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Inductance and Resistance of RFP Discharges 

J. C. Sprott 

I. Introduction 

The goal of this paper is to use the modified Bessel 

function model ( MBFM ) results of PL P 1008 to derive simple 

expressions that permit the determination of time-dependent 

plasma quantities such as conductivity temperature and energy 

confinement time from external electrical circuit measurements in 

an RFP. The results can also be used in the inverse way to 

predict the electrical waveforms using assumptions about the 

variation of the conductivity temperature. Although it is 

possible to obtain exact results in closed, analytic form, the 

complexity of the expressions renders their use difficult and is 

not warranted given the somewhat arbitrary assumptions of the 

MBFM. Rather, the strategy will be to evaluate the MBFM results 

numerically and to fit them to simple polynomial expressions that 

are at least as accurate as the MBFM itself. 

As a starting point, we consider the RFP plasma to be a non­

linear, passive, two-port network, 
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in which the ports represent the poloidal-field and toroidal-

field circuits, respectively. The existence of a closely 

fitting, highly conducting shell with poloidal and toroidal gaps 

establishes a convenient boundary between what we will consider 

to be the plasma ( internal ) region and the external region in 

which the electrical circuit elements are more conventional. In 

the present notation, Vpg and Vtg represent, respectively, the 

voltages at the poloidal and toroidal gaps in the shell, Ip 

represents the current in the poloidal-field circuit ( plasma 

current ) , and It represents the ( total ) current ( ampere-turns ) in 

the toroidal-field winding. In the large-aspect-ratio ( Ro/a » 

1) approximation, It and Vtg are related to the toroidal field at 

the wall Btw and the average toroidal field <Bt> through the 

relations, 
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These relations provide the means by which 8tw and <8t> are 

determined from the experimentally measured currents and 

voltages. 

The coupling between the poloidal and toroidal field 

circuits can be calculated from the power balance equation, 

where Wm is the inductive energy stored in the magnetic field 8, 

r 

J 
82 dV 

and Poh is the ohmic heating power dissipated in the plasma 

resistance Rp' 

If we define the loop voltage Vt according to 
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i t  can be written in terms o f  the measured quantities as 

Note that in the steady state ( Vtg = 0 and dWm/dt 0), V� is 

just equal to Vpg' but that when the fields are changing in time, 

a correction is needed to determine the loop voltage from the 

poloidal gap voltage. The first task will be to determine this 

correction. The result will then be used to derive a formula 

useful for determining the electron conductivity temperature. 
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II. Loop Voltage Calculation 

In the large-aspect-ratio » 1), cyllndrical 

approximation, the magnetic energy can b e written 

where the fields are given by the MBFM result of PLP 1008, 

and 

3 - 2F - 6(1-F)(r/a)2 + 3(1-F)(r/a)4 

[18-30F+12F2J1/2[r/a - 3(1-F)(r/a)3/(3-2F) 

+(3-4F)(r/a)5/3(3-2F)] 

In the ab ove equations, F is defined by 

A graph of the magnetic energy density normalized to <Bt>2/2�o as 

a function of F in the range of interest (-1 < F < 1) is shown in 

figure 1. It is fit quite well (to within a few percent) by the 

function 

4 - 5F + 2F2 
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Figure 1 



A time-variation of magnetic energy can result from either a 

variation of <Bt> or F. Consider first the matched-mode case of 

constant <Bt> (or Vtg=O), corresponding to a perfectly crowbarred 

toroidal gap. If the discharge remains on the F-6 curve for the 

MBFM, then the variation in F is due entirely to a variation in 

Ip' and we can write, 

where Lsc(F) is an effective inductance that depends upon the 

value of F. The subscript sc is used to indicate that this 

inductance is appropriate only to the case with the toroidal gap 

short-circuited Applying the chain rule of 

differentiation, 

dWm dt dWm dF de 
Lsc(F) --

Ip dt dIp Ip dF de dIp 

where e is defined by 

which from PLP 1008 is related to F for the MBFM by 

F '" 1 - 62/2 

The inductance is thus calculated to be 
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This inductance, normalized to �ORo' is plotted in figure 2. 

As a numerical example, in the tokamak limit (F=l) of MST 

( RO = 1.5 m), the inductance is Lsc(l) 0.47 �H. Neglecting 

resistive losses, a � = 2-volt-second iron core would thus permit 

a maximum plasma current of �/Lsc(l) = 4.2 MA if a Lsc(1)Ip
2/2 = 

4. 2-MJ power source were available. A 93-kG toroidal field would 

be required in MST to reach this current with a cylindrical q (= 

2na2<Bt> / Ro�oIp) of 2.0! 

