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RFP Profile Representations 

J. C. Sprott 

I. Introduction 

For many purposes, it is desirable to have simple analytic 

expressions for the magnetic field and current profiles in a 

reversed field pinch ( RFP ) . For example, numerical codes that 

follow field lines or particle orbits over great distances are 

much more efficient if the field at a given location can be 

calculated quickly. Also, real-time determination of 

experimental quantities such as plasma resistivity and inductance 

is facilitated by the use of such expressions. The goal of this 

paper is to derive physically realistic profiles that are 

algebraically 

purposes. 

simple, yet sufficiently accurate for such 

The input parameters to the calculation are the three 

quantities routinely and straightforwardly measured in an RFP: 

total plasma current Ip, average toroidal field <Bt> and toroidal 

field at the wall Btw' We consider only the cylindrical (large 

aspect ratio ) approximation in which the toroidal field is the 

same e verywhere on the (circular ) wall at radius a. From the 

measured quantities, one can define the dimensionless parameters: 
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II. Bessel Function Model 

The classic model of the RFP begins with Ampere's law, 

v x B = �o� 

Force balance requires 

J x B = Vp 

where p is the plasma pressure. For a low-beta plasma, where 

( the pressure vanishes, and J x B o leads to the condition 

J = AB / �o 

where A is a scalar function of position. J. B. Taylor showed � 
that helicity conservation leads to a minimum energy state of 

v x B = AB 

in which A is a scalar constant, independent of position. In a 

circular cylinder, this equation has the solutions: 
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where Jo and J1 are Bessel functions of zero and first order, 

respectively, and Bto is the toroidal field on axis (r�O) . In 

terms of A, 6 is given by 

6 � Aa I 2 

and F is related to 6 through 

Field reversal occurs when Jo(Aa) ; 0 or 6 � 1. 20241. Above this 

value of 6, the field reversal surface is at a radius of rR 

1. 20241a/6. 

In the usual RF P state, 6 is less than the value of 1. 91586 

at which the first zero of J1 (Aa) occurs. Since Ar < Aa ; 26, it 

is possible to expand the Bessel functions in power series that 

converge reasonably rapidly for the range of interest. Such an 

expansion for Jo(26) is given by 

the first six terms of which are 
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yielding an accuracy of better than 1% up to 6=1. 9. From Jo' the 

first order Bessel function can be generated from 

J 1 (x) 

which in terms of the power series above is 

From these expressions, one can write the fields: 

- <6r/a)2 + C6r/a) 4/4 - <6r/a) 6/36 + <6r/a) 8/576 

- (6r/a) 10/14400 + • • • 

6r/a - (6r/a) 3/2 + <6r/a) 5/12 - <6r/a)7/144 

+ <6r/a) 9/2880 - • • • 

The corresponding toroidal and poloidal current densities can be 

calculated from 

Since the toroidal field on axis Bto is not an easily measured 

quantity, it is useful to relate it to the average field using 
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for which the power series expansion gives 

- 82/2 + 84/12 - 86/144 + 88/2880 

- 810/86400 + • • • 

In order to calculate Bto from the measured quantity <Bt>. the 

above expression can be inverted to give 

+ 82/2 + 84/6 + 786/144 + 1388/960 

+ 107810/28800 + • • •  

The function F(8) can also be expanded as a polynomial with the 

result 

F - 82/2 - 84/12 - 86/48 - 88/180 - 13810/8640 

- 11812/26880 
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III. Modified Bessel Function Model 

The difficulty with the Bessel function model is that a 

finite current density is required at the wall (r�a). Since the 

plasma temperature approaches zero at the wall, the resistivity 

there is high, and a given electric field cannot drive a 

significant current. The modified Bessel function model is a 

modification of the Bessel function model in which the toroidal 

and poloidal current densities are made to go to zero at the 

wall. Experiments2-4 show it to be a better representation of 

reality. The usual modified Bessel function mode15 assumes A 
constant out to some radius (typically 0.7a) beyond which it 

falls linearly to zero at r�a. We here adopt a slightly 

different strategy and express the fields as truncated power 

series of radius in which the coefficients of the terms in the 

series depend upon F and are ad. j usted to satisfy the requirements 

of zero current at the wall and nearly constant A at small radii. 

The coefficients are written in terms of F rather than 6 because 

it is a better expansion parameter since the typical RFP state 

has F - -0.2 and 6 - 1.6. 

As a starting point we express the toroidal field, 

normalized to the average toroidal field, as a fourth order 

polynomial in radial position with the odd powers absent as 

required for cylindrical symmetry: 
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From the definition of F we obtain 

From the definition of <Bt) we obtain 

The condition of no poloidal current density at the wall requires 

dBt(a)/dr '" 0 or 

f 1 + 2f 2 0 

Combining these three equations gives 

or 

f 0 3 - 2F 

f1 -6(1 - F) 
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The toroidal field profile calculated above is compared with the 

result from the Bessel function model for various values of F in 

figure 1. The values of F are chosen to represent a non-reversed 

discharge (F�O.5),  a j ust reversed discharge (F=O), and a highly 

reversed discharge (F=-O.5). From Jp (r) -dBt/dr/�o' the 

normalized poloidal current density is 

or 

The poloidal current density profile calculated above is compared 

with the result from the Bessel function model for various values 

of F in figure 2. 

