides some
control of the time-dependence of the error. Windings in series

can also be trimmed with a shunt element, but it must have a high
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impedance, and thus is inherently difficult using inductors. One
could use a series RC in parallel with a series winding bundle,
but the possibility of resonances makes the time-dependence

somewhat more complex.

Another cure is the use of a long flange connected to the
gap (see PLP 965). The flange has the effect of placing the
windings far from the region where a field error would cause
harm. The flange allows the current streamlines to gradually
readjust along its length. However, the current density in the
flange is determined at early times by its inductance (primarily
the gap spacing) and at late times by its resistance (thickness).
Thus a poorly designed flange may do more harm than good.
Usually space limitations restrict the length of the flange. The
flange may be folded, however. The current distribution in the
flange can be adjusted by varying the gap spacing and/or the
resistivity by, for example, drilling in the flange holes that
can be selectively filled with conducting plugs. In practice,
such holes are capable of correcting only relatively minor

errors.

Just as the radial flux emerging from the gap provides a
measure of the field error, any scheme that reduces the radial
flux also reduces the error. Thus a conducting plate placed over
the gap eliminates the error, at least on the time scale of the
field soaking into the plate. Such a shield is topologically

similar to a folded flange except that it need not be connected
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to the wall of the machine. Its purpose 1is to generate eddy
currents which produce a radial flux that cancels the radial flux
of the error. The eddy currents can also be viewed as
transposing the driving currents from where they are to where

they should be.

If it 1is 1inconvenient to shield the gap with a continuous
plate, discrete current 1loops can be used instead. The
numerology for correcting errors with such loops is the same as
for measuring errors. For example, eight loops can eliminate m=0
through m=3 and one phase of m=4, subject to considerations of
aliasing with higher harmonics as described earlier. In the case
of discrete loops, it is difficult to make them passive because
their L/R time is typically small compared to the duration of the
pulse that they are designed to correct. Perhaps soon new high-
temperature superconductors appropriate for the task will be
available. Meanwhile, one must typically drive them with some
external current. To the extent that the field error has the
same time-dependence as the field produced by the gap voltage,
the correction coils can be connected in series with the main
windings, perhaps with some kind of current transformer to
provide the correct magnitude of current. One could also drive
them in parallel with the main windings if care 1is taken to
adjust their inductance and resistance appropriately to get a
reasonably correct time-dependence, but this is difficult because
the inductance and resistance of the plasma are typically

complicated functions of time and experimental conditions.
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Correction coils driven either in series of parallel with the
main windings are capable of correcting only a particular plasma
current profile and cannot in general accomodate to changing

plasma conditions.

A possible solution is to sense the radial error field and
then to apply feedback through high-gain amplifiers to coils
whose purpose 1is to drive the error field to zero (see the DOE
proposal for Reversed Field Pinch Studies, February, 1984). 1In
this way, the effective L/R time of each coil is multiplied by
the gain of its amplifier. Practical applications of this idea
are limited by the availability of amplifier components with
sufficient power and speed and by the wusual problems of
linearity, efficiency, phase shifts, stability, etc. Such a
solution would be very eligent, however, since it can compensate

for all time-dependent effects and changing plasma conditions.

If the error field 1is spatially Fourier transformed as
described in the previous sections, it is likely that the largest
errors have low mode numbers (m = 0,1,2,etc.). Furthermore, the
low mode errors are typically most detrimental Dbecause they
penetrate more deeply into the region containing the plasma and
often more easily resonate with helical field 1lines inside the
plasma. Thus the method of attacking field errors is normally to
work first on the 1lowest mode and to worry about higher mode

numbers only after the lower ones have been eliminated.
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In this connection, it is useful to note that each mode,
with the exception of m=0, requires two independent adjustments
to eliminate. These can be thought of as amplitude and phase,
sine and cosine, horizontal and vertical or some combination. To
eliminate m=0 through m=4 thus requires a total of nine
independent adjustments and even then one can be assured that the
correction is perfect only at one particular time during the
pulse. Ideally the adjustments should each encompass a separate
adjustment for the resistive and reactive components so that one
can eliminate the error at two times, typically very early in the
pulse and very 1late. The hope then would be that the error is
acceptably small at intermediate times. Alternately one can pick
a time in the middle of the pulse at which the field error is
made zero and then use the other adjustment to minimize the rate

of change of field error near the time of interest.

Actually, the situation is not quite as complicated as
described above since the m=0 error 1is often generated as a
consequence of the higher errors and disappears automatically
when the others are eliminated. Furthermore, there are often
inherent symmetries in the machine (up/down) that dictate the
phase of the higher modes. Finally, for many cases, the time-
dependence is relatively weak. Thus in practice four independent
adjustments usually suffice to reduce the modes through m=4 to an

acceptably low value.
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Appendix A

'Program PUNCTURE.BAS

'This Turbo BASIC program follows a field line in a

'large aspect ratio representation of Tokapole II,

'and plots on the screen the poloidal location of

'the field line every time it punctures a particular

'toroidal azimuth or the radial location everytime it

'punctures the midplane.

cls

screen 2

dim x(8),y(8),z2(8),5(8)