As another example, the flux required to just reach the RFP 

state (F=O) at a given current with matched-mode self-reversal 

«Bt> = constant) can be calculated from 

which evaluates to 2 volt-seconds at Ip = 1.8 M A  for MST. The 

poloidal bank energy required to reach the RFP state at this 

current is 

or 2.3 MJ for MST, neglecting resistive losses. At this current, 

the average toroidal field is <Bt> = 4.9 kG at F = o. 



-9 -

NO�Malized Inductance 2 5 uUluu,nUIII'UIUUIIHIIIlU:UHUllrUI:HJlIIIIHla':I:rnl:f'''::UUIIIHllun:UUl:rU"H.U'UH""'H'"H)'UUIHI:lJ:'U'UI:lUUlr ':lIlIUIIIUIUUIU:U"I'HHUIUIUUIUH""H'!IIU:':UlrUIUIHJ:lllfflr 'UIUHIIUIHIlIIIUI:IP1 
• l I I I I " I 
I I I I I i 
11.\" i .... i 
! '� I I I -.".... I . I ........ \. I i 
I ....... I I 
j."" 

.... '1"1 i .... 
1 ... 'I'Iu. I j 

• • ...... 1. . i I "'11.\. 

I 
. 

� , lUI #"I�"tl Hili 

I '''- J 
i .• "'l..... . I I D�..... ! ! 

!I� �� ,I 
� -� , 

I D.� .. \..... . i 

! .-\.�, I I 

I .. � .. I I .... .",'"'}... .. .. I 
! I .1.; .. *.... I 

I I 
�I .. '''I\............ I I"" I 

1_'1"1.,,, .... , 
I I 

.1·1..··�·'1.I. I j "\'011;1 
I I.... I m�.. .. .. j 

I ""I"... I 

I I "'I.,."" I I � .  

I �� I 
.!= 

I � � 
i I "�"I ! 
J ! "\-.. I 
! ! .1..\.... i 
, ! :iP'\, ! 

I 

I ,.... I 
- I � 
I i 

I I I : I . 

9 1... .. "",,,,, ........ "'"L.", ....... .. ... " .. " .. .1.. ..... . "",,,, .. ",,,, .. .1.. .. , " .. ,,,,, ........ ,,, .. 1.. " '" .. """",,, ...... .1.. ....... ,,,,,, .. "'" .. , "L"''''" .... " .... " .. "1"",,,, .. ,,,,,,,,,, ... ,,,,1... ... ,, .. ,, .............. .!.. ... "" ... " "" .. " ... .. 1 
-1 Field Reve�sal ParaMete� (F) 1 

Figure 2 
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The other case that is easy to calculate is the one in which 

the plasma current if ramped up from a negligibly low value to 

full current at a constant and negligibly small value of F. If F 

remains at zero throughout the ramp-up, It is zero, and the 

toroidal-field circuit need not supply any energy. This is 

accomplished in principle by leaving the toroidal gap open-

circuited throughout the ramp-up. In such a case, the inductance 

can be calculated from 

dt 

The current required to consume 2 volt-seconds in MST is �/Loc(O) 

= 1.1 MA, and the energy required is Loc(0)Ip
2/2 

this current, the average toroidal field is <Bt> 

O. 

1.1 MJ. At 

3.0 kG at F = 

A general conclusion is that a discharge ramped up to a 

given current at a low value of F consumes more inductive volt-

seconds from the poloidal-field circuit than would be required to 

achieve the same current with self-reversal of a large, pre-

existing toroidal field. In the former case, the poloidal-field 

circuit provides both the poloidal and toroidal fields, whereas 

in the latter case some of the pre-existing toroidal field gets 

converted into poloidal field with a smaller consumption of flux 

and energy from the poloidal-field circuit. Of course, when one 

includes the resistive volt-second consumption, the situation may 
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change completely. These results are summarized in Table I. 