A similar procedure can be applied by writing the normalized 

toroidal current density as a power series, 

From Jt (r) 

field is 

d ( rBp)/dr/�or, the normalized poloidal magnetic 
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No:rMalized Toroidal Field 
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On axts (r=-O), A ha s the value A
O 

=- J.IoJt(O)/Bt(O) "" go/foa. To 

have A as constant as possible, we require J.I0Jp' (O)/Bp'(O) 

4f1/goa .. AO' or 

where the I denotes a derivative with respect to r. To further 

ensure the constancy of A near r=O we require J.I0Jt" (O)/Bt" (0) .. 

g 1 / f 1 a == A 0' or 

where the II denotes a second derivative with respect to r. 

Finally, from the requirement that Jt(a) .. 0, we obtain 

Substituting the previously derived values of fo' f1' and f2 

gives 

With these coefficients, the normalized poloidal field can be 



written 

-13·-

[18-30F+12F2]1/2[r/a - 3 (1-F) (r/a)3/ (3-2F) 

+ (3-4F) (r/a)5/3 (3-2F)] 

and the normalized toroidal current density can be written 

[72-120F+48F2]1/2[1 - 6 (1-F) (r/a)2/ (3-2F) 

+ (3-4F) (r/a)4/ (3-2F)] 

The field and current density profiles calculated above are 

compared with the results from the Bessel function model for 

various values of F in figures 3 and 4 ,  respectively. 

The q-profile given by 

is plotted in figure 5 for the Bessel function model and the 

modified Bessel function model for various values of F and a 

typical aspect ratio of Ro/a=3. One curious feature is the near 

constancy of q on axis as a function of F (or e) in the RFP 

state, 

q (O) 

The safety factor on axis varies from O. 707a/Ro at F=O to 
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O. 645a/RO at F�-l. The safety factor on axis is plotted as a 

function of e in figure 6 for a typical aspect ratio of Ro/a=3 

and compared with the Bessel function model result of q(O)=a/Ro8, 

which is much less constant. 

From the toroidal current density profile and the definition 

of 8, it is straightforward to show that 

or 

Note that an RFP state exists for e > 21/2. The F-8 curve 

calculated above is compared with the Bessel function model 

result in figure 7. For many purposes it is useful to have 8 as 

a function of F. Inverting the above equation is difficult, but 

F(e) can be reasonably well fit to a surprisingly simple 

function, 

as shown in figure 7. This relation bears an amusing resemblance 

to F(e) for the Bessel function model as derived earlier. 

A limitation of the modified Bessel function model above is 
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Field Reue�sal Pa�aMete� (F) 
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that the current density J is not strictly parallel to B 

everywhere. Thus it is necessary to generalize the definition of 

A to include both parallel and perpendicular components: 

].I J'B 0- -

The evaluation of these expressions is long and tedious, and the 

algebraic results will not be displ ayed here, but figures 8 and 9 

show graphs of AI I and Al normalized to 1/a as a function of 

radius for various values of F. Also shown is the Bessel function 

model result in which A is independent of r and equal to 28/a 

and Al is identically zero. Note that for the modified 

Bessel function model is nearly constant out to about r/a�O.7 and 

then falls to zero at r=a. The normalized value of Al is much 

smaller than and thus the approximation that J is parallel 

to B is rea sonably well satisfied. Actually the existence of a 

small current perpendicular to � is equivalent to assuming that 

the plasma ha s a finite pressure. From ix��Vp, the equivalent 

pressure profile can be calculated from 

per) 

The result of evaluating this expression for various F is shown 

in figure 10, normalized to <Bp (a) 2/2].1o (beta). In figure 11, 

the beta on axis [2].1oP(O)/<Bp (a) 2] is plotted versus 8. The 

error arising from the assumptions of the modified Bessel 

function model for the RFP just equals and cancels the error due 
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No:rMalized LaMbda par-a I leI 
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RadiltS <r-/a) 1 
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to the neglect of plasma pressure at a beta of about 20-30%. 

Thus the modified Bessel fun ction model desc ribed above should be 

quite a good representation of a real RFP. 
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IV. Numerical Methods 

Since the goal of deriving the analytic expressions in the 

previous sections was to facilitate repetitive numerical 

calculations, it is useful to determine the precise form of the 

expressions that yield the shortest calculation time. The 

results, of course, depend upon the compiler used as well as the 

computer hardware available. For the present purpose, tests were 

done on a standard IBM PC with 8087 math coprocessor using Turbo 

BASIC Version 1. 0 from Borland, International. As an example, 

the value of F(9) for the first three terms of the Bessel 

function model, 

was evaluated 10,000 times in the following equivalent formats 

with the resulting times (in seconds) indicated in parenthesis: 

F = - 9*9/2 - 9*9*8*9/12 (3. 56) 

F 1 - . 5*9*8 - . 0833333*8*8*8*9 (3. 17) 

F - . 5*8*8*(1+. 1666666 *8*8) (3.00) 
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The conclusions are: 1) avoid exponentiation, 2) multiply rather 

than divide, and 3) use parentheses to avoid repetitive 

operations. 
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