R=.5 'major radius of machine in m

a=.22 'half height of machine in m

h=.145 'hoop distance from midplane in m

rh=.025 'hoop minor radius in m

Ih=300000 'hoop current in amps

Ip=30000 'plasma current in amps

Bt=.5 'average toroidal field in tesla

F=1 'field reversal parameter (1 for tokamak)

Lo=2.2e-7 'machine inductance in Henrys

Ne=10 'number of contour lines

Nt=50 'number of toroidal transits

dl=.005 'step size inm

p%=0 '0 for x-y plot, 1 for x-z plot

pi=3.1415926536 :

mu=4*¥pi*1, 0e-T7

Kh=mu¥*Ih/8/pi

kp=mu¥*Ip/a/pi

L=2%pi¥*R

for k=1 to 8 'monopoles represent gap error
read x(k),y(k),z(k),S(k)
z(k)=z(k)*L
S(k)=S(k)*Lo*Ih/U4/pi/38000

next k

data .22, .11, .5, 5

data .11, .22, .5,-34

data -.11, .22, .5, 13

data -.22, .11, .5,-52

data -.22,-.11, .5, 46

data -.11,-.22, .5, -8

data .11,-.22, .5, 33

data .22,-.11, .5, -4

print"Ih =";Ih/1000;"KA"

print"Ip =";Ip/1000;"kA"

print"Bt =";int(1el*Bt+.5);"G"

print"F =";int(1000%¥F+.5)/1000

circle(240%n/a+320,100-<100*¥nh/a),240%rh/a

circle(240*n/a+320,100+100%n/a),240%rh/a

circle(-240*n/a+320;,100=100%n/a),240%rh/a

circle(-240*n/a+320,100+100%n/a) ,240%rh/a

h=h+0.12¥rh* (1+5*%Ip/Ih)

if p%=1 then ¢ls: line(20,10)-(620,190),1,B

for i=1 to Nec-1 ) ) )
x=—-a¥i/Nc: dx=0
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y=0: dy=0
z=L: dz=0
Btr=Bt*(3-2*¥F-6*(1-F)*(x/a)"2+3* (1-F)*(x/a)"4)
gosub 10 i .
def seg = &HB80O
bsave"puncture.dat",0,&H4000
next i
while inkey$<>chr$(27): wend
cls
end
10 'follow field lines
for j=1 to Nt¥i
locate 25,1
print i;"/m";j-=1;"/";Ne¥i;" ",
while z<L :
X0=X: yo=Yy: z0=2z: gosub 20
dx1=d1¥*¥Bx/B: dy1=dl1¥By/B: dzl1=d1*Bz/B
x=x0+dx1/2: y=yo+dy1/2: z=z0+dz1/2: gosub 20
dx2=d1*Bx/B: dy2=d1¥*By/B: dz2=d1*Bz/B
x=x0+dx2/2: y=yo+dy2/2: z=z0+dz2/2: gosub 20
dx3=d1¥Bx/B: dy3=dl1¥By/B: dz3=dl1¥Bz/B
X=x0+dx3: y=yo+dy3: z=zo+dz3: gosub 20
dxU=d1*¥Bx/B: dyli=d1¥By/B: dzlU=dl1*¥Bz/B
x=x0+ (dx1+2*¥dx2+2*¥dx3+dxl)/6
y=yo+(dyl1+2¥dy2+2*¥dy3+dyh4)/6
z=z0+ (dz1+2%¥dz2+2%¥dz3+dzl4)/6
if p%=1 then if y¥yo<=0 then gosub 40
if inkey$=chr$(27) then cls: end

wend
if p%=0 then gosub 50
z=z-L

next j

locate 25,1

print string$(14,32);

- return

20 'calculate fields
r=sqr (x¥x+y¥*y)
x1l=x-h: xg=x+h:yl=y-h: yg=y+h
x12=x1%x1: xg2=xg¥xg: yl2=yl¥*yl: yg2=yg*ysg
Bx=yl/(x12+yl2)+yl/(xg2+yl2)+yg/(x12+yg2)+yg/(xg2+yg2)
Bx=Kkh*Bx+kp¥*y/r
By=x1/(x12+yl12)+x1/(x12+yg2)+xg/(xg2+yl2)+xg/(xg2+yg2)
By=-kh*By-kp¥*x/r
Bz=Btr: gosub 30
B=sqr (Bx¥Bx+By*By+Bz¥*Bz)

return

30 'add field error

for k=1 to 8

© xk=x-x(K): yk=y-y(k): zk=z-z(K)

r3=xk*xk+yk*¥yk+zk¥zk: r3=S(k)/sqr(r3*r3¥*r3)
Bx=Bx-xk¥*r3
By=By-yk¥*r3
Bz=Bz-zk¥*r3

next k

return



_33_

40 'plot x-z contour
xp=xo0-yo¥* (x-x0)/ (y-yo)
zp=zo-yo*(z-zo0)/(y=-yo)
pset(300%xp/a+320,190-180%zp/L)

return ; .

50 'plot x-y contour
xp=x0-(zo-L)*(x-x0)/(z-20)
yp=yo-(zo-L)*(y-yo)/(z-z0)
pset (240%x/a+320,100-100%y/a)

return ;