Finally we consider the general case in which the current 

ramp-up is accompanied by power flow either from or to the 

toroidal-field circuit. However, we assume that the discharge 

remains on the F-6 curve for the MBFM model, and thus for a given 

Ip(t) ,  the loop voltage can depend on only one other parameter 

which we take to be Vtg(t) , 

Lsc(F) is the inductance previously calculated for Vtg=O, and 

A(F) is a coefficient of coupling between the toroidal-field and 

poloidal-field circuits, evaluated for Ip=constant, 

The first term on the right can be written as a function of F as 

Evaluation of the second term is a bit more complicated, 

dt 

dWm of d6 d<Bt> 
+ --- ----- J 

of as d<Bt> dt 

Considerable tedious algebra leads to the result, 



A(F) 
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R (1-3F+2F2) / a[2-2F]1/2 
o 

which is plotted, normalized to the aspect ratio (Ro/a) , in 

figure 3. The above expression is slightly simpler when 

expressed in terms of a, 

Putting it all together leads to the following final result 

suitable for on-line determination of the loop voltage and 

electrical circuit modeling: 
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Figure 3 
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Table I 

Plasma current limits for MST, assuming MBFM profiles, neglecting 

ohmic losses, for a 2-volt-second flux swing in the iron core. 

* 

Case 

Tokamak (F=l) 

Matched Mode RFP (F=O) 

Ramped RFP (F=O) 

For a cylindrical q of 2. 0 

L 

0. 47 ]1H 

1. 10 ]1H 

1 .88 ]1H 

4. 2 MA 

1. 8 MA 

1. 1 MA 

4. 2 MJ 

2.3 MJ 

1 . 1  MJ 

93 kG
* 

4.9 kG 

3. 0 kG 
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III. Conductivity Temperature Calculation 

The final task will be to determine the plasma conductivity-

temperature from the loop voltage V� and the plasma current Ip' 

The ohmic power input to the plasma at low beta can be written as 

where is the electrical resistivity parallel to B. 

Classically, the (Spitzer) resistivity depends on electron 

temperature as 

where Te is in electron volts and Zeff is the effective ionic 

charge. Since Te in general has a spatial dependence, the 

calculation of Te from the plasma resistance involves an 

assumption about the temperature (or resistivity) profile. 

Rather than be concerned about such details, we will assume a 

spatially constant resistivity and understand that the 

temperature derived therefrom will be an underestimate (perhaps 

by about a factor of two) of the temperature on the axis and an 

overestimate of the temperature near the edge. It represents a 

reasonable value to use in combination with the line-averaged 

density to determine the plasma energy content and energy 

confinement time, 
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assuming Ti = Te' Furthermore, we will assume Zeff=1, which is 

tantamount to neglecting impurities and other causes of 

resistivity anomaly such as fluctuations. Under these 

conditions, the conductivity electron temperature is given by 

where S(F) is the so called "screw-up factor" that accounts for 

the increased resistivity due to the fact that the current 

follows field lines and the field lines are not purely in the 

toroidal direction, especially for low and negative values of F. 

Also included in S(F) is the resistance enhancement (about 20%) 

due to the non-uniform current density over the poloidal cross 

section. For a spatially uniform resistivity, S(F) can be 

calculated from 

S(F) 
I 2 

P 
r dr 

where J(r) and B(r) are given as functions of F by the MBFM of 

PLP 1008. The factor S(F) has been calculated numerically and is 

shown in figure 4. The result can be fit quite accurately (to 

within a few percent) by the function, 

S (F) '" 3.2 - 2F 
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Figure 4 
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Note that for F=1, all the current is toroidal, and the factor 

S(1) 1.2 is due entirely to the effect of the peaking of the 

current density profile in the MBFM. By contrast, a tokamak 

parabolic current density profile would have a peaking factor of 

S(1) = 4/3. 

At this point, it is useful to compare the results derived 

in this and the previous section with the results used, for 

example, in PLP 965 for the design of MST and for the IBM monitor 

program used for the construction-phase RFP experiments. The old 

values were obtained from Los Alamos numerical modeling of ZT-40M 

and from old Culham results from ZETA. The old and new values of 

the various quantities are compared in Table II at a value of F=O 

for MST. The differences are not large compared to other 

uncertainties in the use of the MBFM to represent MST. The new 

values will be used for future electrical circuit modeling and 

on-line data analysis of MST plasmas. 

In summary, the electron conductivity temperature is 

calculated from the loop voltage V� (as derived in the previous 

section) and the plasma current Ip using the relation, 

where S(F) 3.2 - 2F 
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Table II 

Comparison of old and new values of various quantities at F=O for 

MST. 

quantity 

8 

A 

S 

old new change 

1.25 1.4 1 +13% 

2.76 �H 2.36 �H -14% 

3. 1 1  2.04 -34% 

2.79 3.20 + 15% 


